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Motivation - Big Data

@ Huge data sets:
meteorology, genomics, social networks,...
o IBM, 2012: 2.5 exabytes (2.5 x 10'8) of data created every day
@ World's per-capita capacity to store information doubles every 40
months since the 1987 [Hilbert, Lépez 2011]
@ Algorithmic challenges: storage, communication, analysis
@ The distributed approach: many servers, massively parallel algorithms
e Storing the whole available data
@ Today: algorithms that store a small fraction of the available data
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© The streaming model



reaming algorithms

@ Input presented piece-by-piece as a sequence (aka stream) of items
o adversarial order
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Streaming algorithms

@ Input presented piece-by-piece as a sequence (aka stream) of items
o adversarial order
@ Algorithms with memory size < input size
e can store only a small fraction of the input
e memory size typically independent of length of stream
@ Algorithm required to return, at the end of the stream, “good” output
@ Questions:

o Interplay between the quality of the output and the memory size.
e What is the run-time complexity per input item? In total (amortized) 7
o Interplay between the quality of the output and the number of passes.

@ Problems:

Selection of k™ largest element [Munro, Paterson 1980]
Estimating frequency moments [Alon, Matias, Szegedy 1996]
Finding heavy hitters [Karp, Papadimitriou, Shenker 2003]
Counting distinct elements [Kane, Nelson, Woodruff 2010]
Checking balanced parentheses [Magniez, Mathieu, Nayak 2010]
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Graph Problems
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@ Input order:
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Graph Problems

Input: G =(V,E), n=|V|, m=|E]|
Input order:

e edges vs. nodes
o adversarial vs. random

output size often depends on input size
Memory size

o o(|G]) bits (sublinear)
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Graph Problems

Input: G =(V,E), n=|V|, m=|E]|
Input order:

e edges vs. nodes
o adversarial vs. random

output size often depends on input size
Memory size
o o(|G]) bits (sublinear)
o nlog®® m bits (a.k.a. semi-streaming)
Problems (semi-streaming setting):
o Distances and diameter
[Feigenbaum, Kannan, McGregor, Suri, Zhang 2005]
e Constructing spanners and shortest path trees
[Feigenbaum, Kannan, McGregor, Suri, Zhang 2008]
e Maximum matching
[McGregor 2005; Epstein,Levin,Mestre,Segev 2010; Crouch,Stubbs 2014]
o Constructing spectral sparsifiers [Ahn, Guha 2009; Kelner, Levin 2013]
e Maximum Independent Set
[Halldérsson, Halldérsson, Losievskaja, Szegedy 2010]
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© The set-cover problem



The minimum set cover problem

o Input:

o Universe U of items, [U| = n
o Collection S of subsets S C 7;

S| =m.
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The minimum set cover problem

o Input:

o Universe U of items, [U| = n

o Collection S of subsets S C Z; |S| = m.
o Output:

e Subcollection C C S that covers U: UgecC =U
e minimize |C|

NP-hard [Karp 1972]
Approximable within 1 + In n [Johnson 1974]
Not approximable within (1 — €)Inn for any € > 0 [Feige 1998]
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The minimum set cover problem

o Input:

o Universe U of items, [U| = n
o Collection S of subsets S C 7;

o Output:

e Subcollection C C S that covers U: UgecC =U
e minimize |C|

NP-hard [Karp 1972]
Approximable within 1 + In n [Johnson 1974]
Not approximable within (1 — €)Inn for any € > 0 [Feige 1998]

S| =m.

“...a problem whose study has led to the development of
fundamental techniques for the entire field of approximation
algorithms” [Vazirani 2001]
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Minimum set-cover as a (hyper)graph problem

e Input: hypergraph G = (V, E)
e V =set of n nodes
o E = set of m hyperedges e C V
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Minimum set-cover as a (hyper)graph problem

Input: hypergraph G = (V, E)
e V =set of n nodes
o E = set of m hyperedges e C V

Output: edge subset F C E that covers V, i.e., |J.cpe=V

minimize |F|

Streaming model:

e G is presented as a stream ey, ..., ey, €ach e given with its nodes.
o Edge e identified by O(log m) bit ID(e;) (e.g., t)
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Edge d-covers

o Generalization of edge (set) cover
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Edge d-covers

o Generalization of edge (set) cover

Definition

For G =(V,E),and 0 <0 <1, F C E is an edge d-cover of V if
{veV:3feFvef}>6-|V|

Adi Rosén (CNRS) Streaming Algorithms for Set Cover Collége de France, June 2018 7/23



Edge d-covers

o Generalization of edge (set) cover

Definition

For G =(V,E),and 0 <0 <1, F C E is an edge d-cover of V if
{veV:3feFvef}>6-|V|

@ edge cover = edge 1-cover
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Edge d-covers

o Generalization of edge (set) cover

Definition

For G =(V,E),and 0 <0 <1, F C E is an edge d-cover of V if
{veV:3feFvef}>6-|V|

@ edge cover = edge 1-cover

@ Generalization of the set cover problem

o Given G and §
e Find an F C E that is an edge d-cover for V/, and minimizes |F]|.
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Cover certificates

@ Recall: Each edge (set) e is associated with ID(e).
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Cover certificates

@ Recall: Each edge (set) e is associated with ID(e).
@ "regular’ setting:

o Given {ID(e) : e € F} easy to check for given v € V if v covered by F.
@ Streaming setting:

o This cannot be checked given only {ID(e) : e € F}.
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o Given {ID(e) : e € F} easy to check for given v € V if v covered by F.

Streaming setting:
o This cannot be checked given only {ID(e) : e € F}.

(some) streaming algorithm output a J-cover certificate y:
partial function from V to ID(E) that satisfies
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Cover certificates

Recall: Each edge (set) e is associated with ID(e).

"regular” setting:
o Given {ID(e) : e € F} easy to check for given v € V if v covered by F.

Streaming setting:
o This cannot be checked given only {ID(e) : e € F}.

(some) streaming algorithm output a J-cover certificate y:
partial function from V to ID(E) that satisfies

o if x(v) =ID(e), then v € e (soundness)

o |Dom(x)| > dn (§-coverage)

X(v)73L34L3374
v Vi| Vo | V3 |Va| V5| Ve | V7| Vg | Vg | Vio
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Cover certificates

Recall: Each edge (set) e is associated with ID(e).

"regular” setting:
o Given {ID(e) : e € F} easy to check for given v € V if v covered by F.

Streaming setting:
o This cannot be checked given only {ID(e) : e € F}.

(some) streaming algorithm output a J-cover certificate y:
partial function from V to ID(E) that satisfies

o if x(v) =ID(e), then v € e (soundness)

o |Dom(x)| > dn (§-coverage)

o objective: minimize |Tm(y)|

X(v)73L34L3374
v Vi| Vo | V3 |Va| V5| Ve | V7| Vg | Vg | Vio
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© (some of the) Results



Single pass [Emek, Rosén 2014]

Theorem

There is a semi-streaming algorithm that on an input hypergraph

G = (V,E) uses O(nlog n) space, and for every 0 < ¢ < 1 produces a
(1 — €)-cover certificate x. for G such that

Im(x.)| = O (min {1/6, \/ﬁ}) -|OPT| ,

where OPT s the optimal edge cover for G.
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There is a semi-streaming algorithm that on an input hypergraph

G = (V,E) uses O(nlog n) space, and for every 0 < ¢ < 1 produces a
(1 — €)-cover certificate x. for G such that

Im(x.)| = O (min {1/6, \/5}) -|OPT| ,

where OPT s the optimal edge cover for G.

@ this statement assuming m = no)
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G = (V,E) uses O(nlog n) space, and for every 0 < ¢ < 1 produces a
(1 — €)-cover certificate x. for G such that

Im(x.)| = O (min {1/6, \/5}) -|OPT| ,

where OPT s the optimal edge cover for G.

@ this statement assuming m = no)

@ extends to the weighted case: benefit for nodes; costs for sets
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Single pass [Emek, Rosén 2014]

Theorem

There is a semi-streaming algorithm that on an input hypergraph

G = (V,E) uses O(nlog n) space, and for every 0 < ¢ < 1 produces a
(1 — €)-cover certificate x. for G such that

Im(x.)| = O (min {1/6, \/5}) -|OPT| ,

where OPT s the optimal edge cover for G.

@ this statement assuming m = no)

@ extends to the weighted case: benefit for nodes; costs for sets

@ run-time per edge e; € E is O(|et|log |e|)
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Single pass [Emek, Rosén 2014]

Theorem

There is a semi-streaming algorithm that on an input hypergraph

G = (V,E) uses O(nlog n) space, and for every 0 < ¢ < 1 produces a
(1 — €)-cover certificate x. for G such that

Im(xe)| = O (min{1/e,+/n}) - |OPT| ,

where OPT s the optimal edge cover for G.

’
approx

N

1V e
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Single pass [Emek, Rosén 2014]

If a randomized streaming algorithm uses memory of size o(n*/?), and for
every € > 1//n, guarantees to output a (1 — €)-cover certificate x with

E[IIm(x)|] = pe - [Opt|, then p = Q(1/e).
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Single pass [Emek, Rosén 2014]

If a randomized streaming algorithm uses memory of size o(n*/?), and for
an e > 1/+/n guarantees to output a (1 — €)-cover certificate x with
E[tm(x)[] = pc - [0pt, then p = (1/¢).

Theorem

Fix some constant real o > 0.
If a randomized streaming algorithm uses memory of size o(n**®), and for
an € > n~1/2+% guarantees to output a (1 — €)-cover F with

E[|F|] = pe - |Opt|, then p = Q(w : l)-

log n €
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Single Pass, sublinear space [Assadi, Khanna, Li 2016]

For any a = o(+/n/ log n), and m = poly(n), any randomized single-pass
streaming algorithm that a-approximates the set cover problem with
probability at least 2/3 requires Q(mn/«.) bits of space.
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Single Pass, sublinear space [Assadi, Khanna, Li 2016]

Theorem

For any a = o(+/n/ log n), and m = poly(n), any randomized single-pass
streaming algorithm that a-approximates the set cover problem with
probability at least 2/3 requires Q(mn/«.) bits of space.

Theorem

| A

For any o = o(\/n/log n), and m = poly(n), any randomized single-pass
streaming algorithm that a-approximates the size of the optimal set cover
with probability at least 0.9 requires Q(mn/a?) bits of space.

A\
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Single Pass, sublinear space [Assadi, Khanna, Li 2016]

Theorem

For any a = o(+/n/ log n), and m = poly(n), any randomized single-pass
streaming algorithm that a-approximates the set cover problem with
probability at least 2/3 requires Q(mn/«.) bits of space.

Theorem

| A

For any o = o(\/n/log n), and m = poly(n), any randomized single-pass
streaming algorithm that a-approximates the size of the optimal set cover
with probability at least 0.9 requires Q(mn/a?) bits of space.
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Theorem

For any a = o(+/n/ log n), and m = poly(n), any randomized single-pass
streaming algorithm that a-approximates the set cover problem with
probability at least 2/3 requires Q(mn/«.) bits of space.

Theorem

| A

For any o = o(\/n/log n), and m = poly(n), any randomized single-pass
streaming algorithm that a-approximates the size of the optimal set cover
with probability at least 0.9 requires Q(mn/a?) bits of space.

A\

@ Matching deterministic upper bound of set cover
@ Matching randomized upper bound for estimating the size

@ These results only for 1-covers
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Multiple Passes [Chakrabarti, Wirth 2016]

For every p > 1, there is a p-pass semi-streaming deterministic algorithm
for weighted (1 — €) set-cover that returns a cover certificate that
approximates the 1-cover up to O(p - min{n'/(P1) =1/P}),

Let ¢ > 0 be a constant. If A is a randomized p-pass streaming algorithm
for (1 — €) set cover, 0 < epsilon < 1/2, that for all large enough n and m,

returns an a-approximation, o <
uses Q(n°/p3) space.

W -min{n¥/(Pt1) =1/P} then A
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For every p > 1, there is a p-pass semi-streaming deterministic algorithm
for weighted (1 — €) set-cover that returns a cover certificate that
approximates the 1-cover up to O(p - min{n'/(P1) =1/P}),

Let ¢ > 0 be a constant. If A is a randomized p-pass streaming algorithm
for (1 — €) set cover, 0 < epsilon < 1/2, that for all large enough n and m,

returns an a-approximation, o <
uses Q(n°/p3) space.

W -min{n¥/(Pt1) =1/P} then A

@ lower bound on decision problem
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Multiple Passes, sublinear space
[Har-Peleg, Indyk, Mahabadi, Vakilian 2016 ; Assadi 2017]

Theorem (HIMV)

For every p > 1, there is a p-pass randomized algorithm for the set-cover

problem that uses O(mnl/ P) space, and with high probability returns an
O(p) approximation.
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Multiple Passes, sublinear space
[Har-Peleg, Indyk, Mahabadi, Vakilian 2016 ; Assadi 2017]

Theorem (HIMV)

For every p > 1, there is a p-pass randomized algorithm for the set-cover

problem that uses O(mnl/ P) space, and with high probability returns an
O(p) approximation.

e Approximation factor degrades with passes (space improves)
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Multiple Passes, sublinear space
[Har-Peleg, Indyk, Mahabadi, Vakilian 2016 ; Assadi 2017]

Theorem (HIMV)

For every p > 1, there is a p-pass randomized algorithm for the set-cover
problem that uses O(mn'/P) space, and with high probability returns an
O(p) approximation.

Theorem (A)

For every p > 1, a = o(log n/ log log n), any algorithm that makes p
passes, and returns with constant probability an o approximation, uses
Q(mn'/*/p) space.
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Multiple Passes, sublinear space
[Har-Peleg, Indyk, Mahabadi, Vakilian 2016 ; Assadi 2017]

Theorem (HIMV)

For every p > 1, there is a p-pass randomized algorithm for the set-cover
problem that uses O(mn'/P) space, and with high probability returns an
O(p) approximation.

\

Theorem (A)

For every p > 1, a = o(log n/ log log n), any algorithm that makes p
passes, and returns with constant probability an o approximation, uses
Q(mn'/*/p) space.

A\

@ Lower bound applies to estimating the size.
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@ (some of the) Techniques



@ (some of the) Techniques
@ Single pass, semi-streaming algorithm (unweighted case)



Single Pass e-oblivious algorithm [Emek, Rosén 2014]

e Hypergraph G = (V,E ={e1,...,em})
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Single Pass e-oblivious algorithm [Emek, Rosén 2014]

e Hypergraph G = (V,E ={e1,...,em})

o streaming stage: Algg caming(€1;---,em) — data structure D
e space used O(nlog n)
o run-time per edge e; € E is O(|e:|log |et|)
e output stage: Alggam(D,0 < e < 1) — (1 — €)-cover certificate .

e no additional memory
e running time O(nlog n).
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Algstreaming(el? T em) — D

@ Maintains 2 variables for each v € V
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Algstreaming(el? T em) — D

@ Maintains 2 variables for each v € V

e eid(v) =1ID(e) for some e € Est. vE e
e qlt(v) = integer capturing the quality of e in covering v

o Initially: eid(v) « L, qlt(v) < 0 for every v € V

Definition
X C e is good at time t if [Ig|X]|] > qlt(v) for every v € X.

Intuitively: the larger X is, "better” is the coverage by X C e;

@ Update rule: upon arrival of edge e;

o X* < largest good subset of &
o For every v € X*:
eid(v) « ID(e;) ; qlt(v) < [lg|X*|]
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Algstreaming(el? T em) — D

] et:{vl,...,vlz}
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Algstreaming(el? T em) — D

] et:{vl,...,vlz}

eide(V)[ L] L]3[1]9[8[6]7]6]24]19] 26
at,(v)[o[0[1[2[2[3[5[5[5]| 7|88
vEe |Vi|Va|V3|Va|Vs|Ve|V7|Vg|Vg|Vio| Vil | V12
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,em) — D

Algstreaming(el? e

] et:{vl,...,vlz}

cide(V) [ L] L[3]1]9]8]6
2

qlt,(v) [0 ] 0
veEe |vi| v |Vv3|Vva|Vs | V| Vy

Vg | Vo | Vio | V11 | V12

X*

Collége de France, June 2018

Streaming Algorithms for Set Cover

Adi Rosén (CNRS)



° e = {v, ,vio}
eidepi(v) [t |t |t |t | t[8]6[7|6]|24]19 |26
alty 1(v) | 3|3 3(5|5(5|7|8]8
vV Eé Vi | V2| V3 |Va| V5| Ve Vg | Vo | V10 | Vi1 | V12

Adi Rosén (CNRS)

X*

Streaming Algorithms for Set Cover
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Algpam(D,0 < e < 1) — (1 — €)-cover certificate y.

@ Notation:
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Algpam(D,0 < e < 1) — (1 — €)-cover certificate x.

o S(r)={e€ E|3ve Vst eide(v) =ID(e) and glt(v) > r}
e i.e., all edges that give high-quality (> r) coverage to at least one node
o I(r)={veV|qglty(v)<r}

e i.e., all nodes that have poor (< r) quality for their coverage
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o S(r)={e€ E|3ve Vst eide(v) =ID(e) and glt(v) > r}
e i.e., all edges that give high-quality (> r) coverage to at least one node
o I(r)={veV|qglty(v)<r}

e i.e., all nodes that have poor (< r) quality for their coverage

Given 0 <e < 1:
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Algpanm(D,0 < e < 1) — (1 — €)-cover certificate X,

S(r)={e€ E|3ve Vst eido(v) =ID(e) and glt(v) > r}
I(r)y={veV|dty(v)<r}

For every r € Z>q, |I(r)| < 21 - |0pt]|.

For every r € Z>q, |S(r)| < n/2r=1.
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Algpanm(D,0 < e < 1) — (1 — €)-cover certificate X,

S(r)={e€ E|3ve Vst eido(v) =ID(e) and glt(v) > r}
I(r)y={veV|dty(v)<r}

For every r € Z>q, |I(r)| < 21 - |0pt]|.

For every r € Z>q, |S(r)| < n/2r=1.

Idea of proof of approximation factor:

o S(r*)y<n/2r=t <L) 2,*171 < %.|0opt|.
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@ (some of the) Techniques

@ Matching lower bound(s)



Lower Bound - single pass, semi-streaming

Theorem (1-coverage)

If a randomized streaming algorithm uses memory of size o(n*/?), and
guarantees to output a (1)-cover certificate x with E[|Im(x)|] = p - |Opt
then p = Q(\/n).

i
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Distribution G over n-node hypergraphs (based on affine planes)
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Lower Bound - single pass, semi-streaming

Theorem (1-coverage)

If a randomized streaming algorithm uses memory of size o(n*/?), and
guarantees to output a (1)-cover certificate x with E[|Im(x)|] = p - |Opt

then p = Q(\/n).

i

Distribution G over n-node hypergraphs (based on affine planes)
@ Opt(G) = O(1) for every G € G
@ Every deterministic streaming algorithm with memory o(n3/2) that
outputs 1-cover certificate x has Eg[|Im(x)|] = Q(+v/n).

Adi Rosén (CNRS) Streaming Algorithms for Set Cover College de France, June 2018 20 /23



© Conclusions and open problems



Conclusions

Our results [Emek, Rosén 2014]:

Subsequent work:

Adi Rosén (CNRS) Streaming Algorithms for Set Cover Collége de France, June 2018 21 /23



Conclusions

Our results [Emek, Rosén 2014]:

@ Tight results on approximation factor in 1-pass semi-streaming (5(n)
space) of (1 — €) cover certificates.

Subsequent work:

Adi Rosén (CNRS) Streaming Algorithms for Set Cover Collége de France, June 2018 21 /23



Conclusions

Our results [Emek, Rosén 2014]:

@ Tight results on approximation factor in 1-pass semi-streaming (5(n)
space) of (1 — €) cover certificates.

@ Almost tight results on approximation factor in 1-pass semi-streaming
of (1 — €) covers.

Subsequent work:

Adi Rosén (CNRS) Streaming Algorithms for Set Cover Collége de France, June 2018 21 /23



Conclusions

Our results [Emek, Rosén 2014]:

@ Tight results on approximation factor in 1-pass semi-streaming ((5(n)
space) of (1 — €) cover certificates.

@ Almost tight results on approximation factor in 1-pass semi-streaming
of (1 — €) covers.

@ Producing in a streaming setting a data structure, then, for given ¢,
extracting output.

Subsequent work:

Adi Rosén (CNRS) Streaming Algorithms for Set Cover Collége de France, June 2018 21 /23



Conclusions

Our results [Emek, Rosén 2014]:

@ Tight results on approximation factor in 1-pass semi-streaming ((5(n)
space) of (1 — €) cover certificates.

@ Almost tight results on approximation factor in 1-pass semi-streaming
of (1 — €) covers.

@ Producing in a streaming setting a data structure, then, for given ¢,
extracting output.

Subsequent work:

o Tight tradeoffs in single pass between sub-linear (o(mn)) space and
approximation of 1-covers [Assadi, Khanna, Li 2016].

Adi Rosén (CNRS) Streaming Algorithms for Set Cover College de France, June 2018 21 /23



Conclusions

Our results [Emek, Rosén 2014]:
@ Tight results on approximation factor in 1-pass semi-streaming ((5(n)
space) of (1 — €) cover certificates.
@ Almost tight results on approximation factor in 1-pass semi-streaming
of (1 — €) covers.
@ Producing in a streaming setting a data structure, then, for given ¢,
extracting output.

Subsequent work:
o Tight tradeoffs in single pass between sub-linear (o(mn)) space and
approximation of 1-covers [Assadi, Khanna, Li 2016].
o (Almost) tight tradeoffs between number of passes and approximation
in semi-streaming (1 — €)-covers [Charkrabarti, Wirth 2016]

Adi Rosén (CNRS) Streaming Algorithms for Set Cover College de France, June 2018 21 /23



Conclusions

Our results [Emek, Rosén 2014]:
@ Tight results on approximation factor in 1-pass semi-streaming ((5(n)
space) of (1 — €) cover certificates.

@ Almost tight results on approximation factor in 1-pass semi-streaming
of (1 — €) covers.

@ Producing in a streaming setting a data structure, then, for given ¢,
extracting output.

Subsequent work:
o Tight tradeoffs in single pass between sub-linear (o(mn)) space and
approximation of 1-covers [Assadi, Khanna, Li 2016].
o (Almost) tight tradeoffs between number of passes and approximation
in semi-streaming (1 — €)-covers [Charkrabarti, Wirth 2016]
o (Almost) tight tradeoffs between number of passes and approximation

in sub-linear (o(mn)) space 1-cover. [Har-Peleg, Indyk, Mahabadi,
Vakilian 2016 ; Assadi 2017]

Adi Rosén (CNRS) Streaming Algorithms for Set Cover College de France, June 2018 21 /23



Open Problems

@ Extend results for sublinear space to (1 — €) covers.
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Open Problems

e Can we approximate the optimal (1 — €) cover ?
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Thank you

Thank You
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