Colloque associé au cours:

CHAIRE DE PHYSIQUE DE L'INTÉRIEUR DE LA TERRE Année académique 2016-2017

Pr Barbara ROMANOWICZ

Flow in the deep Earth

Colloque en anglais - Workshop in English organisé avec Patrick Cordier, Université de Lille

Jeudi 1^{er} et vendredi 2 décembre 2016 Amphithéâtre Maurice Halbwachs

De 9h à 18 h Entrée libre, mais inscription souhaitable:

http://www.college-de-france.fr/site/barbara-romanowicz/colloque.htm

Anisotropie sismique et écoulement dans le manteau terrestre

5-La zone de transition et le manteau inférieur - 1e partie

Barbara Romanowicz Chaire de Physique de l'Intérieur de la Terre Collège de France 22 Novembre 2016

Minéraux du manteau de la Terre

Courtesy of S. Sinogeikin

La zone de transition (410-670 km)

Vp (km/s) 11.36 11.0 Wadsleyite 10.8 10.6 10.4 [100] 10.26 Max. anisotropie: 10% [001] [010] 10.15 10.10 10.05 Ringwoodite 10.00 9.95 9.90 9.82 Max. anisotropie: 3.3%

dVs (%)

Max anisotropie: 13.6%

Max. anisotropie: 8.2%

Vs1 polarization

=> Prédiction : l'anisotropie diminue avec la profondeur

Mainprice 2015 Treatise of Geophysics

Montagner and Kennett, 1996

 $\eta = \frac{F}{(A - 2L)},$

 $dln\xi = d\xi/\xi$ (par rapport à PREM)

Panning and Romanowicz, 2006, GJI

Anisotropie radiale dans la zone de transition

Panning and Romanowicz, 2006, GJI

Panning and Romanowicz, 2006, GJI

Couverture obtenue à différentes profondeurs par l'ensemble des données de forme d'onde globales

Panning and Romanowicz, 2006, GJI

Variation avec la profondeur du paramètre d'anisotropie radiale $\xi = (Vsh/Vsv)^2$ Moyennes globales

Anisotropie azimuthale dans la zone de transition: ondes de surface Mode fondamental + harmoniques

Yuan and Beghein, 2013

Interprétations proposées

а

Anisotropy fast direction y + 6

Flow direction ϕ Anisotropy fast direction δ ≠ φ

410km

670km

Yuan and Beghein, 2013

Anisotropie dans/autour des plaques de subduction - dans la zone de transition du manteau: Splitting des ondes S

Ondes S telesismiques

Nowacki et al., G-Cubed, 2015

Nowacki et al., G-Cubed, 2015

Propose une origine dans la plaque: Phases hydratées?

Nowacki et al., G-Cubed, 2015

Le manteau inférieur..

Minéraux du manteau de la Terre

Courtesy of S. Sinogeikin

Minéraux du manteau inférieur

Periclase: structure Cubique (cf NaCl)

Bridgmanite et post-perovskite: Structure orthorombique

L'addition de Fe, Al, Ca and H₂O introduit de la complexité

French and Romanowicz, 2015

Pas d'anisotropie notable dans le manteau inférieur (D" exclu)

- Séismes profonds (Amerique du Sud et Japon,

- Observations à une station au dessus d'une zone de subduction:

- S et ScS pour le même séisme dans la région
- SKS à la même station
- -> au plus 0.2 s accumulé dans le manteau inférieur

station	(lat, lon)	φ(°)	δt (s) p	hase r	ef (depth
КТЈ	(36.28 137.33)	-2 ±13	0.95 ±0.65	S	1	280
КТЈ		14 ±8	0.70 ±0.20	S	1	268
KTJ		7 ±6	0.90 ±0.20	ScS	1	611
GNZ/ASO	(36.65 139.41)	5 ±35	0.25 ± 0.05	S	1,4	154
GNZ/ASO		10 ±35	0.25 ±0.05	S	1,4	166
GNZ/ASO		15 ±35	0.35 ±0.05	ScS	1,4	611
CUS	(-13.56 -71.88)	-66 ±6	0.95 ±0.20	S	1,2	2 613
CUS	•	-55 ±4	1.20 ± 0.20	S	1,2	2 600
CUS		-66 ±14	0.80 ± 0.20	S	1,2	2 628
CUS		-74 ±13	0.85 ±0.30	SKS	1	
NNA	(-11.99 -76.84)	-59 ±3	1.20 ± 0.20	S	1,2	2 601
NNA	-	-70 ±5	1.25 ± 0.20	SKS	2,3	3

Meade et al., 1995, GRL

Anisotropie sismique dans la zone D":

Méthodologie doit s'affranchir des effets de l'anisotropie dans le manteau supérieur

Observations de temps différentiels entre ScS_H et ScS_V

Séismes profonds dans la mer d'Okhotsk observés en Amérique du Nord

Lay and Helmberger, 1983

2400 2600 SLH0 + HR Depth, km 2800 SLHO, SV 74.5° 3000 77.9° 78.7° 79.8° 81.7° * 82.3° 3200 3400

2200

6.80

7.20

7.60

- JB: modèle de référence de Jeffreys-Bullen
- SLHO: modèle régional qui satisfait les amplitudes relatives ScS/S
- SLHO,SV: satisfait également les temps différentiels (ScS-S)_{SV}-(ScS-S)_{SH}

Ajustement du modèle P dans le noyau externe

8.40

8.80

9.20

8.00

V, km/sec

Lay and Helmberger, 1983

Mesures de splitting de SKS en fonction de l'azimuth

Pas de splitting observé dans la direction de l'axe rapide et dans la direction orthogonale

Exemples; Monteiller et Chevrot, 2010

Splitting des ondes SKS -> anisotropie azimuthale dans le manteau supérieur

Observations de séismes des iles Fiji à la station WFM - distance ~117°

Temps en minutes

Vinnik, Farra and Romanowicz, 1989, GRL

Observation d'énergie sur la composante SV de Sdiff

- Parfois retardé par rapport
- à SH d'un quart de période: mvt particulaire elliptique
- ⇒ Origine à la base du manteau
- ⇒ SV s'attenue rapidement avec la distance dans un modèle moyen type PREM
- ⇒ Il faut une zone de gradient de vitesse negatif (pour avoir plus d'amplitude dans la SV à ces distances, mais cela n'explique pas:
 ⇒ Les differences entre SH et SV
 ⇒ + dépendance en fréquence
- ⇒ Proposent la présence d'anisotropie azimuthale: couplage SH, SV

Distances 114- 121°

Amplitude

-26

Vinnik et al, 1995, GRL

(c) S: BLA(WW) 95.7

ScS SH SV

(d) S: HKT(BB) 96.0

SH

(b) ScS: WDC(BB) 79.9

Vsv > Vsh

¹ SH

Lay et al., 1998

- Alaska et Amérique centrale: SH>SV
 Centre du Pacifique: SV>SH (grisé) ou
- Centre du Pacifique: SV>SH (grise) o anisotropie azimuthale

Lay et al., 1998

Table 1.	Observations	of Shear	Velocity	Anisotropy	in	D'

No.	Reference	S Phases	Sense of
		Used	Splitting
1 1	Mitchell and Helmberger [1973]	ScS	Vsh>Vsv
2 I	Lay and Helmberger [1983b]	ScS	Vsh>Vsv
3 V	Vinnik et al. [1989]	Sdiff	Azimuthal
4 I	Lay and Young [1991]	ScS, S	Vsh>Vsv
5 V	Vinnik et al. [1995]	Sdiff	Vsh>Vsv
6 I	Kendall and Silver [1996]	S	Vsh>Vsv
7 1	Matzel et al. [1996]	S	Vsh>Vsv
8 (Garnero and Lay [1997]	ScS, S, S	diff Vsh>Vsv
9 I	Ding and Helmberger [1997]	ScS	Vsh>Vsv
104	Pulliam and Sen [1998]	S	Vsv>Vsh
111	Vinnik et al. [1998]	Sdiff	Vsh>Vsv
121	Kendall and Silver [1998]	S, Sdiff	Vsh>Vsv/None
137	Ritsema et al. [1998]	Sdiff	Vsh>= <vsv< td=""></vsv<>
147	Russell et al. [1998]	ScS	Vsh>= <vsv< td=""></vsv<>

Interprétations possibles de la présence d'anisotropie dans la D"

- a) Plaques de subduction gardent leur texture anisotrope
- b) Fusion partielle dans la couche limite thermique, entraînée par la convection

- c) CPO dans les minéraux du manteau inférieur => alignements dans une zone de cisaillement forte
- d) Heterogeneités chimiques déformées différemment dans les régions de plaques et dans les panaches

Résidus de temps différentiels Sd_H-SKS ou Sd_H-SKKS,par rapport à PREM

La barre blanche indique la position géographique du changement de pente: -> réduction de la vitesse Vs de ~10% par rapport au PREM

Vinnik, Bréger and Romanowicz, 1998

Anisotropie faible dans la région de Vsh "faible", et forte ~15% dans la région de Vs normale

Etudes plus récentes

Comment s'affranchir des effets d'anisotropie du manteau supérieur?

- Méthode de Vinnik et al. (1989): peu de trajets s'y prêtent
- Corrections de l'anisotropie azimuthale obtenue par analyse de splitting de SKS et SKKS
- Mesures de splitting différentiel entre (ScS,S) ou entre (SKS,SKKS)

o Effets de distorsion des formes d'ondes dans un modèle hétérogène mais isotrope=> splitting apparent peut être du à d'autres effets que l'anisotropie

o Couverture azimuthale peu favorable

Sismogrammes synthétiques dans le modèle isotrope IASP91

Komatitsch, Vinnik and Chevrot, 2010, JGR

ScS, S corrigés pour l'anisotropie dans la région source

Analyse sur 2 réseaux en Amérique du Nord (Polaris) et en Europe (GRSN)

Wookey and Kendall, 2008

- Comparaison avec prédictions de différents modèles minéralogiques
- → Axe de symétrie incliné

Wookey and Kendall, 2008

Nowacki et al., 2010, Nature

Nécessite de l'anisotropie azimuthale (1.5%) Orientations de l'axe rapide quasi horizontal sauf dans la région S Trace de la plaque Farallon à 2500 km de profondeur

Nowacki et al., 2010, Nature

Nowacki et al., 2010, Nature

Splitting différentiel SKS-SKKS

Long, 2009

Long, 2009

La zone D"

Lekic, Cottaar, Dziewonski and Romanowicz, EPSL, 2012

Anisotropie dans la zone D"

Ellipses blanches: Vsh> Vsv Ellipses vertes: variations latérales rapides de l'anisotropie Ellipses noires et -----

: Vsv> Vsh ou pas de splitting

Romanowicz and Wenk, 2016