Stream Graphs, Link Streams and Related Algorithmic Challenges

Matthieu Latapy, Tiphaine Viard, Clémence Magnien

http://complexnetworks.fr
latapy@complexnetworks.fr

LIP6 – CNRS and Sorbonne Université
Paris, France
interactions over time

- a, b, c, and d for 10 time units
interactions over time

- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
interactions over time

- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.
interactions over time

- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

E.g., social interactions, network traffic, money transfers, chemical reactions, etc.
interactions over time

- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

\[e.g., \text{social interactions, network traffic, money transfers, chemical reactions, etc.} \]

how to describe such data?
structure or dynamics

graph theory
network science
→ structure

signal analysis, time series → dynamics
structure and dynamics?

Graph theory
→ structure
network science
→ dynamics

time slices
→ graph sequence

Context
Approach
Basics
Degrees
Density
Paths
Further
Algorithms
structure and dynamics?

signal analysis, time series \rightarrow dynamics

graph theory
network science
\rightarrow structure

time slices
\rightarrow graph sequence

information loss
what slices?
graph sequences?
structure and dynamics

lossless but graph-oriented

+ ad-hoc properties (mostly path-related) + contact sequences + relational event models + ...
structure and dynamics

MAG / temporal graphs

TVG

lossless but graph-oriented

+ ad-hoc properties (mostly path-related) + contact sequences + relational event models + ...
what we propose
deal with the stream directly

stream graphs and link streams

wanted features: simple and intuitive, comprehensive, time-node consistent, generalizes graphs/signal
what we propose

deal with the stream directly

stream graphs and link streams

wanted features: simple and intuitive, comprehensive, time-node consistent, generalizes graphs/signal
graph-equivalent streams

stream with no dynamics:
 nodes always present,
 either always or never linked

\[a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \]

\[0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 8 \text{ time} \]

\[\iff \]

graph

\[\rightarrow \]
graph-equivalent streams

stream with no dynamics: nodes always present, either always or never linked

\[
\begin{array}{cccccc}
0 & 2 & 4 & 6 & 8 & \text{time} \\
\hline
a & \cdots & \cdots & \cdots & \cdots & \\
b & \cdots & \cdots & \cdots & \cdots & \\
c & \cdots & \cdots & \cdots & \cdots & \\
d & \cdots & \cdots & \cdots & \cdots & \\
e & \cdots & \cdots & \cdots & \cdots & \\
\end{array}
\]

\[\iff\]

graph

\[\iff\]

stream properties \quad = \quad \text{graph properties}

\[\iff\]

generalizes graph theory
our approach

very careful generalization of the most basic concepts
stream graphs and link streams
numbers of nodes and links
clusters and induced sub-streams
density and paths

building blocks for higher-level concepts

neighborhood and degrees
clustering coefficient
betweenness centrality
many others

+ ensure consistency with graph theory
+ ensure classical relations are preserved
definition of stream graphs

Graph $G = (V, E)$ with $E \subseteq V \otimes V$

$uv \in E \iff u \text{ and } v \text{ are linked}$

Stream graph $S = (T, V, W, E)$

- T: time interval, V: node set
- $W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

$(t, v) \in W \iff v \text{ is present at time } t$

$T_v = \{t, (t, v) \in W\}$

$(t, uv) \in E \iff u \text{ and } v \text{ are linked at time } t$

$T_{uv} = \{t, (t, uv) \in E\}$

$(t, uv) \in E$ requires $(t, u) \in W \text{ and } (t, v) \in W$

i.e. $T_{uv} \subseteq T_u \cap T_v$
definition of stream graphs

Graph $G = (V, E)$ with $E \subseteq V \otimes V$

$uv \in E \iff u$ and v are linked

Stream graph $S = (T, V, W, E)$

T: time interval, V: node set

$W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

$(t, v) \in W \iff v$ is present at time t

$T_v = \{t, (t, v) \in W\}$

$(t, uv) \in E \iff u$ and v are linked at time t

$T_{uv} = \{t, (t, uv) \in E\}$

$(t, uv) \in E$ requires $(t, u) \in W$ and $(t, v) \in W$

i.e. $T_{uv} \subseteq T_u \cap T_v$
definition of stream graphs

Graph $G = (V, E)$ with $E \subseteq V \otimes V$

$uv \in E \iff u$ and v are linked

Stream graph $S = (T, V, W, E)$

T: time interval, V: node set

$W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

$(t, v) \in W \iff v$ is present at time t

$T_v = \{t, (t, v) \in W\}$

$(t, uv) \in E \iff u$ and v are linked at time t

$T_{uv} = \{t, (t, uv) \in E\}$

$(t, uv) \in E$ requires $(t, u) \in W$ and $(t, v) \in W$

i.e. $T_{uv} \subseteq T_u \cap T_v$
definition of stream graphs

Graph $G = (V, E)$ with $E \subseteq V \otimes V$

$uv \in E \iff u$ and v are linked

Stream graph $S = (T, V, W, E)$

T: time interval, V: node set

$W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

$(t, v) \in W \iff v$ is present at time t

$T_v = \{t, (t, v) \in W\}$

$(t, uv) \in E \iff u$ and v are linked at time t

$T_{uv} = \{t, (t, uv) \in E\}$

$(t, uv) \in E$ requires $(t, u) \in W$ and $(t, v) \in W$

i.e. $T_{uv} \subseteq T_u \cap T_v$
definition of stream graphs

Graph $G = (V, E)$ with $E \subseteq V \otimes V$

$uv \in E \iff u$ and v are linked

Stream graph $S = (T, V, W, E)$

T: time interval, V: node set

$W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

$(t, v) \in W \iff v$ is present at time t

$T_v = \{t, (t, v) \in W\}$

$(t, uv) \in E \iff u$ and v are linked at time t

$T_{uv} = \{t, (t, uv) \in E\}$

$(t, uv) \in E$ requires $(t, u) \in W$ and $(t, v) \in W$

i.e. $T_{uv} \subseteq T_u \cap T_v$
an example

\[T = [0, 10] \quad V = \{a, b, c, d\} \]

\[W = T \times \{a\} \cup ([0, 4] \cup [5, 10]) \times \{b\} \cup [4, 9] \times \{c\} \cup [1, 3] \times \{d\} \]

\[T_a = T \quad T_b = [0, 4] \cup [5, 10] \quad T_c = [4, 9] \quad T_d = [1, 3] \]

\[E = ([1, 3] \cup [7, 8]) \times \{ab\} \cup [6, 9] \times \{bc\} \cup [2, 3] \times \{bd\} \]

\[T_{ab} = [1, 3] \cup [7, 8] \quad T_{bc} = [6, 9] \quad T_{bd} = [2, 3] \quad T_{ad} = \emptyset \]
a few remarks

works with... discrete time, continuous time, instantaneous interactions or with durations, directed, weighted, bipartite...

if $\forall v, T_v = T$ then $S \sim L = (T, V, E)$ is a link stream

if $\forall u, v, T_{uv} \in \{T, \emptyset\}$ then $S \sim G = (V, E)$ is a graph-equivalent stream
size of a stream graph

How many nodes? How many links?

|T_a| = 10 \neq |T_d| = 2
size of a stream graph

How many nodes? How many links?

\[n = \sum_{v \in V} \frac{|T_v|}{|T|} \]

\[n = \frac{|T_a|}{10} + \frac{|T_b|}{10} + \frac{|T_c|}{10} + \frac{|T_d|}{10} = 1 + 0.9 + 0.5 + 0.2 = 2.6 \text{ nodes} \]
size of a stream graph

How many nodes? How many links?

\[n = \sum_{v \in V} \frac{|T_v|}{|T|} \]

\[m = \sum_{uv \in V \otimes V} \frac{|T_{uv}|}{|T|} \]

\[n = \frac{|T_a|}{10} + \frac{|T_b|}{10} + \frac{|T_c|}{10} + \frac{|T_d|}{10} = 1 + 0.9 + 0.5 + 0.2 = 2.6 \text{ nodes} \]

\[m = \frac{|T_{ab}|}{10} + \frac{|T_{bc}|}{10} + \frac{|T_{bd}|}{10} = 0.3 + 0.3 + 0.1 = 0.7 \text{ links} \]
clusters, sub-streams

Cluster in $G = (V, E)$: a subset of V.
Cluster in $S = (T, V, W, E)$: a subset of $W \subseteq T \times V$.

\begin{align*}
C &= [0, 2] \times \{a\} \cup ([0, 2] \cup [6, 10]) \times \{b\} \cup [4, 8] \times \{c\} \\
S(C) &= \text{sub-stream induced by } C \\
S(C) &= (T, V, C, E_C)
\end{align*}

\rightarrow properties of (sub-streams induced by) clusters
clusters, sub-streams

Cluster in $G = (V, E)$: a subset of V.
Cluster in $S = (T, V, W, E)$: a subset of $W \subseteq T \times V$.

$C = [0, 2] \times \{a\} \cup ([0, 2] \cup [6, 10]) \times \{b\} \cup [4, 8] \times \{c\}$

$S(C)$ sub-stream induced by C
$S(C) = (T, V, C, E_C)$

→ properties of (sub-streams induced by) clusters
in $G = (V, E)$: $N(v) = \{u, uv \in E\}$

in $S = (T, V, W, E)$: $N(v) = \{(t, u), (t, uv) \in E\}$

$N(d) = ([2, 3] \cup [5, 10]) \times \{b\} \cup [5.5, 9] \times \{c\}$

$N(v)$ is a cluster
in G and in S:

\[d(v) \text{ is the size of } N(v) \]

\[N(d) = ([2, 3] \cup [5, 10]) \times \{b\} \cup [5.5, 9] \times \{c\} \]

\[d(d) = \frac{|[2, 3]\cup[5,10]|}{10} + \frac{|[5.5,9]|}{10} = 0.6 + 0.35 = 0.95 \]

- degree distribution, average degree, etc
- if graph-equivalent stream then graph degree
- relation with n and m
density

in G:
proba two random nodes are linked

\[
\delta(G) = \frac{\text{nb links}}{\text{nb possible links}} = \frac{2 \cdot m}{n \cdot (n-1)}
\]

in S:
proba two random nodes are linked at a random time instant

\[
\delta(S) = \frac{\text{nb links}}{\text{nb possible links}} = \frac{\sum_{uv \in V \otimes V} |T_{uv}|}{\sum_{uv \in V \otimes V} |T_u \cap T_v|}
\]
density

in G:
proba two random nodes are linked
\[\delta(G) = \frac{\text{nb links}}{\text{nb possible links}} = \frac{2 \cdot m}{n \cdot (n-1)} \]

in S:
proba two random nodes are linked at a random time instant
\[\delta(S) = \frac{\text{nb links}}{\text{nb possible links}} = \frac{\sum_{uv \in V \otimes V} |T_{uv}|}{\sum_{uv \in V \otimes V} |T_u \cap T_v|} \]

• if graph-equivalent stream then graph density
• relation with \(n, m, \) and average degree
Cliquets

in G: sub-graph of density 1
all nodes are linked together

in S: sub-stream of density 1
all nodes interact all the time
clustering coefficient

in G and in S:

density of the neighborhood

\[cc(v) = \delta(N(v)) \]

\[N(d) = ([2, 3] \cup [5, 10]) \times \{b\} \cup [5.5, 9] \times \{c\} \]
clustering coefficient

in G and in S:
density of the neighborhood

\[cc(v) = \delta(N(v)) \]

\[N(d) = ([2, 3] \cup [5, 10]) \times \{b\} \cup [5.5, 9] \times \{c\} \]

\[cc(d) = \delta(N(d)) = \frac{|[6,9]|}{|[5.5,9]|} = \frac{6}{7} \]
in G:

from a to d:
$(a, b), (b, c), (c, d)$
length: 3

→ shortest paths

in S:

from $(1, d)$ to $(9, c)$:
$(2, d, b), (3, b, a), (7.5, a, b), (8, b, c)$
length: 4
duration: 6

→ shortest paths
→ fastest paths
in G:

from a to d:
$(a, b), (b, c), (c, d)$
length: 3

→ shortest paths

in S:

from $(1, d)$ to $(9, c)$:
$(2, d, b), (3, b, a), (7.5, a, b), (8, b, c)$
length: 4
duration: 6

→ shortest paths
→ fastest paths
betweenness centrality

in G:

$$b(v) = \text{fraction of shortest paths from any } u \text{ to any } w \text{ in } V \text{ that involve } v$$

in S:

$$b(t, v) = \text{fraction of shortest fastest paths from any } (i, u) \text{ to any } (j, w) \text{ in } W \text{ that involve } (t, v)$$
betweenness centrality

in G:

$$b(v) = \text{fraction of shortest paths from any } u \text{ to any } w \text{ in } V \text{ that involve } v$$

in S:

$$b(t, v) = \text{fraction of shortest fastest paths from any } (i, u) \text{ to any } (j, w) \text{ in } W \text{ that involve } (t, v)$$
many other concepts
algorithmic concerns

extension of graph concepts...

...extension of graph algorithms?

some properties of S derive from properties of G_t

- neighborhood
- degrees
- k-cores

some don’t but algorithms may be adapted

- density
- cliques (greedy, Bron-Kerbosch)

some still don’t \Rightarrow new algorithms needed

- (directed) paths
- betweenness
- patterns
algorithmic concerns

extension of graph concepts...
...extension of graph algorithms?

some properties of S derive from properties of G_t
- neighborhood, degrees, k-cores, ...

some don’t but algorithms may be adapted
- density, cliques (greedy, Bron-Kerbosch), ...

some still don’t \Rightarrow new algorithms needed
- (directed) paths, betweenness, patterns, ...
algorithmic challenges

- **classical ones**
 - streaming/on-line
 - fully dynamic
 - approximation
 - space complexity

- **new ones**
 - cliques, paths, betweenness
 - unbounded number of links
 - prediction?

- **good news**
 - time-induced locality
 - knowledge of dynamics
 - better than induced graph?
algorithmic challenges

classical ones
streaming/on-line
fully dynamic
approximation
space complexity

new ones
cliques, paths, betweenness
unbounded number of links
prediction?

good news
time-induced locality
knowledge of dynamics
better than induced graph?
algorithmic challenges

classical ones

streaming/on-line
fully dynamic
approximation
space complexity

new ones

cliques, paths, betweenness
unbounded number of links
prediction?

good news

time-induced locality
knowledge of dynamics
better than induced graph?
we provide a language (set of concepts) that:

- makes it easy to deal with interaction traces,
- combines structure and dynamics in a consistent way,
- generalizes graphs / networks; signals / time series?
- meets classical and new algorithmic challenges,
- opens new perspectives for data analysis,
- clarifies the interplay interactions \leftrightarrow relations.

studies in progress: internet traffic, financial transactions, mobility/contacts, mailing-lists, sales, etc.
calls for papers

special issues of international journals

Theoretical Computer Science (TCS)

Link Streams: models and algorithms

Computer Networks

Link Streams: methods and case studies

deadline: July 1st

http://link-streams.com