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Forming Estimates of Future Performance

Estimating probability of a person’s future outcome via algorithm.

On-line content: engaging with content or an ad

Employment: hiring decisions

Education: admissions decisions

Criminal justice: recidivism (future crime)

FeaturesIndividual Algorithm

high probability

low probability

prediction

(1) Is the algorithm designed to focus on the right outcome?

(2) Does the algorithm have the right features for individuals?

(3) Are the algorithm’s decisions fair?



Fairness in Risk Scores

Angwin et al., ProPublica, 23 May 2016

COMPAS: An algorithm used in the U.S. criminal justice system to
predict whether criminals will re-offend.

Basic operation: assign a level of “risk” to each defendant.

ProPublica’s findings about COMPAS risk tool

African-American defendants who didn’t subsequently re-offend had
higher average scores than white defendants who didn’t re-offend.

White defendants who subsequently re-offended had lower average scores
than African-American defendants who re-offended.
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Fairness in Risk Scores
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How should we think about this concern?

First, consider alternate definition [Dieterich et al, Flores et al 2016]:

COMPAS’s scores are well-calibrated in each group.

Consider all African-American defendants assigned a score of s.

An s fraction of them go on to re-offend.

The same is true for white defendants assigned a score of s.

A score of s means the same thing regardless of race.



Fairness in Risk Scores

0.1 0.2 0.4 0.6

A concern about using an uncalibrated rule.
Suppose hospitals hire doctors using a score that is not calibrated with
respect to gender.

Simple example: hire the candidates with the highest score s∗.

Suppose female doctors with score s∗ are more likely to be good doctors
than male doctors with same s∗. (Failure of calibration.)

Then: as a patient, it would be rational to choose your doctor (at least in
part) based on their gender.

Criminal risk scores: we have calibration, but ProPublica’s
objections still remained. Could we achieve all the desired
properties at once?



A Model of Risk Scores

score vb

bin b
individual:

positive or negative
group A or B

feature 
vector

Basic model for assigning scores as probability estimates.

Individuals are either positive or negative (exhibit the behavior or not).

Each individual belongs to group A or B.

Each individual has a set of features, with the data we have access to.

A risk score is a function mapping individuals to discrete “bins,” where
everyone in bin b is assigned a score of vb.



A Model of Risk Scores

score vb

bin b
individual:

positive or negative
group A or B

feature 
vector

Desired properties:

Calibration within groups: For each group, a vb fraction of people in bin b
are positive.

Balance for the positive class: Average score of positive members in
group A equals average score of positive members in group B.

Balance for the negative class: Average score of negative members in
group A equals average score of negative members in group B.



When are the Properties Achievable?

Can achieve all three properties in two simple cases.

Perfect prediction: for each feature set, either everyone is in the negative
class or everyone is in the positive class.
(Then we can assign scores of 0 or 1 to everyone.)

Equal base rates: the groups have the same fraction of positive instances.
(Then there’s a trivial risk score equal to this base rate for everyone.)

Theorem [Kleinberg-Mullainathan-Raghavan 2016]: In any instance
of risk score assignment where all three properties can be achieved,
we must have either perfect prediction or equal base rates.

Notes:

Not a theorem about computational power or inference power.
It’s a more basic limitation on assigning estimates to equalize averages.

As such it applies to any decision procedure — algorithmic or human.
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Concurrent Work on Related Themes

Theorem [K-M-R 2016]: In any instance of risk score assignment where all
three properties can be achieved, we must have either perfect prediction or
equal base rates.

Chouldechova 2016 and CorbettDavies-Pierson-Feller-Goel 2016

Classification using just “yes”/“no” rather than probability.

Hardt-Price-Srebro 2016

Equalize false positive and false negatives, without calibration.

Pleiss-Raghavan-Wu-Kleinberg-Weinberger 2017

Can achieve calibration together with any one linear function of scores on
positive and negative classes, but not two in general.
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Proof Sketch
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Let Nt be the number of people in group t.
Let kt be the number of people in the positive class in group t.

The calibration condition implies:

The total score of all group-t people in bin b equals
the expected number of group-t people in the positive class in bin b.

Summing over all bins:

The total score of all group-t people equals
the expected number of group-t people in the positive class.



Proof Sketch

Let Nt be the number of people in group t.
Let kt be the number of people in the positive class in group t.

(By calibration, kt is also the total score in group t.)

Let x be the average score of a person in the negative class.
Let y be the average score of a person in the positive class.

(Note: independent of which group t we’re talking about.)

Total score in group t is

(Nt − kt)x + kty = kt .

Rearranging:

x = (1 − y)
kt

Nt − kt
.



Can We Achieve Approximate Guarantees?

Approximate versions of our properties:

Calibration within groups: For each group, approx. vb fraction of people
in bin b are positive.

Balance for the positive class: Average score of positive members in
group A is approx. average score of positive members in group B.

Balance for the negative class: Average score of negative members in
group A is approx. average score of negative members in group B.

Theorem [Kleinberg-Mullainathan-Raghavan 2016]: In any instance
where all three properties can be approximately achieved,
we must have either approximately perfect prediction or
approximately equal base rates.

Approximate versions of the conditions only hold in approximate versions
of the two structured special cases.



The Case of Equal Base Rates
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If both groups have the same base rate p

Can always create a single bin for each group with score p.

Is there a non-trivial risk score assignment,
where not every individual gets a score of p?

Computationally hard for deterministic assignments, where everyone with
the same feature set x must go to the same bin.



Reflections
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Inherent trade-offs between natural definitions of fairness.

Many contexts in which we take complex data about individuals and
rank them using a rule for assigning scores.

May care about an objective formulated for a set, not an individual
(e.g. if we are evaluating the diversity of the set [Page 2008])

Finding the right score can be crucial [Kleinberg-Raghu 2015]



Second Theme: Objectives over Sets, not Individuals

Cases — for example in hiring or school admissions — where we may care
about the set we choose, not just individuals.

Example 1: Diversity in admissions [Page 2008]

Example 2: Evaluating full portfolio of loans, rather than one at a time.

Example 3: Selecting a team to maximize its performance
[Kleinberg-Raghu 2015]

Using individual scores to achieve a group objective is challenging
[Hong-Page 2004].



T U

Given a set of n applicants, we want to choose a set T
consisting of k of them.

Future performance of each applicant i described by a random variable Xi .
(Assume independence.)

We give each applicant i a standardized test f , producing
a numerical score f (Xi ).

We select the k individuals with the highest test scores.

How good is the set T we select? It depends on:

How we evaluate sets.

How we define the test f .



Selecting for Maximum Performance

T U

If the objective is the sum of expected individual performance:

The standardized test for i should measure expected value of Xi .

Choosing the k people with the highest test scores optimizes this
objective.



Selecting for Maximum Performance

“Contest” objective:
the expected maximum of
the k random variables.

E.g. we’re scored by the
best individual performance. T U

Example:

1000 candidates each produce value 500 with probability .001.
1000 candidates produce value 1 with probability 1.

A test that evaluates the expectation chooses all the latter
candidates; objective function is 1.

If you choose all the former candidates, one of them achieves
value 500 with probability approximately 40%.

So if we choose these candidates, we get ≈ (.40) · 500 = 200.



Selecting for Maximum Performance

Is this the end; do tests not work for
this problem?

We just need a better test.

T U

Test score of i is: the expected maximum of k independent draws
from i ’s performance Xi .

Theorem [Kleinberg-Raghu 2015]: Selecting the top k people according
to this test produces performance that is approximately optimal.

Essentially, the test is evaluating i on “potential”:
what’s the expected best-case outcome if we choose i?

Sometimes the problem is just that you’re using the wrong test.

Other performance measures where we can prove no test can yield
near-optimal sets.
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