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Example 1: Matchings (monomer-dimer)

Instance: a graph G = (V, E).

A matching is a collection M ⊆ E of vertex-disjoint edges.

π(M) = λ|M|/Zmatch, where Zmatch = Zmatch(G, λ) =
∑
M

λ|M|.

Task: Sample from π, efficiently.
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Example 2: Independent sets (hard-core gas)

Instance: a graph G = (V, E).

An independent set is a subset S ⊆ V of non-adjacent vertices.

π(S) = λ|S|/ZIS, where ZIS = ZIS(G, λ) =
∑
S

λ|S|.

Task: As before.

Mark Jerrum (Queen Mary) On sampling and approximate counting Collège de France, 9/1/2018 3 / 27



Estimating the partition function

A related computational task is estimating the partition functions
Zmatch(G, λ) and ZIS(G, λ) for a specified graph G and activity λ,
within specified relative error.

Metatheorem
Sampling combinatorial structures and estimating the associated
partition function are of equivalent computational difficulty.
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Computational complexity

Viewpoint: A computational problem is
tractable if it can be solved in a number of
steps that scales as a polynomial in the size of
the instance (e.g., number of vertices).
The study of counting problems was initiated
by Leslie Valiant.

Leslie Valiant

Exact evaluation of the partition function is intractable
(#P-complete) in both examples.

Sampling configurations is tractable in one example and
intractable in the other.

Estimation of the partition function is tractable in one example
and intractable in the other.
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Approach 1: Rejection sampling (Dart throwing)

All subsets of E

Matchings

Until success:
I Choose M ⊆ E uniformly at random.
I If M is a matching, output M.

Correct distribution (for λ = 1), but exponential running time.
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Approach 2: Markov chain Monte Carlo (MCMC)

M := ∅.
Repeat for sufficiently many steps:

I Choose e ∈ E uniformly at random, and let M ′ :=M⊕ {e}.
I If M ′ is a matching then M :=M ′; otherwise, do nothing.

Return M.
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Mixing time

The trial just described defines the
transition probabilities P of a Markov chain
on state space

Ω = {All matchings in G}.

This Markov chain converges to a
stationary distribution π that is uniform
on Ω. Andrei A. Markov

We are interested in the mixing time τ of the Markov chain, i.e., the
time to convergence to near stationarity.
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Canonical paths/Multi-commodity flow

For every pair of states x, y ∈ Ω, define a canonical path γxy from x

to y using valid transitions of the MC.
“Congestion constant” ρ:∑

γxy3(z,z ′)

π(x)π(y) |γxy| 6 ρπ(z)P(z, z
′), ∀z, z ′.
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Canonical paths/Multi-commodity flow

For every pair of states x, y ∈ Ω, define a canonical path γxy from x

to y using valid transitions of the MC.
“Congestion constant” ρ:∑

γxy3(z,z ′)

π(x)π(y) |γxy| 6 ρπ(z)P(z, z
′), ∀z, z ′.

Theorem (Diaconis, Stroock;
Sinclair)

τ = O(ρ logπ−1
min).

Alistair Sinclair
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Low congestion implies no “bottleneck”
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Richer set of transitions

Convenient to augment existing “add” and “delete” transitions with
a “slide”:

[Broder, 1986; J. & Sinclair, 1988]
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Richer set of transitions

Convenient to augment existing “add” and “delete” transitions with
a “slide”:

[Broder, 1986; J. & Sinclair, 1988]

Mark Jerrum (Queen Mary) On sampling and approximate counting Collège de France, 9/1/2018 11 / 27
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Canonical paths for matchings

To get from the blue matching. . .
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Canonical paths for matchings

. . . to the red matching. . .
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Canonical paths for matchings

. . . first superimpose red and blue (symmetric difference). . .

and then “unwind” each component (path or cycle).
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“Unwinding” a cycle

The cycle:
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“Unwinding” a cycle

Initial matching:
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“Unwinding” a cycle

After 1 step:
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“Unwinding” a cycle

After 2 steps:
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“Unwinding” a cycle

After 3 steps:
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“Unwinding” a cycle

After 4 steps (final matching):
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Encoding a canonical path through a transition

A transition:
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Encoding a canonical path through a transition

An encoding (matching):
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Encoding a canonical path through a transition

Superposition reveals the initial and final matching:
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Encoding a canonical path through a transition

Superposition reveals the initial and final matching:
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Calculating the congestion

The encoding argument shows that the number of canonical paths
passing through a given transition is roughly equal to the size of the
state space.

Pursuing the calculation in more detail yields:

Theorem (J. & Sinclair)

ρ = O(nmλ̄2), where n = |V |, m = |E| and λ̄ = max{λ, 1}.

Corollary

τ = O(nm2λ̄2).
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Return to independent sets

Consider an analogous set of transitions.

E.g., [Luby and Vigoda, Bubley and Dyer].
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Return to independent sets

Consider an analogous set of transitions.

E.g., [Luby and Vigoda, Bubley and Dyer].

Mark Jerrum (Queen Mary) On sampling and approximate counting Collège de France, 9/1/2018 16 / 27
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Clustering at higher activities

The diamonds are the vertices in the independent set; the colour
red/blue indicates parity.

At high enough λ there is a bias towards red or blue. (E.g., red
“islands” in a blue “sea”.) This leads to a constriction in the
state space.
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Example 3: sampling from a convex body

[Dyer, Frieze & Kannan, 1991], [Lovász & Simonovits, 1997].

K

Initial point

"Ball walk"

Exploit the geometry directly (c.f. Cheeger inequality).

Mixing is rapid, provided K ⊆ Rn is not “long and thin”, specifically,
τ = poly(n, diamK).

Technically, surprisingly hard!
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Some other successes

Proper colourings of a bounded degree graph, a.k.a.
antiferromagnetic Potts model [Various].

Partition function of the Ferromagnetic Ising model [J. and
Sinclair].

Bases of a “balanced” matroid [Feder and Mihail].

Linear extensions of a partial order. [Khachiyan and Karzanov],
[Bubley and Dyer].

Feasible solutions to an instance of the knapsack problem
[Morris and Sinclair].

Perfect matchings in a bipartite graph [J., Sinclair and Vigoda].
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A renaissance

MCMC was to a close approximation the only game in town.
That situation has changed in the last ten years with a rapid
expansion of techniques. Can be explored in the context of the
independent sets model.
Started with Weitz [2006] who exploited decay of correlations to
produce a deterministic algorithm. Uses O(logn) depth explorations
from a vertex v to estimate the probability that v is in a random
independent set.

Theorem (Weitz, 2006)

If λ < λc(d) then there is an FPRAS for ZIS(λ) on graphs of
maximum degree d.
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A renaissance (continued)

Here λc(d) is the location of the phase transition (unique versus
multiple Gibbs measures) in an infinite regular tree of degree d. This
result prompts the daring conjecture that the phase transition in the
usual physical sense coincides with a phase transition for
computational tractability. Indeed:

Theorem (Sly, 2010; Galanis, Ge, Štefankovič, Vigoda and
Yang, 2012; Sly and Sun, 2012)

If λ > λc(d) then ZIS(λ) is NP-hard to approximate, even for graphs
of maximum degree d.

So, remarkably, for graphs of bounded degree d, the critical value
λc(d) is also the boundary between computational tractability and
intractability.
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A renaissance (continued)

Another significant line of attack was introduced by Barvinok, and
taken forward by Patel and Regts.

The idea is to consider a Taylor expansion of logZ about some point
where the partition function is easy to evaluate. Then by
enumerating small substructures, one can estimate the first few
coefficients in the expansion. This in turn gives a good estimate for
Z at a hard-to-evaluate point.

For this to work we need there to be no zeros in the neighbourhood
in which we are performing the Taylor expansion.

Zeros of the partition function Z are associated with phase
transitions: another connection to the physics of spin systems!
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Independent sets by Partial Rejection Sampling

A further recent approach is to efficient sampling is Partial rejection
sampling [J. & Guo, 2017]:
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Independent sets by Partial Rejection Sampling

1. Randomize each vertex (in/out).
Consider the connected components
induced by the in-vertices.

2. Let Bad be the set of vertices in
connected components of size at
least 2.

3. Resample = Bad ∪ ∂Bad.

4. Resample variables in set Resample.
Check independence.

When the algorithm stops, it yields a uniform independent set.
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Unblocking sets

The key property of the set Resample is that it is unblocking under
the current assignment σ to the variables.

Definition
A set U of variables is unblocking under σ if σ[U] determines the
truth value of all clauses that share variables with U (and not just
the clauses containing only variables from U

The resampling set from the independent set example was
unblocking.

In applications we also require that U is “adapted” to σ.
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Partial rejection sampling

Algorithm 1 Partial Rejection Sampling

PRS(V,Φ) // Φ is a formula on variable set V
Sample, from the product distribution, an assignment σ to the vari-
ables in V
while Bad(σ) 6= ∅ do
S←

⋃
{var(C) : C ∈ Bad(σ)}

Resample all variables in U = Resample(S;σ)
end while

Note 1. The procedure Resample must not probe variables outside of
U while computing U. This is the condition of being adapted.

Note 2. A previous approach to rejection sampling that tries to
preserve randomness is the “Randomness Recycler” of Fill and Huber.

Mark Jerrum (Queen Mary) On sampling and approximate counting Collège de France, 9/1/2018 26 / 27



A selection of open problems

Is there a polynomial-time algorithm for sampling perfect
matchings in a general graph?

Is there an algorithm for sampling perfect matchings in a
bipartite graph that is efficient in practice?

Is there a polynomial-time algorithm for sampling contingency
tables?

Can one sample proper colourings efficiently when q > (1+ ε)d?
(q is the number of colours and d the maximum degree.)

Is the bases-exchange walk rapidly mixing for all matroids?
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