High concentration of atmospheric 13C during the Younger Dryas cold episode

Tomasz Goslar*, Maurice Arnold†, Edouard Bard‡, Tadeusz Kuc‡, Mieczysław F. Pazdur§, Magdalena Ralska-Jasiewiczowa*, Kazimierz Różański*, Nadine Tisserat†, Adam Walanus*, Bogumił Wicik* & Kazimierz Więckowski**

* Radiocarbon Laboratory, Institute of Physics, Silesian Technical University, Krzysztofowice 2, 44-100 Gliwice, Poland
† Centre des Faiblesses Radioactivités, CNRS-CEA, 91198 Gif-sur-Yvette, France
‡ CEREGE, Université d’Aix Marseille III, FU CNRS 17, Europole de l’Arbois BP80, 13545 Aix-en-Provence Cedex 4, France
§ Faculty of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Mickiewicza 30, 30-047 Kraków, Poland
¶ Szafer Institute of Botany, Lublesc 46, 31-512 Kraków, Poland
| Isotope Hydrology Section, International Atomic Energy Agency, A-1400 Vienna, Austria
** Institute of Geography, Warsaw University, 02-110 Warszawa, Poland

The various reservoirs of the global carbon cycle, with their very different residence times, are linked by a complex and evolving system of exchanges for which natural radiocarbon is the most robust tracer. Any change in the sizes of these reservoirs, or the exchange rates between them, could perturb the 13C/12C ratio of each other reservoir, and the smallest of them—the atmosphere—would be the most sensitive. In particular, high-resolution reconstructions of past atmospheric 13C/12C ratios may provide important clues to the mechanisms of abrupt climate changes. Annually

© 1995 Nature Publishing Group
Because of natural variations in atmospheric 14C concentration, the calibration curve showing the relationship between radiocarbon and calendar age is not linear. One of its most prominent features is the plateau at the radiocarbon age of \sim10,000 14C yr BP (ref. 2), being also the generally accepted date of the Pleistocene/Holocene or Younger Dryas/Preboreal boundary. It complicates an absolute dating and synchronization of that boundary between different sites when the timescale is reconstructed by radiocarbon dates. But even for the best absolute chronologies currently available (central Greenland ice cores and German tree-ring series), a significant discrepancy exists between estimates of the age of the boundary 4,6. This discrepancy can be interpreted either as a real delay in climate warming in Europe with respect to the North Atlantic or as a result of an as yet undetected error in counting annual ice layers and/or an incorrect match between German pine and oak chronologies 7. Another possibility of synchronization of that boundary is given by direct comparison of its position with respect to the worldwide synchronous 14C plateau. This cannot be done in ice cores, but is possible in varved lacustrine sediments.

The archive analysed was the sediment of Lake Gościąg in central Poland 8. The lake (52° 30’N, 19° 20’E) contains two basins (24.6 m and 12.5 m), separated by a shallowing to \sim6 m. The sediment is annually laminated, consisting of layers dominated by authigenic calcite and deposited during summer months, and layers rich in organic matter, deposited in the autumn/winter seasons. The varve-to-varve correlation of cores from both basins enabled the construction of continuous chronology containing 9,662 \pm 90 varves for the lower part of the sediment. Because of the poor quality of the lamination in the upper part, this chronology is considered floating.

The abrupt climate changes at the Late Glacial/Holocene transition left a distinct signature in the sediments of Gościąg Lake (Fig. 1). The fluctuations in δ^{18}O isotope composition of authigenic carbonates deposited in the lake coincide with major changes in the vegetation cover in the area 7. The Gościąg δ^{18}O record (δ^{18}O is defined in Fig. 1 legend) closely resembles those observed in GRIP and GISP2 ice cores from central Greenland 11 (compare Figs. 1 and 3). The Younger Dryas/Preboreal transition in the Gościąg sediments is marked by \sim2% increase in δ^{18}O completed in \sim70 years. Whereas a significant part of δ^{18}O change in ice cores is probably related to changes in sources of moisture over central Greenland 9, the prevailing influence of the westerly circulation maintained over the Europe during the glacial period 10 makes the interpretation of our δ^{18}O record meaningful in terms of temperature change.

The accelerator mass spectrometry radiocarbon dating was done using plant macrofossils of terrestrial origin. The suite of dates (Fig. 2) enabled synchronization of the Lake Gościąg chronology with the German oak (younger) and German pine (older) chronologies 12, using the 'wiggle-matching' procedure 13. Matching the set of youngest Gościąg samples to German oak chronology, we date the Younger Dryas/Preboreal boundary to 11,440 \pm 120 BP. This, within the indicated error, is consistent in central Europe was synchronous with that recorded in Greenland ice cores (11,550 \pm 90 BP, ref. 5; 11,640 \pm 250 BP, ref. 11).

The early Holocene dates of analysed macrofossils (Fig. 2) clearly show a shift of Lake Gościąg varve chronology with respect to that of German pines. The wiggle-match of Gościąg to pine 14C dates is excellent, enabling precise synchronization of both chronologies. The 14C ages of two plateaux shown by our data agree very well with that reconstructed in high-precision dendrochronology, indicating that systematic errors in dating and/or problems related to redbedding and contamination of Gościąg macrofossils are negligible. But the synchronization requires either a 'compression' of Lake Gościąg varve chronology or the revision of the tentative dendro-match between German oak and pine chronologies. The rejection of 200 varves from the 800-year sequence between 9,700 and 10,500 BP seems unlikely because the chronology is replicated in several cores from two separate lake basins. The revision of the dendro-match, on the other hand, would expand the plateau of 8,900 14C yr BP to \sim600 years. In fact, such a long plateau is suggested by data from Soppensee 14, where five dates of 8,900-9,000 14C yr BP occur in a time span of 700 years.

Independently of the absolute age, we can determine the position of the Younger Dryas/Preboreal boundary at the 10,000 14C yr BP plateau. The warming in Poland, as abrupt as in Greenland (Fig. 3), began about 250 years before the end of the plateau. On the other hand, the boundary in German pines, defined as the beginning of slow rises of δ^{13}C and $\delta^{2}D$ in wood cellulose 13, coincides with the end of the plateau. There is no doubt that the changes of isotopic composition in German wood started \sim200 years after the main δ^{18}O increase in Lake Gościąg, during a period of distinct development of elm trees in Poland, that is, after the Younger Dryas period. Because both regions are situated only 1,000 km apart, exposed to the prevailing westerly circulation, it is very unlikely that the major warming began 200 years earlier in the region further east. Moreover, the increase in δ^{13}C and $\delta^{2}D$ in trees continued for \sim500 years, contrary to a very fast change observed in both Gościąg and ice core δ^{18}O data. We therefore conclude that the increase of δ^{13}C and $\delta^{2}D$ in German pines is delayed somewhat and transformed with respect to the abrupt climate warming at the beginning of the Holocene.

The profiles of δ^{13}C and $\delta^{2}D$ were derived from pine trunks excavated from Danube valley deposits 14. Major warming at the

FIG. 2 AMS radiocarbon dates of terrestrial macrofossils extracted from the Lake Gościąg sediments, superimposed on the radiocarbon calibration data. The ages of terrestrial macrofossils are free of hard water or reservoir effect. To obtain enough material for dating (~1 mg), the macrofossils were collected from five precisely correlated cores. Apart from typical short-living macrofossils widely used in dating lake sediments (birch nuts, birch fruit scales, bud scales and willow leaves), fragments of pine peridermis were collected. The suitability of peridermis fragments for dating sediments was checked by separate dating of peridermis and background sediments. The ages of dated varves are based on the calendar timescale of dated pairs of dated varves and peridermis is satisfactory. Circles, Lake Gościąg macrofossils; triangles, Barbados corals 15, crosses, Huon Peninsula corals 16, heavy and light broken lines, german pines in original position, and shifted by 200 years, respectively. The calendar timescale of Gościąg points (±120 years) is based on a 14C wiggle-match to German pines. The smooth curve is a cubic spline fitted to the Gościąg dates. The two samples indicated by question marks were probably contaminated.
Younger Dryas/Preboreal boundary must have lead to a marked influx of isotopically depleted water from the melting of Alpine glaciers to the Danube river and its flood plains. Even today, the Danube river is depleted in deuterium by about 10–15% during summer, owing to meltwater from the Alps (D. Rink, personal communication). As the δD of wood cellulose is mainly controlled by isotopic composition of environmental water\(^6\), the apparent 200-year delay of the analysed pines in response to an improving climate could result from enhanced contribution of isotopically depleted meltwater. The subsequent gradual increase of δD may then reflect a diminishing contribution of this source, when compared with local precipitation. The delay of δ\(^13\)C of wood cellulose to major warming is not well understood, but it might result from a combination of the effects of increased water supply and the biological response to increased temperature.

In the late Allerød and Younger Dryas, the radiocarbon dates of Gościąż macrofossils (Fig. 2) generally confirm the U/Th calibration\(^4\;14\), showing a plateau at 10,400 \(^14\)C yr bp and a rapid decline of \(^13\)C age at the beginning of the Younger Dryas. The wiggles of the radiocarbon calibration curve reflect the changes of \(^13\)C concentration in the atmosphere. Our data (Fig. 4c) confirm the large increase of \(^14\)C at the onset of the Younger Dryas, by 40–70% within 300 years. (\(^14\)C is defined in Fig. 4 legend.) This increase, demonstrated by four data points determined in three independent laboratories on two completely different types of material, would then be the largest known in the Late Glacial and Holocene records of atmospheric \(^14\)C concentration. On the other hand, the decrease in \(^13\)C by 50–70% at the Younger Dryas/Preboreal boundary, is the largest and most rapid of declines occurring regularly between 12.3 and 9.8 kyr bp. The striking coincidence in distinct climate and radiocarbon variations suggests the involvement of some common causes.

Among possible causes of atmospheric \(^14\)C variations are the changes of production rate of \(^14\)C and reorganizations in the global carbon cycle. It is commonly accepted that the medium-term variations are connected with changing solar activity, whereas the secular \(^14\)C trend in the Holocene reflects changes in the geomagnetic field\(^7\). The past geomagnetic variations have been reconstructed with a relatively good time resolution\(^8\). We used these data to simulate variations of atmospheric \(^14\)C concentration. We ran simple box models\(^9,\;20\) with all parameters kept constant except for \(^14\)C production rate, dependent on magnetic field according to Lal\(^1\). The results given by different models were very similar. In Fig. 4b we present the residuals between the smoothed curve of the observed \(^14\)C and averages of those calculated from geographically induced production rates.

The results of the calculations are sensitive to the choice of initial conditions and the model adjustment of the absolute value of \(^14\)C production. In the original adjustment, the \(^14\)C production rate corresponding to the current geomagnetic field maintains the steady-state \(^13\)C = 0% in the preindustrial atmosphere. The simulated curve that best fits the early Holocene data was obtained with an initial steady state of \(^13\)C = 230% and a production rate systematically lowered by 5%. Consequently the variability in geomagnetic field is then a good candidate for explaining the long-term \(^13\)C decrease. In contrast, because of the buffering effect of the ocean, the concentration of atmospheric radiocarbon is not sensitive to hypothetical short-term variations of dipole moment in the range allowed by uncertainties in palaeomagnetic reconstructions. Moreover, the presence of an undetected magnetic anomaly concomitant with a major climate change seems very unlikely. We thus conclude that the geomagnetic Late Glacial/Early Holocene rapid shifts of atmospheric \(^13\)C cannot be explained only by changes of the Earth’s magnetic field.

The other mechanism might be changes in solar activity, although there is no direct evidence of this. But the regular change of value of 180 220-year-wide \(^13\)C maxima over the Holocene indicates that they could be induced by solar events similar to those responsible for the Spörer and Maunder minima\(^17\). Therefore, unless contradictory evidence is shown, we can only assume that the Late Glacial solar-wind-induced \(^14\)C variations were similar to those observed in the Holocene. Although the amplitude of observed \(^13\)C variations during the Late Glacial is similar, the duration (1000–2500 years) is distinctly larger than those attributed to the Sun in the Holocene\(^12\).

The general property of the global carbon cycle is that nearly all radiocarbon, which is produced in the atmosphere, decays in the deep ocean. For that reason, the concentration of radiocarbon in atmosphere depends on the size of the atmospheric reservoir and the rate of carbon exchange with the ocean. The large increase in atmospheric CO\(_2\) concentration by 80 p.p.m. between 17 and 10 kyr bp is well documented\(^21\), a change that might decrease the \(^13\)C by 25–75% (refs 24, 25). The rise in CO\(_2\) concentration could then explain the 20% decrease between the mean pre-Younger Dryas and Holocene \(^13\)C residuals (Fig. 4b), but it is too slow to be responsible for the \(^13\)C maximum within the Younger Dryas.

It is also accepted\(^27\) that the winds were stronger in glacial time and the Younger Dryas\(^28\), and the enhanced rate of carbon exchange at the atmosphere-ocean interface\(^27\) could decrease \(^13\)C by 20%. But that mechanism works in the opposite direction and cannot explain the observed \(^13\)C variations.

The last possible mechanism is the exchange with the deep oceans. This is especially important because a significant part of total gas exchange is related to the formation of North Atlantic

![Figure 3](https://example.com/figure3.png)
Deep Water (NADW), and switching NADW formation on and off would be a plausible mechanism of abrupt climate changes\(^\text{27}\). Many palaeoceanographic reconstructions\(^\text{28-30}\) give firm evidence for decreased NADW formation during both the Younger Dryas and the Late Glacial Maximum (LGM). That point has been challenged by two recent studies of benthic \(\Delta^{14}C\) (refs 32, 33). One hypothesis to explain the discrepancies relies on a shutdown of NADW transport to the deep ocean, but with transport to intermediate depths persisting during the LGM and the Younger Dryas\(^\text{34}\). The earlier \(\Delta^{14}C\) dating of contemporaneous benthic and planktonic foraminifera suggested that the overall ventilation of the deep oceans at the LGM was much weaker than today\(^\text{35}\). More recent data\(^\text{36}\) suggest that the age of NADW during the LGM was twice as great as it is today, but the age of Pacific deep water was greater only by \(70\pm 105\) years. To simulate the corresponding change in atmospheric \(\Delta^{14}C\) we used the standard PANDORA\(^\text{31}\) and a 13-box model\(^\text{35}\). By reducing the NADW flux by a factor of three and slightly increasing the circulation in the Indo-Pacific, the Pacific Atlantic becomes twice as old, the age of the deep Pacific increases by 150 years, and the atmospheric \(\Delta^{14}C\) increases by about 30\%, in reasonable agreement with the observed amplitude of atmospheric \(\Delta^{14}C\) changes at the boundaries of the Younger Dryas (Fig. 4b). A very similar \(\Delta^{14}C\) wiggle (35\%) is obtained when the NADW flux is simply halved.

The \(\Delta^{14}C\) record within the Younger Dryas, suggests that the lowest oceanic ventilation is in the earlier part of the Younger Dryas. This seems to be consistent with the amelioration of climate in the second half of the Younger Dryas, reconstructed in Lake Gościąż sediment\(^\text{17}\) and other regions in Europe\(^\text{37}\). The rapid increase in atmospheric \(\Delta^{14}C\) requires a decrease in deep-ocean ventilation in the early stage of the Younger Dryas that is significantly larger than the two-fold decrease in NADW flux alone. Unfortunately, available benthic/planktonic data are too scarce to reconstruct directly the magnitude of ventilation change in the Younger Dryas and, for the moment, cannot give a clear view of what actually occurred in the ocean during that period.

Recently it has been pointed out\(^\text{38}\) that the possibility that the thermohaline circulation was shut down during the Younger Dryas, though tempting, could be eliminated by studying atmospheric \(\Delta^{14}C\)/\(\Delta^{18}O\) ratios. The abnormally high \(\Delta^{18}O\) levels during the Younger Dryas shown by our results do not contradict the hypothesis that the thermohaline circulation decreased during the Younger Dryas.