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Motivation - Big Data

Huge data sets:
meteorology, genomics, social networks,...

IBM, 2012: 2.5 exabytes (2.5× 1018) of data created every day

World’s per-capita capacity to store information doubles every 40
months since the 1987 [Hilbert, López 2011]

Algorithmic challenges: storage, communication, analysis

The distributed approach: many servers, massively parallel algorithms
Storing the whole available data

Today: algorithms that store a small fraction of the available data
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Streaming algorithms

Input presented piece-by-piece as a sequence (aka stream) of items

adversarial order

Algorithms with memory size � input size

can store only a small fraction of the input
memory size typically independent of length of stream

Algorithm required to return, at the end of the stream,“good” output

Questions:

Interplay between the quality of the output and the memory size.
What is the run-time complexity per input item? In total (amortized) ?
Interplay between the quality of the output and the number of passes.

Problems:

Selection of k th largest element [Munro, Paterson 1980]
Estimating frequency moments [Alon, Matias, Szegedy 1996]
Finding heavy hitters [Karp, Papadimitriou, Shenker 2003]
Counting distinct elements [Kane, Nelson, Woodruff 2010]
Checking balanced parentheses [Magniez, Mathieu, Nayak 2010]
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Graph Problems

Input: G = (V ,E ), n = |V |, m = |E |
Input order:

edges vs. nodes
adversarial vs. random

output size often depends on input size

Memory size
o(|G |) bits (sublinear)

n logO(1) m bits (a.k.a. semi-streaming)

Problems (semi-streaming setting):

Distances and diameter
[Feigenbaum, Kannan, McGregor, Suri, Zhang 2005]
Constructing spanners and shortest path trees
[Feigenbaum, Kannan, McGregor, Suri, Zhang 2008]
Maximum matching
[McGregor 2005; Epstein,Levin,Mestre,Segev 2010; Crouch,Stubbs 2014]
Constructing spectral sparsifiers [Ahn, Guha 2009; Kelner, Levin 2013]
Maximum Independent Set
[Halldórsson, Halldórsson, Losievskaja, Szegedy 2010]
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Graph Problems

Input: G = (V ,E ), n = |V |, m = |E |
Input order:

edges vs. nodes
adversarial vs. random

output size often depends on input size
Memory size

o(|G |) bits (sublinear)

n logO(1) m bits (a.k.a. semi-streaming)
Problems (semi-streaming setting):

Distances and diameter
[Feigenbaum, Kannan, McGregor, Suri, Zhang 2005]
Constructing spanners and shortest path trees
[Feigenbaum, Kannan, McGregor, Suri, Zhang 2008]
Maximum matching
[McGregor 2005; Epstein,Levin,Mestre,Segev 2010; Crouch,Stubbs 2014]
Constructing spectral sparsifiers [Ahn, Guha 2009; Kelner, Levin 2013]
Maximum Independent Set
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The minimum set cover problem

Input:

Universe U of items; |U| = n
Collection S of subsets S ⊆ I; |S| = m.

Output:

Subcollection C ⊆ S that covers U : ∪c∈CC = U
minimize |C|

NP-hard [Karp 1972]

Approximable within 1 + ln n [Johnson 1974]

Not approximable within (1− ε) ln n for any ε > 0 [Feige 1998]

“. . . a problem whose study has led to the development of
fundamental techniques for the entire field of approximation
algorithms” [Vazirani 2001]
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Minimum set-cover as a (hyper)graph problem

Input: hypergraph G = (V ,E )

V = set of n nodes
E = set of m hyperedges e ⊆ V

Output: edge subset F ⊆ E that covers V , i.e.,
⋃

e∈F e = V

minimize |F |
Streaming model:

G is presented as a stream e1, . . . , em, each et given with its nodes.
Edge et identified by O(logm) bit ID(et) (e.g., t)
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Edge et identified by O(logm) bit ID(et) (e.g., t)
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Edge δ-covers

Generalization of edge (set) cover

Definition

For G = (V ,E ), and 0 < δ ≤ 1, F ⊆ E is an edge δ-cover of V if
|{v ∈ V : ∃f ∈ F , v ∈ f }| ≥ δ · |V |.

edge cover = edge 1-cover

Generalization of the set cover problem

Given G and δ
Find an F ⊆ E that is an edge δ-cover for V , and minimizes |F |.
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Cover certificates

Recall: Each edge (set) e is associated with ID(e).

”regular” setting:

Given {ID(e) : e ∈ F} easy to check for given v ∈ V if v covered by F .

Streaming setting:

This cannot be checked given only {ID(e) : e ∈ F}.
(some) streaming algorithm output a δ-cover certificate χ:
partial function from V to ID(E ) that satisfies

if χ(v) = ID(e), then v ∈ e (soundness)
|Dom(χ)| ≥ δn (δ-coverage)
objective: minimize |Im(χ)|

χ(v) 7 3 ⊥ 3 4 ⊥ 3 3 7 4

v v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
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Cover certificates

Recall: Each edge (set) e is associated with ID(e).

”regular” setting:

Given {ID(e) : e ∈ F} easy to check for given v ∈ V if v covered by F .

Streaming setting:

This cannot be checked given only {ID(e) : e ∈ F}.
(some) streaming algorithm output a δ-cover certificate χ:
partial function from V to ID(E ) that satisfies

if χ(v) = ID(e), then v ∈ e (soundness)
|Dom(χ)| ≥ δn (δ-coverage)
objective: minimize |Im(χ)|

χ(v) 7 3 ⊥ 3 4 ⊥ 3 3 7 4

v v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Adi Rosén (CNRS) Streaming Algorithms for Set Cover Collège de France, June 2018 8 / 23
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Single pass [Emek, Rosén 2014]

Theorem

There is a semi-streaming algorithm that on an input hypergraph
G = (V ,E ) uses O(n log n) space, and for every 0 ≤ ε < 1 produces a
(1− ε)-cover certificate χε for G such that

|Im(χε)| = O
(
min

{
1/ε,
√
n
})
· |OPT | ,

where OPT is the optimal edge cover for G.

this statement assuming m = nO(1)

extends to the weighted case: benefit for nodes; costs for sets

run-time per edge et ∈ E is O(|et | log |et |)
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approx

ε
1/
√
n

√
n

1
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Single pass [Emek, Rosén 2014]

Theorem

If a randomized streaming algorithm uses memory of size o(n3/2), and for
every ε ≥ 1/

√
n, guarantees to output a (1− ε)-cover certificate χ with

E[|Im(χ)|] = ρε · |Opt|, then ρε = Ω(1/ε).
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Single pass [Emek, Rosén 2014]

Theorem

If a randomized streaming algorithm uses memory of size o(n3/2), and for
an ε ≥ 1/

√
n guarantees to output a (1− ε)-cover certificate χ with

E[|Im(χ)|] = ρε · |Opt|, then ρε = Ω(1/ε).

Theorem

Fix some constant real α > 0.
If a randomized streaming algorithm uses memory of size o(n1+α), and for
an ε ≥ n−1/2+α guarantees to output a (1− ε)-cover F with
E[|F |] = ρε · |Opt|, then ρε = Ω( log log n

log n · 1
ε ).
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Single Pass, sublinear space [Assadi, Khanna, Li 2016]

Theorem

For any α = o(
√
n/ log n), and m = poly(n), any randomized single-pass

streaming algorithm that α-approximates the set cover problem with
probability at least 2/3 requires Ω(mn/α) bits of space.

Theorem

For any α = o(
√

n/ log n), and m = poly(n), any randomized single-pass
streaming algorithm that α-approximates the size of the optimal set cover
with probability at least 0.9 requires Ω(mn/α2) bits of space.

Matching deterministic upper bound of set cover

Matching randomized upper bound for estimating the size

These results only for 1-covers
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Multiple Passes [Chakrabarti, Wirth 2016]

Theorem

For every p ≥ 1, there is a p-pass semi-streaming deterministic algorithm
for weighted (1− ε) set-cover that returns a cover certificate that
approximates the 1-cover up to O(p ·min{n1/(p+1), ε−1/p}).

Theorem

Let c > 0 be a constant. If A is a randomized p-pass streaming algorithm
for (1− ε) set cover, 0 < epsilon < 1/2, that for all large enough n and m,
returns an α-approximation, α < 1

8c(p+1)2 ·min{n1/(p+1), ε−1/p}, then A

uses Ω(nc/p3) space.

lower bound on decision problem
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Multiple Passes, sublinear space
[Har-Peleg, Indyk, Mahabadi, Vakilian 2016 ; Assadi 2017]

Theorem (HIMV)

For every p ≥ 1, there is a p-pass randomized algorithm for the set-cover
problem that uses Õ(mn1/p) space, and with high probability returns an
O(p) approximation.
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Theorem (HIMV)

For every p ≥ 1, there is a p-pass randomized algorithm for the set-cover
problem that uses Õ(mn1/p) space, and with high probability returns an
O(p) approximation.

Approximation factor degrades with passes (space improves)
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Multiple Passes, sublinear space
[Har-Peleg, Indyk, Mahabadi, Vakilian 2016 ; Assadi 2017]

Theorem (HIMV)

For every p ≥ 1, there is a p-pass randomized algorithm for the set-cover
problem that uses Õ(mn1/p) space, and with high probability returns an
O(p) approximation.

Theorem (A)

For every p ≥ 1, α = o(log n/ log log n), any algorithm that makes p
passes, and returns with constant probability an α approximation, uses
Ω̃(mn1/α/p) space.

Adi Rosén (CNRS) Streaming Algorithms for Set Cover Collège de France, June 2018 13 / 23
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Theorem (HIMV)

For every p ≥ 1, there is a p-pass randomized algorithm for the set-cover
problem that uses Õ(mn1/p) space, and with high probability returns an
O(p) approximation.

Theorem (A)

For every p ≥ 1, α = o(log n/ log log n), any algorithm that makes p
passes, and returns with constant probability an α approximation, uses
Ω̃(mn1/α/p) space.

Lower bound applies to estimating the size.
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Single Pass ε-oblivious algorithm [Emek, Rosén 2014]

Hypergraph G = (V ,E = {e1, . . . , em})

streaming stage: Algstreaming(e1, . . . , em) −→ data structure D

space used O(n log n)
run-time per edge et ∈ E is O(|et | log |et |)

output stage: AlgRAM(D, 0 ≤ ε < 1) −→ (1− ε)-cover certificate χε

no additional memory
running time O(n log n).
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Algstreaming(e1, . . . , em) −→ D

Maintains 2 variables for each v ∈ V

eid(v) = ID(e) for some e ∈ E s.t. v ∈ e
qlt(v) = integer capturing the quality of e in covering v

Initially: eid(v)← ⊥, qlt(v)← 0 for every v ∈ V

Definition

X ⊆ et is good at time t if dlg |X |e > qlt(v) for every v ∈ X .

Intuitively: the larger X is, ”better” is the coverage by X ⊆ et

Update rule: upon arrival of edge et
X ∗ ← largest good subset of et
For every v ∈ X ∗:
eid(v)← ID(et) ; qlt(v)← dlg |X ∗|e
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Algstreaming(e1, . . . , em) −→ D

et = {v1, . . . , v12}

eidt(v) ⊥ ⊥ 3 1 9 8 6 7 6 24 19 26

qltt(v) 0 0 1 2 2 3 5 5 5 7 8 8

v ∈ et v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

︸ ︷︷ ︸
X∗
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Algstreaming(e1, . . . , em) −→ D

et = {v1, . . . , v12}

eidt+1(v) t t t t t 8 6 7 6 24 19 26
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AlgRAM(D, 0 ≤ ε < 1) −→ (1− ε)-cover certificate χε

Notation:

qlt∞(v) = qlt(v) upon termination
eid∞(v) = eid(v) upon termination
S(r) = {e ∈ E | ∃v ∈ V s.t. eid∞(v) = ID(e) and qlt∞(v) > r}
i.e., all edges that give high-quality (> r) coverage to at least one node
I (r) = {v ∈ V | qlt∞(v) ≤ r}
i.e., all nodes that have poor (≤ r) quality for their coverage
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i.e., all edges that give high-quality (> r) coverage to at least one node

I (r) = {v ∈ V | qlt∞(v) ≤ r}
i.e., all nodes that have poor (≤ r) quality for their coverage

Given 0 ≤ ε < 1:

If ε ≥ 1/
√
n

Pick largest integer r∗ s.t. |I (r∗)| ≤ ε · n
Return χ : V → eid(E ) that maps every v ∈ V − I (r∗) to eid∞(v).

If ε < 1/
√
n

Return χ : V → eid(E ) that maps every v ∈ V to eid∞(v).
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AlgRAM(D, 0 ≤ ε < 1) −→ (1− ε)-cover certificate χε

S(r) = {e ∈ E | ∃v ∈ V s.t. eid∞(v) = ID(e) and qlt∞(v) > r}
I (r) = {v ∈ V | qlt∞(v) ≤ r}

Lemma

For every r ∈ Z≥0, |I (r)| < 2r+1 · |Opt|.

Lemma

For every r ∈ Z≥0, |S(r)| < n/2r−1.

Idea of proof of approximation factor:

S(r∗) < n/2r
∗−1 ≤ 1

ε · |I (r∗)| · 1
2r∗−1 <

4
ε · |Opt|.
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Lower Bound - single pass, semi-streaming

Theorem (1-coverage)

If a randomized streaming algorithm uses memory of size o(n3/2), and
guarantees to output a (1)-cover certificate χ with E[|Im(χ)|] = ρ · |Opt|,
then ρ = Ω(

√
n).

approx

ε
1/
√
n

√
n

1

Distribution G over n-node hypergraphs (based on affine planes)

Opt(G ) = O(1) for every G ∈ G
Every deterministic streaming algorithm with memory o(n3/2) that
outputs 1-cover certificate χ has EG [|Im(χ)|] = Ω(

√
n).
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Lower Bound - single pass, semi-streaming

Theorem (1-coverage)

If a randomized streaming algorithm uses memory of size o(n3/2), and
guarantees to output a (1)-cover certificate χ with E[|Im(χ)|] = ρ · |Opt|,
then ρ = Ω(

√
n).

approx

ε
1/
√
n

√
n

1

Distribution G over n-node hypergraphs (based on affine planes)

Opt(G ) = O(1) for every G ∈ G

Every deterministic streaming algorithm with memory o(n3/2) that
outputs 1-cover certificate χ has EG [|Im(χ)|] = Ω(

√
n).

Adi Rosén (CNRS) Streaming Algorithms for Set Cover Collège de France, June 2018 20 / 23
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Conclusions

Our results [Emek, Rosén 2014]:

Tight results on approximation factor in 1-pass semi-streaming (Õ(n)
space) of (1− ε) cover certificates.

Almost tight results on approximation factor in 1-pass semi-streaming
of (1− ε) covers.

Producing in a streaming setting a data structure, then, for given ε,
extracting output.

Subsequent work:

Tight tradeoffs in single pass between sub-linear (o(mn)) space and
approximation of 1-covers [Assadi, Khanna, Li 2016].

(Almost) tight tradeoffs between number of passes and approximation
in semi-streaming (1− ε)-covers [Charkrabarti, Wirth 2016]

(Almost) tight tradeoffs between number of passes and approximation
in sub-linear (o(mn)) space 1-cover. [Har-Peleg, Indyk, Mahabadi,
Vakilian 2016 ; Assadi 2017]
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Open Problems

Extend results for sublinear space to (1− ε) covers.

Can we approximate the optimal (1− ε) cover ?
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Thank you

Thank You
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