Rotation and Interior of Terrestrial Planets

Veronique Dehant and Tim Van Hoolst Royal Observatory of Belgium

introduction

WHAT DO WE KNOW ABOUT THE MEAN ROTATION AND INTERIOR OF THE PLANETS?

Orbit, rotation and orientation characteristics of the 8 planets of the Solar System at present

Planets	Orbital periods (Earth days or years)	Rotation periods (Earth hours or days or years)	Obliquity
Mercury	87.97 days	58.65 days s	2.0 arcmin
Venus	224.70 days	-243.02 days o (retrograde) w	177.36°
Earth	365.256 days or 1 year	23h56m04s a	23.439°
Mars	686.98 days	24h37min23s <mark>p</mark>	25.19°
IVIGI 3	or ~2 years	or 1.026 daysd	23.17
Jupiter	11.86 years	9.55h $\stackrel{e}{\underset{f}{x}} \stackrel{r}{\underset{a}{a}}$	3.1°
Saturn	29.46 years	10 32h r	26.7°
Uranus	84.02 years	-17.24h m i	97.8°
Neptune	164.79 years	16.11h y	28.3°

[Courtesy: BepiColombo Study Report

Terrestrial planets

OBSERVATION OF THE ROTATION OF PLANETS?

NASA's DSN and ESA's ESTRACK networks of tracking stations

- Radio-link for data & telemetry
- Doppler & range radio-tracking mainly at frequencies of around 8 Ghz (X band) (dual-frequency X/S bands to correct ionospheric and interplanetary plasma perturbations)

Mars missions

Lander driving science requirements

 Doppler measurements between the lander on Mars and the ground station on Earth in X-band.

InSIGHT: A Geophysical Mission to Mars

Interior exploration using Seismic
Investigations, Geodesy, and Heat

Transport

Terrestrial planets

VARIATIONS WITH RESPECT TO THE MEAN ROTATION AND INTERIOR OF THE PLANETS?

Two terrestrial planets rapidly rotating → flattened, inclined, thus large precession and nutation

Terrestrial planets

VARIATIONS WITH RESPECT TO THE MEAN ROTATION AND INTERIOR OF THE EARTH?

Long-term Earth rotation variations

Decadal variations

Coupling at core-mantle boundary

Seasonal variations

Drawn from http://hpiers.obspm.fr/eop-pc/

Effect of the ENSO cycle on the LOD

Constant torque (time averaged): precession, similar to motion of a top

Nutation in obliquity as a function of time, starting at J2000.

Nutation in longitude as a function of time, starting at J2000

Nutations for 18.6 yrs, starting from J2000

+ normal modes

+ normal modes

Change in the CMB flattening/topography

Some results concerning Earth interior

- From nutations: flattened core is not in hydrostatic equilibrium: increase of equatorial radius of about 350m
- From nutations: electromagnetic field is important at CMB if ignoring viscous and topographic torques, more important than downward continuation of surface field
- From LOD: inner core gravitational coupling, torsional oscillations, explain decadal timescale fluctiations.

Terrestrial planets

VARIATIONS WITH RESPECT TO THE MEAN ROTATION AND INTERIOR OF MARS?

Precession and nutation of Mars

Bratio for the nutation of Mars; FCN

Measurement of nutation

Nutation for different core dimensions

Retrieving the core radius from the core moment of inertia

Relative core moment of inertia C_{core}/C_{tot}

Mars radioscience objectives

Measurement of Length-of-day variations

Some results concerning Mars interior

- Tides and Precession allow to conclude that core is at least partially liquid
- Tides and Precession allow to constrain liquid core dimension at 1800km ±150km
- If the light element in the core is Sulfur, there is no inner core.
- More to come soon... InSIGHT 2016!

Terrestrial planets

VARIATIONS WITH RESPECT TO THE MEAN ROTATION AND INTERIOR OF

VENUS?

The twin sister of Earth? ... Not for the rotation!

Venus Terre

Retrograde rotation of Venus

- Possible causes?
 - Original collision/state
 - Slow down of the rotation until developing a retrograde rotation
 - Slow down of the rotation and flip of the rotation axis
- What slows down the rotation?
 - Tidal friction
 - Internal friction (tends to favor 0 or 180 degree inclination)

See Laskar's talk

- Interior?
 - From tidal Love number:liquid core

Terrestrial planets

VARIATIONS WITH RESPECT TO THE MEAN ROTATION AND INTERIOR OF MERCURY?

Decelerate the rotation

Accelerate the rotation

Some results for Mercury's interior

 The radius of the core is 2000 km ± 40km (Rivoldini and Van Hoolst, 2013)

using Messenger (Smith et al. 2012) gravity field and libration and obliquity (Margot et al., 2012)

Conclusions

- Planetary geodesy is a very helpful for studying planets or moons of the solar system.
- In particular (this talk), for obtaining their rotation and orientation,
- and therewith for obtaining properties of the interior of these planets or moons.