

SUBDUCTION AND GREAT EARTHQUAKES: INSIGHTS FROM NATURAL DATA AND ANALOGUE MODELLING

Francesca Funiciello Dip. Scienze, Univ "Roma TRE", Rome (Italy)

in collaboration with Fabio Corbi, Arnauld Heuret, Claudia Piromallo, Ylona van Dinther, Laura Sandri, Silvia Brizzi, Elenora van Rijsingen, Warner Marzocchi, Serge Lallemand, Clint Conrad, Giorgio Ranalli, Claudio Faccenna, Giorgio Mojoli

Scientific problem

Tools: - database on current subduction zones- analogue models

Selection of results

Future directions

Scientific problem

Tools: - database on current subduction zones- analogue models

Selection of results

Future directions

SUBDUCTION

SUBDUCTION INTERPLATE SEISMICITY

Sumatra eq, M_w 9.1

Dec 26th 2004

Chile eq, M_w 8.8 Feb. 27th 2010

Sendai eq, M_w 9.0 Mar. 11st 2011

A SINGLE MECHANISM... DIFFERENT OBSERVABLES!

some subduction zones produce great earthquakes with magnitude >9 (Japan, Chile) other minor seismic activity with moderate sized events (Marianas, Caribbean)

- short instrumental seismic record
 - lack of direct observables
- information (e.g., written accounts and geologic observations) may lack in resolution and completeness

WHICH ARE INGREDIENTS CONTROLLING INTERPLATE SEISMICITY?

unravelling the behaviour of global convergent margins

(try to) define behaviour of the subduction thrust fault, analyzing if and how the parameter space of the long-term subduction process influences the interplate activity (→ rupture length, depth, magnitude, recurrence intervals)

long term-large scale

short term-small scale

geological data

geothermal and other geophysical data

...

geodetic data

seismic sections

seismic data

geochemical data

petrology

MULTIDISCIPLINARY AND MULTISCALE APPROACH

collection of global data on convergent margins and statistical analysis

laboratory modelling

numerical modelling

WHICH ARE INGREDIENTS CONTROLLING INTERPLATE SEISMICITY?

(try to) define behaviour of the subduction thrust fault, analyzing if and how the parameter space of the long-term subduction process influences the interplate activity (\rightarrow rupture length, depth, magnitude, recurrence intervals)

subduction thrust fault

Scientific problem

Tools: - database on current subduction zones - analogue models

Selection of results

Future directions

Dipartimento di Scienze Geologiche, Università degli Studi "Roma Tre," I-00146 Rome, Italy

GLOBAL DATA ON CONVERGENT MARGINS THE ANCESTRAL IDEA

New reviewed and updated database improved both in accuracy and homogeneity of data sources

geometric

parameters

- absolute motion (convergence and subduction velocities)
- relative motion (trench and plate velocities) in different RF
- along-strike length of the trench
- trench-arc distance
- arc curvature
- radius of bending of the slab
- dip of the slab
- geometry and structure of the overriding plate
- geometry and structure of the subducting plate
- subducting plate age
- upper plate strain class
- upper plate nature
- slab thermal parameter

- sediments at trench
- magmatic output (eruptive rates) of active arcs
- accretion/erosive margin

MARIANNE (21°N)

$\frac{22}{50} + \frac{156}{600} + \frac{10000}{6000} = \frac{8}{4000} + \frac{1}{10000} + $	1	Latitudo do la fonza (das)	01.0	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	11	Longitude de la fosse (deg):	146.0	
$\begin{array}{c} 22 & 156 \\ 6000 \\ 8000 \\ 6000 \\ 8 \\ 4000 \\ 1 \\ 200 \\ 1 \\ 200 \\ 1 \\ 200 \\ 1 \\ 200 \\ 1 \\ 200 \\ 1 \\ 200 \\ 1 \\ 200 \\ 1 \\ 200 \\ 200 \\ 0 \\ 200 \\ 0 \\ 200 \\ 0 \\ 200 \\ 0 \\ $		Profondour de la fosse (deg).	140.9	
$\frac{6000}{1} = \frac{8000}{1} = 8$	2° 156° CT 10000	Lara du coa de fesse (km):	7.1	
6000 8 4000 1 500 2000 1 500 2000 1 500 213.1 0 0 0 0 1 500 1 500 <t< td=""><td>8000</td><td>Dist faces are meusane (km):</td><td>222.4</td><td></td></t<>	8000	Dist faces are meusane (km):	222.4	
4000 a 2000 n 0 m 0 m -2000 i -4000 i -2000 i -4000 i -400 -200 -200 i -200 i -200 i -200 -400 -400 -400 -400 -400 -400 -400 -400 -600 -400 -600 -400 -600 -400 -600 -400<	6000 B	dist fosso are min (km):	204.4	
$\frac{2000}{0} \frac{h}{y}$ $\frac{2000}{0} \frac{h}{y}$ $\frac{2000}{0} \frac{h}{y}$ $\frac{1}{0} \frac{1}{0} \frac{1}{$	4000 1	dist tosso are may (km).	190.0	
0 m 94.0 -2000 i 94.0 -2000 i 94.0 -4000 i 94.0 -4000 i 94.0 Piongement > -125km (deg): 28.5 Plongement > -125km (deg): 28.7 Plongement > -125km (deg): 20.0 200 0 200 0 -200 200 0 -200 200 0 -200 20.40 0 -200 -200 0 -200 -200 0 -200 -200 0 -200 -200 0 -200 -200 0 -200 -200 0 -200	2000 h	Profondour on ore (km):	213.1	
-2000 e -4000 f -4000 f -6000 e -6000 f -6000 f -6000 f -10000 f -12000 f -1200 f -200 f -	o m	protoridour min co are (km):	89.1	
4000 i group of i group of i -4000 -6000 e group of i group of i -6000 -9000 m group of i group of i -10000 -10000 -10000 group of i group of i 600 -10000 -10000 group of i group of i 600 -10000 -10000 group of i group of i 600 -10000 -10000 group of i group of i 600 -10000 -10000 group of i group of i 600 -200 -200 group of i group of i 600 -200 -200 group of i group of i 600 -200 -200 group of i group of i 600 -200 -200 group of i group of i 600 -200 -400 group of i group of i 600 -200 -400 group of i group of i 600 -200 -400 group of i group of i 600 -200 -200 group	2000 e	profondeur max as are (km):	84.0	
- 6000 - - 9000 m - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 10000 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - - 200 - <	4000	Plongement > 125km (deg):	94.0	
0000 0 -9000 m -10000 m -10000 m -10000 m 600 12000 600 m 600 200 0	6000 P	Plongement < 125km (deg):	28.5	
-10000 -10000 -10000 -12000 600 -12000 , km -17 etry -1000 -200 -1000 -200 -1000 -200 -200 -400 -200 -400 -200 -400 -200 -200 -200 -200 -200 -200 -200 -200 -200 <t< td=""><td>-0000 -</td><td>Florigement < -125km (deg).</td><td>82.1</td><td></td></t<>	-0000 -	Florigement < -125km (deg).	82.1	
600 .12000 600 .12000 600 .12000 600 .12000 600 .12000 600 .12000 600 .170 600 .170 600 .170 600 .170 600 .110	0000 m ()			
600 XMAX: 485.0 600 XMAX: -1.7 etry 2.0 ZMAX: -1.7 xMIN gravi: 2.0 ZMIN gravi: 2.0 200 200 0 200 ZMAX: -157.1 XMAX gravi: 200 200 ZMAX gravi: 200 200 0 -200 -200 Age moyen a la fosse (Ma): 146.8 Prof. max des seismes: 6.4 Vc (mm/a) 43.0 azimut (deg): 20.0 vcn (mm/an): 20.0 vcn (mm/an): 20.0 vcn (mm/an): 38.0 vz(125-670) (mm/an): 32.6 Vsup (mm/an): 32.6 Vsub (mm/an): 292.0 obliquite (deg): 292.0 obliquite (deg): 57.0 azimut (deg): 292.0 obliquite (deg): 57.0 sens: -1 vsub(n) (mm/an): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8 59.0 vsub(n) (mm/an): 60.8	-10000			
600 XMAX: 1.7 km XMAX: 1.7 200 XMAX: 1.7 etry 200 ZMAX: 167.1 XMAX gravi: 208.0 ZMAX: 17.1 XMAX gravi: 208.0 ZMAX gravi: 71.8 XMAX gravi: 71.8 XMAX gravi: 277.0 Age moyen a la fosse (Ma): 146.6 Prof. max des seismes: 6.4 Prof. max des seismes: 6.4 Vc (mm/a) 43.0 azimut (deg): 298.0 obliquite (deg): 63.0 vz0 (-200 -200 vc (mm/an): 38.0 vz(125-670) (mm/an): 32.6 Vsup (mm/an): 32.6 Vsup (mm/a): 75.0 azimut (deg): 292.0 obliquite (deg): 27.0 sens: -1 vsup(n) (mm/an): 14.0 Vsub (mm/a): 118.0 azimut (deg): 292.0 obliquite (deg): 294.0 obliquite (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8 41.0		XMAX.	485 0	
, km XMIN gravi: 2.0 etry ZMIN gravi: 208.0 200 200 ZMIX gravi: 208.0 0 200 ZMAX gravi: 208.0 0 200 ZMAX gravi: 208.0 0 200 ZMAX gravi: 208.0 0 200 Age moyen a la fosse (Ma): 146.6 Prof. max des seismes (km): 684.8 Magnit. max des seismes: 6.4 Vc (mm/a) 43.0 azimut (deg): 298.0 obliquite (deg): 63.0 vcq (mm/an): 38.0 vz(125-670) (mm/an): 15.7 vz(125-670) (mm/an): 32.6 Vsup (mm/a): 75.0 azimut (deg): 292.0 obliquite (deg): 57.0 sens: -1 vsup(n) (mm/an): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8	600	7MAX:	.17	
etry 200 200 200 0 200 0 200 0 200 0 600 0 400 0 200 0 400 0 200 0 400 0 400 0 400 0 400 0 400 0 400 0 400 0 400 -200 400 -200 -200 -400 43.0 azimut (deg): 298.0 obliquite (deg): 63.0 vcq (mm/an): 38.0 vz(0-125) (mm/an): 32.6 Vsup (mm/an): 32.6 Vsup (mm/a): 75.0 azimut (deg): 292.0 obliquite (deg): 57.0 sens: -1 vsub(n) (mm/an): 118.0 azimut (deg): 29.0 obliquite (deg): 59.0 vsub(n) (mm/an): <td>, km</td> <td>XMIN gravi:</td> <td>20</td> <td></td>	, km	XMIN gravi:	20	
etry XMAX gravi: 208.0 200 200 200 0 200 200 0 200 200 0 600 800 0 600 800 0 -200 400 0 -200 400 0 -200 400 0 -200 43.0 0 -200 43.0 0 -200 43.0 -200 -200 43.0 -200 -200 43.0 -200 -200 43.0 -200 -200 43.0 -200 -200 43.0 -200 -200 43.0 -200 -200 90 -400 -200 90 -400 -200 90 -600 90 90 0 -200 90 -400 -200 90 -600 90 90 0 -200 90 90 90 <td></td> <td>ZMIN gravi:</td> <td>-157 1</td> <td></td>		ZMIN gravi:	-157 1	
etry 200 200 200 200 200 200 430 200 430 200 430 200 430 200 430 200 430 200 430 200 430 200 430 200		XMAX gravi:	208.0	
400 200 200 0 200 0 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 400 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 </td <td>etrv</td> <td>ZMAX gravi:</td> <td>71.8</td> <td></td>	etrv	ZMAX gravi:	71.8	
200 0 Age moyen a la fosse (Ma): 146.6 200 -200 -200 600 600 600 64.8 200 400 400 Magnit. max des seismes: 6.4 64.4 200 0 -200	F 400	XMAX gravi-XMAX	-277.0	
0 -200 -200 -200 0 600 00 600 0 600 0 600 0 600 0 600 0 -400 -200 -200 -200 -200 0 -200 -200 -200 <td>- 200</td> <td>3</td> <td></td> <td></td>	- 200	3		
-200 Prof. max des seismes (km): 684.8 Magnit. max des seismes: 6.4 Ne 400 0 600 0 600 0 600 0 azimut (deg): 0 900 -200 -200 -200 -200 -200 vc (mm/an): -200 vsup (mm/an): -200 vsup (mm/an): -400 azimut (deg): -600 vsup (mm/an): 0 sens: -1 vsup (mm/an): vsup (n) (mm/an): 118.0 azimu	0	Age moven a la fosse (Ma):	146.6	
Prof. max des seismes (km): 684.8 Magnit. max des seismes: 6.4 Magnit. max des seismes: 6.4 Vc (mm/a) 43.0 azimut (deg): 286.0 obliquite (deg): 63.0 200 vc (mm/an): 20.0 vc (mm/an): 38.0 vz(0-125) (mm/an): 15.7 vz(0-125) (mm/an): 32.6 Vsup (mm/a): 275.0 azimut (deg): 282.0 obliquite (deg): 57.0 sens: -1 vsup(n) (mm/an): 41.0 Vsub(n) (mm/a): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8		, , , , , , , , , , , , , , , , , , ,		
D0 600 800 Magnit. max des seismes: 6.4 <i>Ne</i> 43.0 43.0 <i>azimut</i> (deg): 298.0 200 <i>obitiquite</i> (deg): 63.0 900 <i>obitiquite</i> (deg): 63.0 900 <i>obitiquite</i> (deg): 200.0 900 900 <i>obitiquite</i> (deg): 200.0 900	-400	Prof. max des seismes (km):	684.8	
Ne Vc (mm/a) 43.0 azimut (deg): 298.0 obiquite (deg): 63.0 vcn (mm/an): 20.0 vcn (mm/an): 38.0 vcn (mm/an): 38.0 vcn (mm/an): 38.0 vcn (mm/an): 38.0 vcn (mm/an): 32.6 Vsup (mm/an): 292.0 obiquite (deg): 292.0 obiquite (deg): 57.0 azimut (deg): 57.0 sens: -1 vsup(n) (mm/an): 41.0 Vsub (mm/a): 118.0 azimut (deg): 294.0 obiquite (deg): 59.0 vsub(n) (mm/an): 60.8	00 600 800	Magnit. max des seismes:	6.4	
ne azimut (deg): 298.0 0 obliquite (deg): 63.0 -200 vcn (mm/an): 20.0 -200 vcg (mm/an): 38.0 -200 vcg (mm/an): 38.0 -200 vcg (mm/an): 32.6 -400 azimut (deg): 292.0 obliquite (deg): 292.0 obliquite (deg): 57.0 sens: -1 vsub(n) (mm/an): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8		Vc (mm/a)	43.0	
0 obliquite (deg): 63.0 vcn (mm/an): 20.0 vcp (mm/an): 38.0 200 vc(0-125) (mm/an): 32.6 400 azimut (deg): 292.0 obliquite (deg): 57.0 292.0 obliquite (deg): 57.0 292.0 0 sens: -1 vsup(n) (mm/a): 11.0 vsup(n) (mm/a): 00 600 800 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8	ne	azimut (deg):	298.0	
0 vcn (mm/an): 20.0 vcp (mm/an): 38.0 vz(0-125) (mm/an): 15.7 -200 vz(125-670) (mm/an): 32.6 -400 azimut (deg): 292.0 obliquite (deg): 57.0 -600 sens: -1 vsup(mm/a): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8		obliquite (deg):	63.0	
-200 vcp (mm/an): 38.0 -200 vc(0-125) (mm/an): 15.7 vz(0-125) (mm/an): 32.6 -400 azimut (deg): 282.0 -600 sens: -1 vsup(n)(mn/an): 41.0 Vsub (mm/a): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8		vcn (mm/an):	20.0	
200 vz(0-125) (mm/an): 15.7 vz(125-670) (mm/an): 32.6 Vsup (mm/a): 75.0 azimut (deg): 292.0 obliquite (deg): 57.0 sens: -1 vsup(n) (mm/an): 41.0 Vsub (mm/a): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8	F 11	vcp (mm/an):	38.0	
-400 vz(125-670) (mm/an): 32.6 -400 vz(125-670) (mm/an): 32.6 -400 azimut (deg): 75.0 -600 selns: -1 vsup(n) (mm/an): 41.0 Vsub (mm/a): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8	- 200	vz(0-125) (mm/an):	15.7	
-400 Vsup (mm/a): 75.0 azimut (deg): 292.0 obliquite (deg): 57.0 -600 sens: -1 vsup(n) (mm/an): 41.0 Vsub (mm/a): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8	200	vz(125-670) (mm/an):	32.6	
400 azimut (deg): 292.0 obliquite (deg): 57.0 sens: -1 vsup(n) (mm/an): 41.0 Vsub (mm/a): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8		Vsup (mm/a):	75.0	
-600 obliquite (deg): 57.0 -600 sens: -1 vsup(n) (mm/an): 41.0 Vsub (mm/a): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8	400	azimut (deg):	292.0	
600 sens: -1 vsup(n) (mm/an): 41.0 Vsub (mm/a): 118.0 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8		obliquite (deg);	57.0	
-b00 vsup(n) (mm/an): 41.0 Vsub (mm/a): 118.0 00 600 800 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8	000	sens:	-1	
Vsub (mm/a): 118.0 00 600 800 obliquite (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8	-000	vsup(n) (mm/an):	41.0	
ND 600 800 azimut (deg): 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8		Veub (mm/a):	119.0	
acmini (acy). 294.0 obliquite (deg): 59.0 vsub(n) (mm/an): 60.8	00 600 800	estimut (dea):	204.0	
vsub(n) (mm/an): 60.8		abliguite (dec):	294.0	
vsub(r) (ninvan). 60.8	states and the second second	vsub(n) (mm/an)-	60.8	
		toop(i) (inival).	00.0	-

Heuret and Lallemand, 2005

<u>http://submap.gm.univ-montp2.fr/</u>

uses of the database

a) statistical analysis on the entire set of parameters;

b) input parameters for laboratory/numerical modelling;

c) test the modelling predictions.

Scientific problem

Tools: - database on current subduction zones - analogue models

Selection of results

Future directions

A model is an attempt to reproduce a natural process at different scales:

spatial & temporal

Nature (<mark>km</mark>, Myrs) Model (cm, hours)

Cadell, 1888

high resolution monitoring techniques

new rock analogue materials

Univ. Montpellier lab

Spring slider models: elastic and frictional elements are physically discrete components of the setup *(only conceptually applied to nature).*

Fault block models: two elastic blocks, with similar or different elastic properties, are in frictional contacts (qualitatively extrapolated to nature).

Scaled models: tectonic settings are realistically simulated at small scale and with boundary conditions mimicking the natural prototype (quantitatively upscaled to nature).

Rosenau et al, 2016

Sm, Ra, Fr, Ca

new analogue setting to model subduction zone seismic cycle featuring:

- realistic tectonic loading;
- rate-dependent frictions at plate interface;
- viscoelastic stress relaxation of the lithosphere.

ANALOGUE MODELS the setup

ANALOGUE MODELS the setup

the setup

the setup

50 micron passive tracers

model behaviour

25x; lateral view

model behaviour

25x; lateral view

Particle Image Velocimetry output

-			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-												and the second		
			•	١	1	1	1	~	~	~	~	~	•	•	•	+	+	ł	+	+	+	+	4	+		* *	 ~ ~	 		 		-	 	بر .	
		x	•	`	`	~	1	~	~	1	~	~	•	+	•	+	-	-		-	*	-	-	-	<u> </u>	~ ~	 	 <	< <	 **	+	-			
×	×	•	•	•	•	~	~	1	1	1	-	+	+	+	+	+	4	-	• •	-	-	-	*	-		* *	 	 - +							
_ ·	15		•	•	•	~	•	1	1	1	ţ	1	+	+	-	*	-	-	-	-	*	+	+	-			 								
	÷	•	•	•	•	•	•	•	1	1	ł	+	+	+	•	-	-	-	*	+	-	-	-	-	-	-									
*			•	•	•	•	•	-	1	-	-	+	-	+	-	-	-	-	-	•															
		8	•	•	•	•	-	-	-	•		•																							
	•	•	•																																
		x	200																									Т				ī			

VELOCITY TIME SERIES

alternate phases of quiescence with phases of high speed

RUPTURE BEHAVIOR

SLIP DISTRIBUTION ON THE SUBDUCTION MEGATHRUST

interseismic stage

Moreno et al., 2011

interseismic stage

Moreno et al., 2011

coseismic stage

t = 3.0 s

0.1

horizontal displacement [cm]

C

top view

Longitude east

coseismic stage

0.1

horizontal displacement [cm]

C

like Sumatra!

coseismic vertical displacement

NOT ONLY LET...

TNA: COME AND USE OUR LABS!

https://www.epos-ip.org/tcs/multi-scale-laboratories

	HOME	ABOUT	WHO BENEF	ITS (DATA & SERVICES	NEWS & PRESS	EVENTS	
MULTI-SCALE LABORATORIE	ES					EP	S	
				TC	S Home + Service	s • Transnational Acc	ess (TNA)	
TRANSNATIONAL ACCESS (TNA)							and the second se	
TCS Multi-scale laboratories facilities are accessible to re opportunities for synergy, collaboration and innovation, in	isearchers ar	nd research t k oftrans-nat	sama aprosa Eur Jonal appesa ruis	rope, orei es.	sting new o	VERVIEW CONTACT		
The current <u>TNA</u> pilot is supported by dedicated national the <u>TCS</u> Multi-scale laboratories.	Funding and	for in-kind co	ntribution From I	the parts	ters of	electives		
In 2018 the TCS Multi-scale laboratories will offer access	to 22 faciliti	23.						
Two TNA cells for research projects will be open in 2018. INTERNAL ORG						ITERNAL ORGANIZATIO	N	
Read More					5	ERVICES		
Second call for TNA to Application and Ceneral eliteboratories facilities and obligations	gibility Ser	Glossary				UTREACH MATERIALS		
Transpational Access to the TCS Multi-scale Jaborat	ories faciliti				-			
The second cell for TNA in EDOS Multi-secto Ishorping	(es fanilities)	is now one of						
As next of a nilot study of the EDOS Trans-National Acc	tess activities	e the TCS Mu	H-scele leboret	ories	N	EVVS & EVENTS		
is offering access to 22 facilities acress Europe. Access to European solid Earth Science Activities (analogue modelling facilities, roccimes deformation facilities, geleomagnetim facilities and analytical European facilities) will be available as physical access or remote acrice (sample analysis).					Tra Silities, TC Iote fac no	Transnational Access to the TCS Multi-scale laboratories facilities: 2nd call for proposals now open!		
The 2 ⁻⁴ INA pilot call will stay open from November 15th, 2017 to January 15th, 2018.								
During this defind, proposals as not a submitted as any time. Projects accepted under this call can start as early as February 1st , 2018 and must be completed by December 31st, 2018.					TC mi Th	TCS Multi-scale laboratories meeting The EPOS Multi-scale		
Please note that the type of access (physical access/remote service) and the type of Anancial support for users (ble costs, Anancial support for user travel and accommodation) varies for different facilities and installations and its operfield in the testing is lightly the facilities available for TMA.					users lab ions me Oc	oratories community et on the 23rd and 24 tober 2017 in Rome,	will 4th Italy:	
We solvise potential users to contact the facility before submitting a proposal for <u>TNA</u> to discuss availability and terms for access.					ityand 1st Co	TCS Multi-scale labo nsortium Board mee	oratories ting	
APPLY HERE					Th	TCS Multi	_	
LIST OF FACILITIES AND ACCESS PROVIDED						1.2		
The planned number of days lasmples and user support swallable at each facility as part of the BROS Multi-state Reported TINA plat is given in the tables accessible using the links below:					Hacale			
ANALOGUE MODELLING FACILITIES								
ANALYTICAL & MICROSCOPY FACILITIES								
PALEOMAGNETISM FACILITIES								
ROCK/MELT EXPERIMENTAL FACILITIES								
Details on the technical capabilities relating to the serv	rices and Faci	lities offered	can be found fol	lovinge	helink			

to the facility watpage indicated in the tables. For specific gractical information about a given installation glesse send an email to the installation contact

person diractly. We would appreciate Fin small enguines you include some standard text in the Subject Reld, e.g. "EPOS <u>TRA</u> inguiny".

For general information on the TNA call please contact us by emails multi-scale-labs@epos-ip.org

Scientific problem

Tools: - database on current subduction zones- analogue models

Selection of results

Future directions

HOW TO DESCRIBE THE SEISMOGENIC ZONE?

- Coseismic rupture area
- Interseismic locked area
- Thermally defined seismogenic zone (100-150°C to 350-450°C)
 - Moderately sized earthquakes

DEFINING THE SEISMOGENIC ZONE... AS MODERATELY SIZED EARTHQUAKES NUCLEATION AREA

 $\begin{array}{l} \theta_{mean} = 23^{\circ} \pm 8^{\circ} \\ W = \ 60\ -180 \ km \\ U_z \ = \ 11 \ \pm \ 4 \ km; \ D_z \ = \ 51 \ \pm \ 8 \ km \\ U_x \ = \ 38 \ \pm \ 27 \ km; \ D_x \ = \ 142 \ \pm \ 52 \ km \end{array}$

70% of the SZs extend > 10 km below the forearc Moho (defined by Wada and Wang, 2009)

extent of serpentinization of the mantle wedge (enhancing the formation of stable sliding minerals) may differ locally (e.g., *Seno, 2005*)

DEFINING THE SEISMOGENIC ZONE ACTIVITY

GOAL #2

seismic activity parameters

τ	Seismic moment rate (n° of Mw>5.5 events by year by 1000 km of trench)
MMR	Moment released rate
Mmmr	Equivalent representative magnitude sensu Ruff and Kanamori, 1980
χ	Seismic coupling (seismic rate/subduction rate)
Mmax	Highest earthquake magnitude observed along the section

mean value 7.8 ± 0.7

mean value 8.2 ± 0.6

mean value 0.25 ± 0.30

χ

slip mostly aseismic or strain accumulating

Heuret et al., 2011

SUBDUTION THRUST FAULT PARAMETERS

VS.

SUBDUTION PARAMETERS

Mirror of the intricate subduction related physical processes. A single parameter is

never

able to robustly explain the whole diversity observed at subduction interfaces!!!

Multiparametric analysis

SUBDUCTION VELOCITY: A POSSIBLE TUNING FACTOR

fast (and cold) subduction zones produce a large number of moderate earthquakes over a narrow, deep and steeply dipping seismogenic interface

stress accumulation (i.e. shear velocity) +T-related process

SUBDUCTION VELOCITY TUNES STICK-SLIP DYNAMICS

Mmax enhanced by neutral regimes

NEUTRAL REGIME

favorable interplay between a significantly large initial released seismic moment and a low critical stress for the lateral rupture propagation

Heuret et al., 2011

MULTIVARIATE STATISTICS

PATTERN RECOGNITION ANALYSIS

MULTIVARIATE STATISTICSBinary Decision TreeFisher Discriminant analysis

Empirical distribution function of each feature for both classes finding the one showing the max stat difference \rightarrow main order feature.

Then the algorithm looks for the higher order features until no further branching is possible.

Projection of the data along the direction that maximize dispersion between the classes to the dispersion within the classes. This direction is a linear combination of parameters having influence on the Mmax

INGREDIENTS ABLE TO TUNE THE ABILITY OF RUPTURE TO PROPAGATE LATERALLY

combined control on MEQs generation?

ROLE OF SEDIMENTS

SEDIMENTS AND UPS vs. Mmax

proxy for the normal stresses applied to the subduction interface

the subduction channel

MEGAEARTHQUAKE RUPTURE

Mapping coupling is not sufficient to anticipate the rupture dynamics: need to reconstruct the segment history (and the frictional parameters).

Scientific problem

Tools: - database on current subduction zones- analogue models

Selection of results

Future directions

NEW GLOBAL DATA ON CONVERGENT MARGINS

NEW GLOBAL DATA ON CONVERGENT MARGINS

35°

155°

FINDING FOR NEW ANALOGUE MATERIALS

MOVE TO A LARGER APPARATUS...

