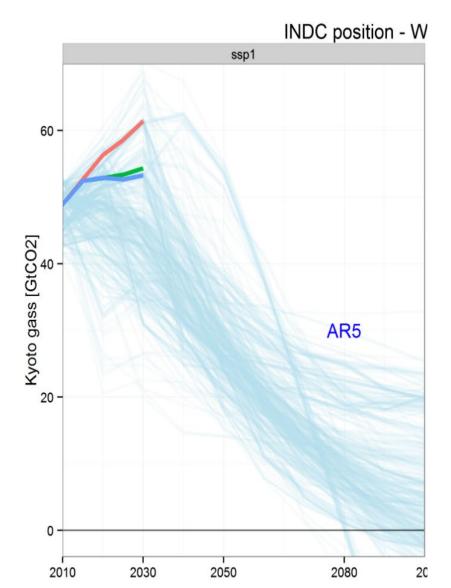
Leçon 3

Incertitudes technologiques majeures pour l'objectif 2°C

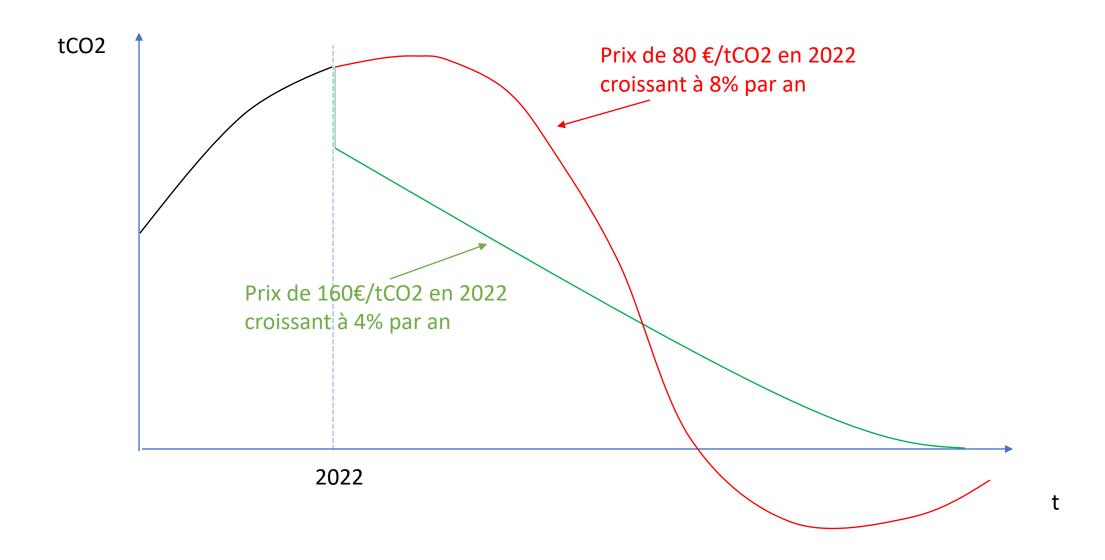
Collège de France Christian Gollier

Introduction


- Quelle valeur donner au carbone, aujourd'hui et à l'avenir? Deux méthodes:
 - Coût-bénéfice: VC = valeur présente du flux de dommages.
 - Coût-efficacité: VC = variable duale à la contrainte de budget carbone.
- L'approche coût-bénéfice est la solution de 1^{er} rang, mais est complexe. Voir la suite du cours.
- L'exécutif a fixé un cap, celui des 2°C. Il correspond à un budget carbone intertemporel.

Budget carbone (GIEC 2021)

Global warming between 1850–1900 and 2010–2019 <i>(°C)</i>	Historical cumulative CO ₂ emissions from 1850 to 2019 (GtCO ₂)
1.07 (0.8–1.3; <i>likely</i> range)	2390 (± 240; <i>likely</i> range)


Approximate global warming relative to 1850–1900 until temperature	Additional global warming relative to 2010–2019 until temperature	Estimated remaining carbon budgets from the beginning of 2020 (GtCO ₂) Likelihood of limiting global warming to temperature limit*(2)				Variations in reductions in non-CO ₂ emissions*(3)	
$\lim_{C \to \infty} (^{\circ}C)^*(1)$	limit (°C)	17%	33%	50%	67%	83%	
1.5	0.43	900	650	500	400	300	Higher or lower reductions in
1.7	0.63	1450	1050	850	700	550	accompanying non-CO ₂ emissions can increase or decrease the values on
2.0	0.93	2300	1700	1350	1150	900 _	the left by 220 GtCO ₂ or more

Projections post-COP21 compatibles avec 2°C

low

Quelle trajectoire carbone compatible avec 2°C?

Modélisation

• Soit x_t l'effort de réduction des émissions en t, c(t,x) le coût d'abattement en t, et r le taux d'intérêt.

$$\min_{x} \int_{2020}^{2050} e^{-rt} c(t, x_{t}) dt \quad s.c.q. \quad \int_{2020}^{2050} x_{t} dt \ge R$$

CPO:
$$e^{-rt} \frac{\partial c}{\partial x}(t, x_t) = \lambda \quad \forall t.$$

• Règle d'Hotelling: Le coût marginal d'abattement (VC) doit croître au taux d'intérêt. Commencer par cueillir les « low-hanging fruits ».

	Boiteux	Quinet 1	Quinet 2	
	(2001)	(2009)	(2019)	
2010	32	32		
2020	43	56	69	
2030	58	100	250	
2050	104	250	775	
Growth rate	2.9%	4.9%	8.0%	

Table: Social cost of carbon (in euros per metric ton of CO2) recommended in France by three different commissions. Source: France Stratégie.

La VC de G-B croît à 15% par an.

Table 1: BEIS updated short-term traded sector carbon values for policy appraisal, £/tCO2e (real 2018)

Year	Low	Central	High	
2018	2.33	12.76	25.51	
2019	0.00	13.15	26.30	
2020	0.00	13.84	27.69	
2021	4.04	20.54	37.04	
2022	8.08	27.24	46.40	
2023	12.12	33.94	55.75	
2024	16.17	40.64	65.11	
2025	20.21	47.33	74.46	
2026	24.25	54.03	83.82	
2027	28.29	60.73	93.17	
2028	32.33	67.43	102.53	
2029	36.37	74.13	111.88	
2030	40.41	80.83	121.24	

5^e rapport du GIEC: Waiting game aussi!

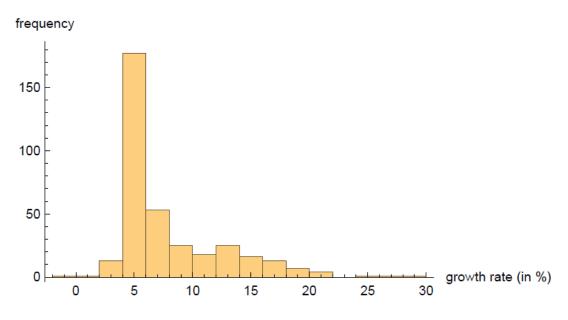
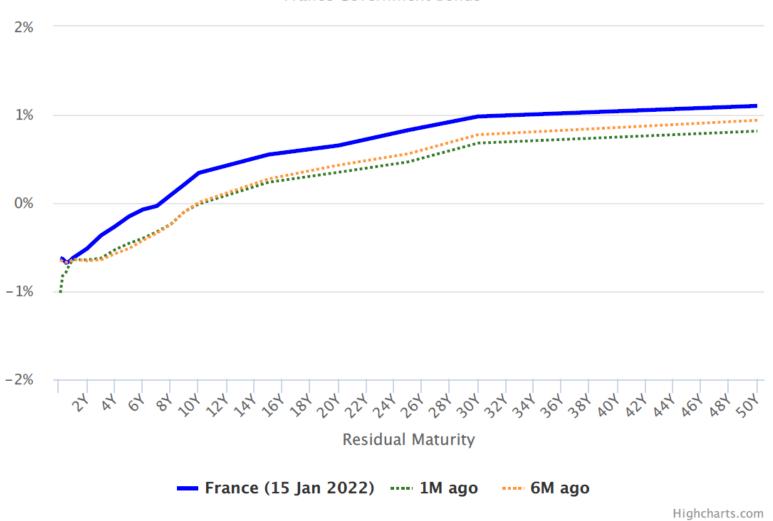


Figure: Histogram of the annual growth rate of real carbon prices 2020-2050 from 356 IAM models extracted from the IPCC database (https://tntcat.iiasa.ac.at/AR5DB). We selected the models that exhibit a 450 ppm concentration target.

Mean: 7.90%;
 Median: 5.71%;
 St dev: 4.51%

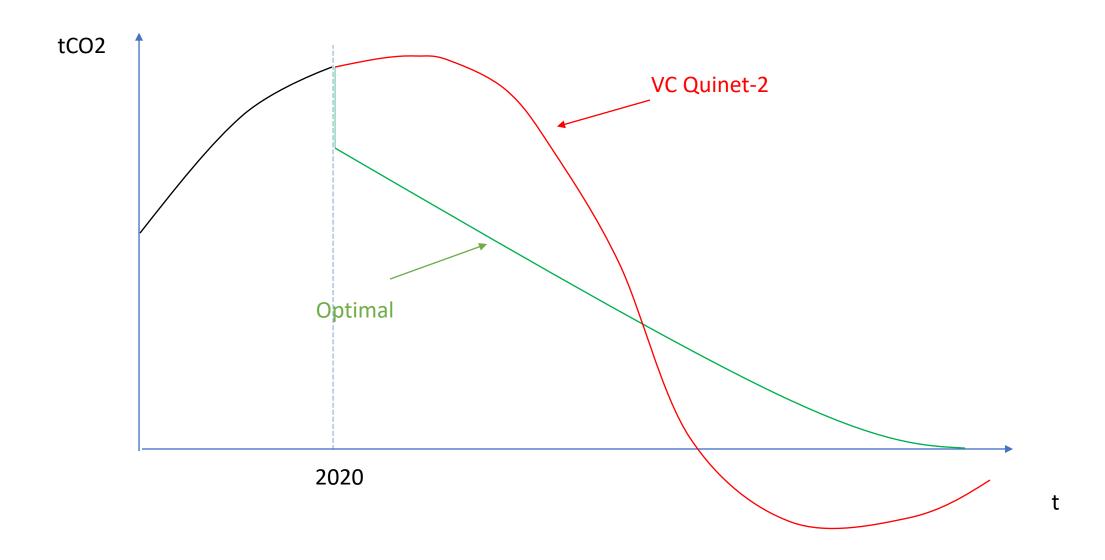
Choix d'une trajectoire et innovation technologique


- Si on était sûr qu'il sera possible de faire ZEN en 2030 sans coût.
 - On suivrait le scénario du laisser-faire. Le budget carbone est non contraignant, et la VC est nulle aujourd'hui.
- Supposons que l'objectif de 2°C ne peut être réalisé sans sacrifice.
- Comment allouer ce coût dans le temps?
 - Supposez que l'on puisse réduire les émissions d'une tCO2 à un coût de 80€/tCO2 en 2022, et à un coût de 775€/tCO2 en 2050.
 - Substitution intertemporelle: Ne devrions-nous pas en faire un peu plus en 2022 pour réduire les sacrifices en 2050?
- C'est une question purement financière.
 - Que vaut aujourd'hui la promesse d'obtenir 775€ dans 28 ans?

Valeur présente de 775 € dans 28 ans?

- Il y a deux manières d'offrir cela à la génération future:
 - 1. Réduire d'une tCO2 de plus nos émissions aujourd'hui;
 - 2. Réduire la dette publique d'un montant tel que la génération 2050 devra rembourser 775 € en moins.
- Le taux de rendement des OAT à 28 ans est de 1%.
 - Il existe une obligation zéro-coupon à capital facial de 775€ et à échéance 2050 qui vaut aujourd'hui sur le marché (1.01)⁻²⁸ =587€.
 - Réduisons les dépenses de l'Etat aujourd'hui pour en racheter une.
- C'est beaucoup plus coûteux que de décarboner. Donc, il vaut mieux réduire nos émissions que de réduire notre dette.
- Il faut le faire en 2022 tant qu'on a des opportunités d'abattement à coût inférieur à 587€.

France Yield Curve - 15 Jan 2022



Règle d'Hotelling (1931)

- En l'absence d'incertitude, la valeur d'une ressource nonrenouvelable doit croître au taux d'intérêt r.
- Le problème de l'allocation intertemporelle des émissions est symétrique à celui de l'extraction d'une ressource non-renouvelable.
- En l'absence d'incertitude, la VC doit croître au taux d'intérêt.
- Dans Quinet-2, la VC croît à 8% par an.
 - Quinet-2 répond à une question plus contrainte (-55% en 2030...).
 - Pas d'optimisation intertemporelle de l'effort. Quinet-2 répond à une mauvaise question.
 - Ceci indique qu'on n'en fait pas assez en 2022. Waiting game.

Quelle trajectoire carbone compatible avec 2°C?

Incertitudes

- Sur le pétrole, les terres rares ou le carbone, les incertitudes sont radicales.
- Qui peut dire quel sera le coût d'abattement du CO2 en 2050?
 - Incertitudes technologiques majeures: hydrogène, capture et séquestration, ITER, nucléaire, ENR, batteries, ...
 - Incertitudes économiques majeures: stagnation séculaire ou 4^e révolution industrielle?
- Il est donc injustifié d'utiliser la règle d'Hotelling ici.
- Quel est l'effet de ces incertitudes sur le taux de croissance de VC?
 - Catastrophisme: faire l'hypothèse que le coût d'abattement va rester élevé.
 - Techno-optimisme: faire l'hypothèse que ce coût va s'effondrer.
 - Rationalité: Reconnaitre l'incertitude future dans nos choix en 2022.

Mesure de l'incertitude: Les modèles du GIEC

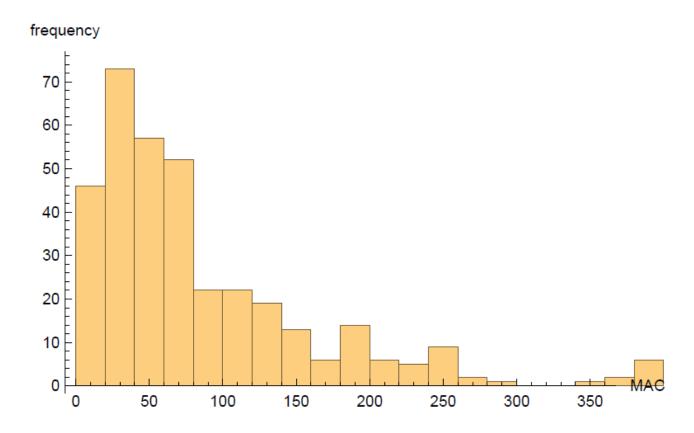


Figure: Histogram of the world marginal abatement costs for 2030 extracted from the IPCC database (https://tntcat.iiasa.ac.at/AR5DB). We have selected the 374 estimates of carbon prices (in US\$2005/tCO $_2$) in 2030 from the IAM models of the database compatible with a target concentration of 450ppm.

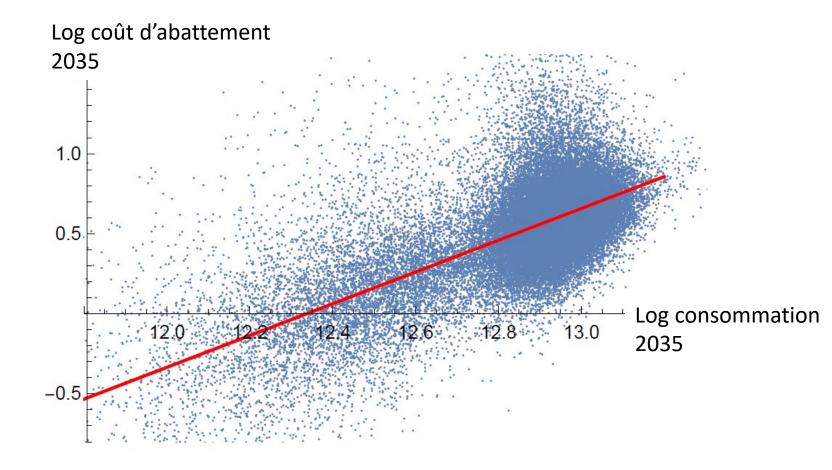
Hotelling en incertitude

- La règle d'Hotelling est juste un raisonnement d'arbitrage.
- Transférer l'effort de réduction des émissions de 2050 à 2022 engendre un bénéfice futur *incertain*.
 - Il est donc injustifié de le comparer à une réduction de dette publique dont le bénéfice est *certain*.
- Le taux de croissance espéré de la VC doit être égal au taux de rendement espéré d'un actif dont le bénéfice en 2050 a un profil de risque équivalent à celui du coût d'abattement du carbone à cette date.

Principe fondamental de finance

- Les individus ont de l'aversion au risque.
- Les actions qui réduisent le risque collectif sont mieux valorisées que celles qui l'augmentent.
 - L'investissement en or engendre un bénéfice plus important dans les crises. Il réduit le risque global. Sa rentabilité espérée est faible.
 - L'investissement CAC40 engendre un bénéfice plus faible dans les crises. Il augmente le risque global. Sa rentabilité espérée est élevée.
 - Réduire plus les émissions engendre un bénéfice plus ??? dans les crises. Il ??? le risque global. Sa rentabilité espérée est ???.
- Quelle corrélation entre consommation en 2050 et VC en 2050?

La VC doit croître à un taux plus faible que r!


- Supposons que la seule source d'incertitude soit de nature technologique.
- En cas d'échec technologique, les coûts d'abattement seront élevés et la décroissance devra être engagée.
- Le profil de risque de la mitigation ressemble à celui de l'or.
- La VC doit croitre à un taux plus faible que le taux d'intérêt.
- La VC de 2022 doit être de plusieurs centaines d'euros!

La VC doit croître à un taux plus élevé que r!

- Supposons que la seule source d'incertitude soit de nature économique.
- En cas croissance plus faible, il on pourra faire moins d'effort de réduction des émissions. Le coût d'abattement marginal sera plus faible.
 - Effondrement du prix du carbone sur EU-ETS pendant la crise.
- Le profil de risque de la mitigation ressemble à celui du CAC40.
- En espérance, la VC doit croitre au taux de rendement espéré du CAC40 (4% sur le siècle).
- La VC de 2022 doit être supérieure à la VC de Quinet-2 (100 € en 2022).

Modélisation des risques

 J'ai modélisé une économie avec incertitudes technologique et économique, calibrées respectivement sur les données GIEC et Barro.

				-
	Boiteux	Quinet 1	Quinet 2	Gollier
	(2001)	(2009)	(2019)	(2022)
2010	32	32		•
2020	43	56	69	150
2030	58	100	250	230
2050	104	250	775	500
Growth rate	2.9%	4.9%	8.0%	4%

Table: Social cost of carbon (in euros per metric ton of CO2) recommended in France by three different commissions. Source: France Stratégie.

Conclusion

- Notre valeur carbone en France est trop faible. Il faudrait dès 2022 une VC autour de 160 €/tCO2.
- Nous jouons à la roulette avec notre destin.
 - La faible VC ici et ailleurs en 2022 n'est rationnelle que si nous pensons que nous pourrons réduire massivement nos émissions à faible coût dans les années à venir.
- En réalité, notre comportement est optimal compte tenu de l'absence de réels efforts d'autres régions du monde.
 - Waiting game.