The lithosphere-asthenosphere boundary beneath hotspots

Catherine A. Rychert
University of Southampton
Ocean lithosphere-asthenosphere boundary

Global receiver functions: most insitu measurements come from ocean island stations

[Rychert et al., *Lithos*, 2010]

[Rychert & Shearer, *Science*, 2009]

hotspot – lithosphere interaction

What does it imply about the lithosphere?

- Heat or thin the lid
- Dynamic support
- Compositional root

Detrick & Crough, 1978
Li et al., 2004
Sleep, 1990
Jordan, 1979
Yamamoto & Phipps Morgan, 2009
Hall & Kincaid, 2003
hotspot – lithosphere interaction
What does it imply about the asthenosphere?

anisotropy
melt
hydration

[Sparks & Parmentier, 1991]
[MELT, 1998]
[Kawakatsu et al., 2009]
[Yuan & Romanowicz, 2010]
[Karato, 2012]
Melt beneath the lithosphere?

How deep does it extend?

Is there a sharp boundary beneath it?

Typical gradual velocity increase in depth
Another important unknown - Where does the plume impinge on the lithosphere?

- Heat or thin the lid
- Dynamic support
- Compositional root

Detrick & Crough, 1978
Li et al., 2004
Sleep, 1990
Jordan, 1979
Yamamoto & Phipps Morgan, 2009
Hall & Kincaid, 2003
Method

1) Rotate recorded waveform to P and S components.

2a) Bin data by conversion point, simultaneously deconvolve and migrate to depth in 1-D.

2b) Extended multi-taper receiver function technique and 3-D migration.
Global compilation of receiver function results. Most insitu measurements come from ocean island stations.
Afar triple junction

[Beutel et al., 2010]
Afar triple junction, 75 km depth

Strong variation in waveform character from flank to rift.
Afar triple junction, 75 km depth

Velocity decreases with depth beneath the flank.

Velocity increases beneath the rift.

[Rychert et al., Nature Geo., 2012]
Flank cross section
Results from the migrated extended multitaper method

Strong LAB beneath flank, shallows beneath flood basalts

Strong velocity decrease likely requires a mechanism such as melting in the asthenosphere.

[Rychert et al., Nature Geo., 2012]
Flank to rift cross section
Results from the migrated extended multitaper method

beneath flank.

No LAB beneath rift.

Sharp transition implies rigidity of the lid.

[Rychert et al., Nature Geo., 2012]
Flank to rift cross section
Results from the migrated extended multitaper method

beneath flank.

No LAB beneath rift.

Sharp transition implies rigidity of the lid.

[Afar

[Rychert et al., Nature Geo., 2012]
Afar

Synthetic Waveform Modeling

11 %↓ @ 77 km
Strong velocity decrease likely requires a mechanism such as melting in the asthenosphere.

5 %↑ @ 41 km
7 %↑ @ 62 km

Strong velocity increase likely requires a mechanism such as a sharp decrease in melt concentration.

[Rychert et al., Nature Geo., 2012]
Plume potential temperatures (\(\geq 1450^\circ\text{C}\)) give velocity increase at > 100 km depth, outside error bars for depth of the seismic discontinuity.

[Rychert et al., Nature Geo., 2012]
Afar

Good agreement with previous/new seismic results.

Joint Ps receiver function – surface waves 70-80 km thick lid vs. no lid beneath rift [Dugda et al., 2007].

Sp receiver functions [Hansen et al., 2009]

30 km or possibly 100 km

80 km

0 – 60 km

Surface waves [Gallagher et al., 2013] see poster!
A sharp rigid lid is imaged on the flank of the Afar rift at ~75 km depth. The transition from flank to rift is abrupt.

The sub-crustal lithosphere beneath the rift has been destroyed.

A significant velocity increase imaged beneath the rift is consistent with geodynamic predictions for the onset of decompression melting.

Its depth is shallow, indicating no significant plume influence today.

[Rychert et al., Nature Geo., 2012]
Hawaii – where a mantle plume likely exists.
Hawaii

PLUME experiment: nearly 70 seafloor sites and 10 land stations, as well as permanent island stations.

Classic hotspot volcanism

plate motion over fixed plume

~1000 km wide topographic swell
Models to explain Hawaiian Swell

- Heat or thin the lid
 - Detrick & Crough, 1978
 - Li et al., 2004

- Dynamic support
 - Sleep, 1990

- Compositional root
 - Jordan, 1979
 - Yamamoto & Phipps Morgan, 2009
 - Hall & Kincaid, 2003
Models to explain Hawaiian Swell

- Heat or thin the lid
- Dynamic support
- Compositional root

Heat flow too low [Von Herzen, et al., 1989]

Detrick & Crough, 1978
Li et al., 2004
Sleep, 1990
Jordan, 1979
Yamamoto & Phipps Morgan, 2009
Hall & Kincaid, 2003
Hawaii - Results

Lithosphere-asthenosphere: 100 km depth, shallowing to 80 km beneath Island of Hawaii.

Also -

Velocity increase with depth: deepens from 110 to 150 km, 100 km west of Hawaii.

[Rychert et al., Nature Geo., 2013]
Hawaii
Waveform modeling, inferred plume axis

8 +/- 4% drop in Vs
18 +/- 4% increase in Vs

[Rychert et al., Nature Geo., 2013]
Hawaii
Geophysical modeling – temperature, water, melt?

example geotherms melt fraction seismic velocity

- 12% over 10 km
- 3% over 50 km

12% over 10 km
Hawaii – Discussion

77 – 93 km this study

Previous LAB results beneath Hawaii

95 km below sea level, previous S-to-P receiver functions [Li et al., 2004]

76 – 81 km below sea level, SS precursors [Schmerr et al., 2012]

Also, Velocity increase with depth at 130 – 140 km, previous S-to-P receiver functions [Li et al., 2001]
Hawaii - Where is plume at depth?

directly beneath Hawaii
[Wolfe et al., 2009]

200 km SW
[Li et al., 2000]

> 700 km W
[Cao et al., 2011]
Hawaii - Conclusions

Onset of melting increases from 110 km depth to 150 km depth

- Hawaiian plume impingement 100 km west of Hawaii
- Either approaches from west or deflected, possibly from a restite root
- Melt transport toward Hawaii along the gently sloping LAB permeability barrier and or/ via pre-existing lithospheric fracturing [Hieronymus & Bercovici, 1999]

[Rychert et al., Nature Geo., 2013]
Hawaii – What’s next?

Full waveform modeling confirms imaging. Also, some predicted focusing/defocusing.

[Rychert et al., in prep]
Galapagos

Data –
SIGNET array
October 2009 – June 2011

Permanent station PAYG
1998 – 2011

Young oceanic lithosphere

Hotspot-ridge interaction
Galapagos

[Rychert et al., EPSL., 2013]
Galapagos

Station PAYG

[Rychert et al., EPSL., 2013]
Galapagos

[Rychert et al., EPSL., 2013]

[Villagomez et al., 2007]
Galapagos

- LAB deeper near hypothesized plume location [Hooft et al., 2003]
- Onset of melting deeper in locations of surface wave anomalies.
- Multiple regions of deepened melting may indicate plume diversions and complex interactions with the ridge.

[Rychert et al., EPSL., 2013]
Iceland

[Rychert et al., in prep.]
Iceland

[Rychert et al., in prep.]
Iceland

- LAB deeper near hypothesized plume, NE
- Onset of melting deeper in NE

[Li & Detrick, 2006]
Comparison

<table>
<thead>
<tr>
<th>Location</th>
<th>Age Ma</th>
<th>LAB Depth km</th>
<th>LAB sharpness km</th>
<th>Onset of Melting km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iceland</td>
<td>0</td>
<td>~60 50-80 (NE)</td>
<td>Not modeled yet</td>
<td>90-160</td>
</tr>
<tr>
<td>Galapagos</td>
<td>0</td>
<td>~75 66(NE) - 82 (SW)</td>
<td>Unconstrained, lateral variation?</td>
<td>125-145</td>
</tr>
<tr>
<td>Afar</td>
<td>0</td>
<td>60-80 none in rift</td>
<td>~15 km depth (off axis)</td>
<td>66-75</td>
</tr>
<tr>
<td>Hawaii</td>
<td>95</td>
<td>~80 75 (E) - 93 (W)</td>
<td>~10 km depth (west of Hawaii)</td>
<td>125-155</td>
</tr>
</tbody>
</table>
Summary

Afar

Hawaii

Galapagos

Iceland

- destroyed mantle lithosphere
- Plume located off axis
- LAB thicker near plume

[Rychert et al., Nature Geo., 2012]
[Rychert et al., Nature Geo., 2013]
[Rychert et al., EPSL, 2013]
[Rychert et al., in prep.]
A sharp rigid lid is imaged on the flank of the Afar rift. No mantle lid exists beneath the rift, rather a discontinuity at the onset of decompression melting, without a strong plume influence.

The base of a melt rich layer beneath Hawaii, Galapagos, and Iceland increases in depth where the plume impinges on the lithosphere.

Plume is located off-axis beneath Hawaii, Galapagos, Iceland.

The LAB is deeper near the region of plume impingement, consistent with compositional definition.

Melt may be guided toward axis of volcanism via pre-existing structures.

Suggests melt is retained in the asthenosphere beneath areas of active volcanism in sufficient quantities and over significant depth ranges to be observed seismically.
Ontaong Java Plateau: a modern day analogue for the formation of the continents?

Saikiran Tharimena, see poster!
SSLIP – SS Lithospheric Interface Profiling

Comparison to previous work

[Nettles & Dziewonski, 2008]

SSLIP

[Rychert & Shearer, JGR, 2011]
[Wolfe et al., 2009]
70 – 110 km

100-110 km thins to 50-60 km
temperatures from geochemistry (1370 - 1490°C) [Rooney et al., 2011] agrees with our predicted range (1350 – 1400°C), i.e., not significantly hotter than normal mantle.

2) Indeed, petrologic estimates for the depth of melting in Afar (70 - 90 km) [Furman, 2007] agree with the depth of our observed seismic discontinuity.

3) Afar rift is likely seismically slow in comparison to surrounding regions from down to ~200 km depth due channelized flow from a low viscosity asthenosphere, which provides slightly warmer material, but certainly no plume. Such a model has been used to explain similar seismic structure and low mantle potential temperatures beneath the East Pacific Rise [Toomey et al., 2002]. Lateral asthenospheric flow has also been invoked to explain diachronous volcanism and geochemical variations beneath Afar [Ebinger & Sleep, 1998].

4) No plume directly beneath Afar in recent
Afar looks like the EPR @ 70 km depth

No significant plume influence is required!
Conclusions

A sharp rigid lid is imaged on the flank of the Afar rift at ~75 km depth. The transition from flank to rift is abrupt.

The sub-crustal lithosphere beneath the rift has been destroyed.

A significant velocity increase imaged beneath the rift is consistent with geodynamic predictions for the onset of decompression melting.

Its depth is shallow, indicating no significant plume influence today.
Hawaii – [Rychert et al., submitted]
Image plume pancake and conduit

Onset of melting increases in depth 100 km west of Hawaii, in location of plume conduit
Melt and compositional buoyancy may provide support for Hawaiian Swell without producing a large heat flow anomaly.

Western plume may explain high topography there in comparison to east.
Bin by conversion point.
Bin radius = $\frac{3}{4}$ degree, 75 km depth.
Li & Detrick, 2006]
What does it imply about the asthenosphere?
Lithosphere-asthenosphere boundary at tectonic transitions.

What does it imply about the lithosphere?

[subduction]

[rift]

[ridge]

[subduction]

[continent-ocean]

[Huismans & Beaumont, 2011]

[Rychert et al., 2013]

[Yuan & Romanowicz, 2010]
Good agreement with previous seismic results.

Joint Ps receiver function – surface waves 70-80 km thick lid vs. no lid beneath rift [Dugda et al., 2007].

Surface waves [Fishwick et al., 2010].
0 – 60 km
60 – 160 km

surface waves [Gallagher et al., 2013]
see poster!
Previous seismic results

SKS & surface waves – aligned melting in upper 75 km.

[Kendall et al., 2005; Bastow et al., 2010]

P-to-S: Moho shallows, V_p/V_s high beneath rift

[Hammond et al., 2011]
Geodynamic Modeling
Ocean lithosphere-asthenosphere boundary

[Rychert, Schmerr, Harmon, G-cubed, 2012]
Global compilation of receiver function results. Most insitu measurements come from ocean island stations

Lithosphere-asthenosphere boundary from receiver functions

(Li et al., 2000; Li et al., 2004; Collins et al., 2002; Wolbern et al., 06; Heit et al., 2007; Li et al., 2007; Rychert et al., 2005; Rychert et al., 2007; Snyder, 2008; Kumar et al., 2005; Sodoudi et al., 2006; Ozacar et al., 2008; Angus et al., 2006; Mohsen et al., 2006; Hansen et al., 07; Kumar et al., 2007; Wittlinger and Farra, 2007; Hansen et al., 2009; Sodoudi et al., 2009; Kumar et al., 2005; Oreshin et al., 2002; Kumar et al., 2006; Sodoudi et al., 2006; Chen et al., 2006; Chen et al., 2008; Chen, 2009; Kawakatsu et al., 2009)
A sharp rigid lid is imaged on the flank of the Afar rift at ~75 km depth. The transition from flank to rift is abrupt.

The sub-crustal lithosphere beneath the rift has been destroyed.

A significant velocity increase imaged beneath the rift is consistent with geodynamic predictions for the onset of decompression melting.

Its depth is shallow, indicating no significant plume influence today.
Hawaii –

Method - Receiver Functions

1) Orient OBS data using Rayleigh waves.

2) Rotate waveform to P and SV components.

3) Deconvolve with extended multitaper [Helffrich, 2006].
 Filter 0.05 – 0.14 Hz

4) Migrate to depth [Angus et al., 2009].
 Weight by SNR.
 Grid $\frac{3}{4}^\circ$ by $\frac{3}{4}^\circ$, 1 km depth
 Migration model from P-to-S receiver functions (crust) [Leahy et al., 2010] and surface waves (mantle) [Laske et al., 2011].
 Smooth based on Fresnel zone
Hawaii – hitcount map
Galapagos – hitcount map
Waveform modeling station on seafloor. Consider range of amplitudes in data.

LAB and onset of melting: 8-20% ΔV_s over < 15 km depth.
Afar vs. Hawaii

- destroyed mantle lithosphere
- onset of melting ~75 km depth
- potential temperatures ~1350° - ~1400°
- No strong plume influence

[Rychert et al., Nature Geo., 2012]

[Rychert et al., Nature Geo., in revision]

- possibly subtly thinned lithosphere
- onset of melting ~150 km depth
- potential temperature increase from ~1450° to ~1550°
- Hawaiian plume impingement 100 km west of Hawaii
- Deflection, possibly by a restite root
Galapagos –

lithosphere-asthenosphere

onset of melting
Galapagos –
S-to-p modeling data from station PAYG

P-to-s Signet Array
hotspot – lithosphere interaction

What does it imply about the asthenosphere?

[Sparks & Pamentier, 1991]

Typical gradual velocity increase in depth

[Kawakatsu et al., 2009]

[Yuan & Romanowicz, 2010]

[Till et al., 2010]

[Li et al., 2001]
Other Supporting Evidence

Africa has moved ~700 km away from the location where a plume caused flood basalt volcanism ~35 Ma [Silver et al., 1998]. Although interpreted as a thermal anomaly, the range of potential temperatures from geochemistry (1370 - 1490° C)[Rooney et al., 2011] agrees with our predicted range (1350 – 1400° C), i.e., not significantly hotter than normal mantle. Depth of melting consistent with geochemical estimates (70 – 90 km) [Furman, 2007].

Channelized flow from a low viscosity asthenosphere may provide slightly warmer material, but certainly no plume [Toomey et al., 2002; Ebinger & Sleep 1998].

No plume visible beneath Afar in joint body wave surface wave tomography. [Chang & van der Lee, 2011] [Kustowski et al., 2008]
Global compilation of receiver function results. Most insitu measurements come from ocean island stations.

Lithosphere-asthenosphere boundary from receiver functions

(Li et al., 2000; Li et al., 2004; Collins et al., 2002; Wolber et al., 2006; Heit et al., 2007; Li et al., 2007; Rychert et al., 2005; Rychert et al., 2007; Snyder, 2008; Kumar et al., 2005; Sodoudi et al., 2006; Ozacar et al., 2008; Angus et al., 2006; Mohsen et al., 2006; Hansen et al., 2007; Kumar et al., 2007; Wittlinger and Farra, 2007; Hansen et al., 2009; Sodoudi et al., 2009; Kumar et al., 2005; Oreshin et al., 2002; Kumar et al., 2006; Sodoudi et al., 2006; Chen et al., 2006; Chen et al., 2008; Chen, 2009; Kawakatsu et al., 2009)
Global compilation of receiver function results. Most insitu measurements come from ocean island stations.

Lithosphere-asthenosphere boundary from receiver functions:

(Li et al., 2000; Li et al., 2004; Collins et al., 2002; Wolbern et al., 06; Heit et al., 2007; Li et al., 2007; Rychert et al., 2005; Rychert et al., 2007; Snyder, 2008; Kumar et al., 2005; Sodoudi et al., 2006; Ozacar et al., 2008; Angus et al., 2006; Mohsen et al., 2006; Hansen et al., 07; Kumar et al., 2007; Wittlinger and Farra, 2007; Hansen et al., 2009; Sodoudi et al., 2009; Kumar et al., 2005; Oreshin et al., 2002; Kumar et al., 2006; Sodoudi et al., 2006; Chen et al., 2006; Chen et al., 2008; Chen, 2009; Kawakatsu et al., 2009)
Another important unknown - Where does the plume impinge on the lithosphere?

Detrick & Crough, 1978
Li et al., 2004
Sleep, 1990
Jordan, 1979
Yamamoto & Phipps Morgan, 2009
Hall & Kincaid, 2003

Heat or thin the lid
Dynamic support
Compositional root

Heat flow too low
[Von Herzen, et al., 1989]
Galapagos

Melt ponding beneath lithosphere with dykes

[Havelin et al., 2013]
Hawaii – Discussion

Other supporting evidence:
Agreement with geochemical estimates: 1500° – 1600°, 150-180 km [Lee et al., 2009].

Western plume impingement may explain ‘Loa’ - ’Kea’ trend (southwest more isotopically enriched than northeast) [Bryce et al., 2005].

Melt and compositional buoyancy may support Hawaiian Swell without a large heat flow anomaly.

Western plume may explain high topography on west in comparison to east.
Hawaii – Discussion

How can we explain plume impingement 100 km to the west?

Has the plume moved? [Tarduno et al., 2009] Sudden plume movement after ~47 My fixity seems too coincidental.
Hawaii – Discussion

How can we explain plume impingement 100 km to the west?

Has the plume moved? [Tarduno et al., 2009] Sudden plume movement after ~47 My fixity seems too coincidental.

Angled approach? [Steinberger & Antretter, 2006] Where is plume at depth?
Hawaii – Discussion

How can we explain plume impingement 100 km to the west?

Has the plume moved? [Tarduno et al., 2009]
Sudden plume movement after ~47 My fixity seems too coincidental.

Angled approach? [Steinberger & Antretter, 2006]
Possibly...

Diverted at shallow depth?
Restite root.
Hawaii - Results

Consistent with base of a melt rich layer, i.e., the onset of melting at 110 – 150 km depth.

Deepest in location of plume impingement, 100 km west of Island of Hawaii. Agrees with surface waves!

Depth of melting corresponds to potential temperatures $1450^\circ - 1550^\circ$ C [Katz et al., 2003], 100° local anomaly, 200° from ambient mantle.

[Rychert et al., submitted]