

What does Seismic Anisotropy tell us about the Lithosphere-Asthenosphere Boundary?

Jean-Paul Montagner⁽¹⁾, Gael Burgos ^{(1),} Eric Beucler ⁽²⁾, Antoine Mocquet⁽²⁾ and Yann Capdeville⁽²⁾, Mathias Obrebski^(1,3), Lev Vinnik⁽⁴⁾.....

1- Laboratoire Sismologie, I.P.G., Paris, France

- 2- L.P.G., University of Nantes, Nantes, France
- 3- LDEO, New-York, U.S.A.
- 4- I.P.E., Moscow, Russia

L.A.B.: Lithosphere-Asthenosphere Boundary (many different approaches and definitions)

Eaton et al., 2008

LAB : from seismic data

Receiver functions

0

Surface waves

Rychert & Shearer, 2009

Global scale

-Much discrepancy
Between different
Estimates
-Global tomographies
give 200-250km depth
for continental roots

-Ocean-Continent

Structure of continents from seismic anisotropy

Mid-Lithospheric Boundary

Yuan and Romanowicz, 2010

From Surface wave dispersion

First order Perturbation theory (from phase velocity inversion)

Proxy from parameter Vsv

Proxies from other parameters: Seismic Anisotropy?

Seismic Anisotropy at all scales

- -From microscopic scale up to macroscopic scale
- -Efficient mechanisms of alignment of minerals in the crust and upper mantle: (L.P.O.: Lattice preferred orientation of minerals; S.P.O.: Shape preferred orientation: fluid inclusions, cracks... Fine Layering)

ANISOTROPY is the Rule not the Exception

Apparent (observed) anisotropy: NON UNIQUE INTERPRETATION in different depth ranges of the Earth

Different processes in different layers -S.P.O. (stress) -L.P.O.(strain) Fine Layering

Mineralogy, Water and fluid content
Present day tectonic, geodynamic processes
Past processes (frozen anisotropy)

Separation of the different kinds of anisotropy in different layers => Different interpretations

Stratification of anisotropy in the crust & mantle Above, below the LAB?

Different kinds of anisotropy effects on seismic waves

•Body waves: Shear wave splitting (birefringence)

•Surface waves (Rayleigh and Love):

-Rayleigh-Love discrepancy (VTI model: radial anisotropy)
-Azimuthal variations of phase or group velocities

-Amplitude effects: Quasi-Rayleigh, Quasi-Love polarization anomalies

Effect of anisotropy on the phase of surface waves

Effect on eigenfrequency ω_k (Rayleigh's principle)

$$\frac{\Delta \omega_{k}}{\omega_{k}} = \frac{\int_{\Omega} \varepsilon_{ij} \star \delta C_{ijkl} \varepsilon_{kl} d\Omega}{\int_{\Omega} \rho_{0} u_{r} \star u_{r} d\Omega} = \frac{\delta V}{V} \Big|_{k}$$

 ϵ strain tensor, u displacement, δC_{ijkl} elastic tensor perturbation (21 elastic moduli), V phase velocity

Phase velocity pertubation $\delta V(T, \theta, \phi, \Psi)$ at point r (θ, ϕ) (Smith & Dahlen, 1973; Montagner & Nataf, 1986)

 Ψ Azimuth (angle between North and wave vector)

 $\delta V(T,\theta,\phi,\Psi)/_{V} = \alpha_{0}(T,\theta,\phi) + \alpha_{1}(T,\theta,\phi)\cos 2\Psi + \alpha_{2}(T,\theta,\phi)\sin 2\Psi + \alpha_{3}(T,\theta,\phi)\cos 4\Psi + \alpha_{4}(T,\theta,\phi)\sin 4\Psi$

- •*Cijkl 21 elastic moduli*
- $\Box \alpha_0 = 0$ - ψ term: 5 parameters A, C, F, L, N (PREM)
- VTI Model (transverse isotropy with vertical symmetry axis)
- •Best resolved parameters from surface waves (among 13 parameters when including azimuthal anisotropy 2ψ -, 4ψ terms)
 - $L = \rho V_{SV}^2$ Isotropic part of V_{SV}
- $N/L = \xi = (V_{SH}/V_{SV})^2$ Radial Anisotropy
- **G**, Ψ_{G} Azimuthal Anisotropy of V_{SV} , also related to SKS splitting (when horizontal symmetry axis, vertical propagation, Montagner et al., 2000)
- •Body waves (Crampin, 1984)
- $\rho V_{SV}^2 = L + G_c \cos 2\Psi + G_s \sin 2\Psi$
- $\rho V_{SH}^{2} = N E_c \cos 4\Psi E_s \sin 4\Psi$

Proxies from other parameters: Seismic Anisotropy

Data collection

Phase and group velocity dispersion curvesRayleigh and Love waves,Fundamental and higher modes (n={0,6})

IPGP(1)	44 - 315	9292 <mark>†</mark>	-	-
UTRECHT(2)	35 - 175	63628	35 - 176	45179
HARVARD(3)	35 - 150	37738	35 - 150	23227
BOULDER(4)	16 - 200	76580	16 - 150	47021
TOTAL	-	187238	-	115427

First step: Regionalization =>local dispersion velocity V(T, θ , ϕ , ψ)

LAB: Statistical M.C. Inversion

Data: C_R , C_L , U_R , U_L [30-300s], Parameters: 3Vs, 2 δz

First order perturbation Theory => depth distribution of Vsv, G (and ξ)

Proxies obtained from anisotropic tomographic models

LAB from the gradient of VSV parameter

LAB from the gradient of ξ parameter (only oceans) Radial anisotropy $\xi = (V_{SH}/V_{SV})^2$

350 400

LAB from the change of orientation of azimuthal anisotropy Ψ_{G}

Correlation between plate motion given by NUVEL-1 and the orientation $\Psi_{\rm G}$ of fast axis of SV-wave azimuthal anisotropy G

Vs Statistical MC Inversion

Vsv proxy (1st order Perturbation Theory)

ξ proxy (1st order Perturbation Theory)

Age Variation of LAB depth in oceanic regions

Compared with Half Space Cooling model

Age Variation of LAB depth in oceanic regions

Compared with plate model (McKenzie et al., 2005) Pacific plate

Atlantic Ocean

Indian Ocean

First Conclusions

- -LAB topography derived from surface wave data with 2 different inversion techniques (Monte-Carlo, 1st order perturbation theory) and for different proxies (S-wave velocity, radial anisotropy, azimuthal anisotropy)
- -Lateral variations of LAB (except from ξ) are similar but not their absolute values.
- For oceans, half-space cooling model does not work, plate model works slightly better, but the model of formation of lithosphere should be revisited in view of results from radial and azimuthal anisotropies.

Simultaneous inversion of SKS and receiver functions: AFAR (Horn of Africa)

RF

Geoscope ATD Station (Djibouti)

Receiver functions (RF) + SKS

Good Azimuthal Coverage

Simultaneous inversion of SKS and receiver functions

Simultaneous inversion of SKS and receiver functions

Tentative tectonic model to explain the stratification of anisotropy around Afar.

MLB: Mid-Lithospheric Boundary

Conclusions

- -LAB topography derived from surface wave data with 2 different inversion techniques (Monte-Carlo, 1st order perturbation theory) and for different proxies (S-wave velocity, radial anisotropy, azimuthal anisotropy).
- -Lateral variations of LAB (except from ξ) are similar but not their absolute values.
- For oceans, half-space cooling model does not work, plate model works slightly better, but the model of formation of lithosphere should be revisited in view of results from radial and azimuthal anisotropies.
- For oceans **mid-lithospheric discontinuity** derived from ξ.
- LAB in continents is more difficult to investigate (need to jointly use surface wave and SKS data).

Average seismic parameters below oceans

Crustal model:

Improvement of the crust2.0 Model (Bassin et al., 2000)

Joint Monte-Carlo inversion of Rayleigh, Love phase, group velocity dispersion curves: $d=[C_R C_L U_R U_L]$

Mooney et al., 1998; Bassin et al., 2000

Sensitivity of surface waves to the LAB Red: starting model, Grey Monte-Carlo Inversion

Path and azimuthal coverages of the merged dataset

Rayleigh, Love: C_R, C_L, U_R, U_L

Continental LAB: more complex

Joint anisotropic inversion of body wave and surface wave data

For SKS and S.W. Montagner et al., 2009

Cartes des vitesses de phase $0\psi + 4\psi$

Inversion des données séparées RAYL LOVE PHASE GROUPE (km) 10 0 -10 -20 20

Inversion Monte-Carlo

Paramètres : 3 V_S , 1 δZ . Données : C_R , C_L , U_R , U_L [20-50s].

Différentes méthodes de Monte-Carlo.

Fonction coût :

$$s_i = \sum_{k}^{n} \frac{\left(d_k^i - d_k\right)^2}{\sigma_k}$$

Probabilité d'acceptation :

$$P_i = \begin{cases} \exp\left(\frac{-(s_i - s_j)}{T_i}\right) s_i \ge s_j \\ 1 \quad \text{pour } s_i < s_j \end{cases}$$

Routine de calcul de dispersion très rapide (Herrmann, 1996).

$$\frac{\Delta}{C(T, \text{trajet})} = \int_{S}^{R} \frac{ds}{C(T, \theta, \phi)}$$

$$C(T, \psi) = C_{i}(T) \Big[1 + \alpha_{1}(T) \cos 2\psi + \alpha_{2}(T) \sin 2\psi + \alpha_{3}(T) \cos 4\psi + \alpha_{4}(T) \sin 4\psi \Big] + \frac{1}{4} + \frac{1}{4}$$

Inversion en profondeur

Paramétrisation complètement anisotrope du manteau supérieur.

13 paramètres : $[\rho, A, L, \xi, \phi, \eta, B_c, B_s, E_c, E_s, G_c, G_s, H_c, H_s].$

Données : C_R , α_R^* , C_L , α_L^* [35-300s].

Inversion moindres carrés, théorie de la perturbation au 1^{er} ordre.

$$\begin{split} \delta C_{R}|_{\mathbf{k},\psi} &= \int_{\Omega} \left[\left. \frac{\partial C_{R}}{\partial \mathsf{A}} \right|_{\mathbf{k}} \left(\delta \mathsf{A} + \mathsf{B}_{c} \cos 2\psi + \mathsf{B}_{s} \sin 2\psi + \mathsf{E}_{c} \cos 4\psi + \mathsf{E}_{s} \sin 4\psi \right) \\ &+ \left. \frac{\partial C_{R}}{\partial \mathsf{C}} \right|_{\mathbf{k}} \delta \mathsf{C} + \left. \frac{\partial C_{R}}{\partial \mathsf{F}} \right|_{\mathbf{k}} \left(\delta \mathsf{F} + \mathsf{H}_{c} \cos 2\psi + \mathsf{H}_{s} \sin 2\psi \right) \\ &+ \left. \frac{\partial C_{R}}{\partial \mathsf{L}} \right|_{\mathbf{k}} \left(\delta \mathsf{L} + \mathsf{G}_{c} \cos 2\psi + \mathsf{G}_{s} \sin 2\psi \right) \right] d_{\Omega} / \Delta_{\Omega} \\ \delta C_{L}|_{\mathbf{k},\psi} &= \int_{\Omega} \left[\left. \frac{\partial C_{L}}{\partial \mathsf{L}} \right|_{\mathbf{k}} \left(\delta \mathsf{L} - \mathsf{G}_{c} \cos 2\psi - \mathsf{G}_{s} \sin 2\psi \right) \\ &+ \left. \frac{\partial C_{L}}{\partial \mathsf{N}} \right|_{\mathbf{k}} \left(\delta \mathsf{N} - \mathsf{E}_{c} \cos 4\psi - \mathsf{E}_{s} \sin 4\psi \right) \right] d_{\Omega} / \Delta_{\Omega} \end{split}$$

(code modifié de Montagner, 1986)

Paramètres résolus : V_{SV} , ξ , G_c , G_s .

Paramètres du modèle tomographique

CRUSTAL MODEL

Joint M.C. inversion $d=[C_R C_L U_R U_L]$

~25% variance reduction wrt *a priori* Crust2.0

 δz_{Moho} : difference between Our model and crust2.0

