Geochemical and geophysical implications of the radiocarbon calibration

EDOUARD BARDE
CEREGE, Université Aix-Marseille III and CNRS, Institut Universitaire de France,
Europole de l’Arbois, 13545, Aix-en-Provence cedex 4, France

Abstract—A precise and accurate chronological framework is crucial to study the dynamics of a variety of phenomena which occurred during the last 45,000 years. Although the 14C dating method has been widely applied since the 1950s, it is recognized that the atmospheric 14C/12C ratio has not been stable during the past. In order to calculate accurate ages, these fluctuations have to be corrected by means of a calibration curve obtained by comparing raw 14C measurements with true calendar ages provided by independent dating methods.

The calibration curve obtained so far is characterized by a long-term trend with raw 14C ages being significantly younger than calendar ages during most of the last 45,000 years. Abrupt 14C shifts, which occurred over centuries to millennia, are superimposed on this long-term trend of decreasing atmospheric 14C/12C ratio. To a certain extent, it is possible to outline the different causes of atmospheric 14C variations by considering complementary information obtained from other cosmogenic nuclides studied at different latitudes: (1) Most high-frequency changes in the atmospheric 14C/12C ratio are linked to magnetic fluctuations of solar origin as revealed by studying the last three centuries for which direct observations of the Sun are available. A similar conclusion is derived by comparing 14C/12C events with 10Be and 36Cl concentration maxima in polar ice cores. (2) The long-term trend shift of 14C ages is due to a long period of decreased shielding effect of the geomagnetic dipole field which occurred over the interval between 10,000 and 40,000 years BP. This interpretation is supported by paleomagnetic measurements performed on volcanic and sedimentary rocks and by 10Be and 36Cl analysed in low and high latitude records. (3) A prominent and rapid atmospheric 14C/12C excursion occurred between 13,000 and 11,500 cal-yr-ap, thus corresponding to the Younger Dryas cold period. By contrast with the 14C variability mentioned above, which is linked to 14C production changes, this so-called 14C age plateau is probably due to an abrupt variation in the rates of exchange within the global carbon cycle. This interpretation is supported by independent geochemical proxies and by numerical modelling of the carbon cycle.

1. INTRODUCTION

The radiocarbon dating method, for which Willard Libby obtained the Nobel Prize for Chemistry in 1960, is based on the beta decay of 14C atoms originally produced in the upper atmosphere by secondary neutrons generated by cosmic-ray protons (Libby, 1952).

This method has been widely used to date samples up to 45,000 years old and has provided a precise chronological framework for several scientific fields. For example, the 14C method has been crucial in prehistoric archeology for studying the spread and development of populations during the paleolithic and neolithic periods. In geophysics, the 14C method is important in establishing recurrence times of earthquakes or volcanic eruptions.

The field of paleoclimatology clearly illustrates the importance of the 14C method and the need for both precision and accuracy. Indeed, rapid climatic changes are studied in different types of records spread over different latitudes and in different compartments of the ocean-atmosphere-biosphere system. The accuracy of 14C dating is also crucial in evaluating the correlation between climatic events and variations in the Earth’s orbital parameters calculated by astronomers.

Unlike most other radiochronological methods (U-Th, Rb-Sr, Sm-Nd, K-Ar, Lu-Hf, Re-Os, etc.), it is unfortunately not possible to measure the ratio between the parent isotope, 14C, and its daughter product, radiogenic 14N, which is undistinguishable from common nitrogen. The 14C method is nonetheless accurate, but the initial 14C/12C ratio of the sample has to be known in order to calculate a true calendar age. Most samples dated by 14C have extracted their carbon directly from the atmosphere (e.g., plant remains) or indirectly through the food chain (e.g., animal remains). The calibration problem thus consists of evaluating the past variations of the atmospheric 14C/12C ratio which is very sensitive to production changes and, to a lesser degree, to rearrangements within the global carbon cycle.

2. MATERIALS AND METHODS

Several ways have been devised to reconstruct past fluctuations of the atmospheric 14C/12C ratio by comparing 14C mea-
measurements with true ages measured in the same samples using an independent dating technique (Fig. 1a,b). For the Holocene period (ca. the last 10,000 yr) it has been possible to find abundant fossil pines and oaks and thus produce a high-resolution atmospheric 14C/12C curve by comparing 14C levels and tree ring counts on the same tree logs (Stuiver et al., 1986; Kromer and Becker, 1993; Kromer and Spurk, 1998). Unfortunately, it has not been possible to pursue this so-called dendrocalibration much further because of the scarcity of

![Figure 1a](image1.png)

Fig. 1. (a) AMS-14C ages plotted vs. TIMS-230Th ages obtained on corals. Statistical errors for coral ages are quoted at the 2σ level. Open dots represent the data from Barbados, black dots the data from Tahiti, the four youngest black squares the data from Mururoa (Bard et al., 1990, 1993, 1996, and 1998) and open triangles and the oldest black square the data from New Guinea (Edwards et al., 1993). The thin wiggly curve is the smoothed tree-ring calibration and the dashed line is the 1:1 correlation line. For ages beyond the Younger-Dryas/Preboreal boundary (10,000 14C-yr- BP) the coral data can be approximated by a simple linear equation: $[\text{Age cal-yr- BP}] = 1.168 \times [\text{Age } ^{14}\text{C-yr- BP}]$, or even better by a second order polynomial: $[\text{Age cal-yr- BP}] = -3.0126 \times 10^{-6} \times [\text{Age } ^{14}\text{C-yr- BP}]^2 + 1.2896 \times [\text{Age } ^{14}\text{C-yr- BP}] - 1005$. (b) Detail of Fig. 1a: AMS-14C ages plotted vs. TIMS-230Th ages obtained on corals.

![Figure 1b](image2.png)

![Figure 2](image3.png)

Fig. 2. Atmospheric Δ^{14}C vs. time as calculated by using the AMS-14C ages vs. TIMS-230Th comparison (Fig. 1). Statistical errors for coral data are quoted at the 2σ level. Open dots represent the data from Barbados, black dots the data from Tahiti, black squares the data from Mururoa (Bard et al., 1990, 1993, 1996 and 1998) and open triangles the data from New Guinea (Edwards et al., 1993).

![Figure 3](image4.png)

Fig. 3. 14C production rates calculated as a function of geomagnetic latitude and for different values of the solar modulation parameter φ (after Lal, 1988). Note that typical solar-minimum and -maximum φ values are 300 and 900, respectively, and that 450 is the average effective value during a typical 11-yr solar cycle. 10Be production rates can be approximated by dividing all 14C values by a constant factor of 70 which corresponds to the ratio of 14C (Lal, 1988) and 10Be global productions (Monaghan et al., 1985).
trees during the late Pleistocene which was characterized by an extreme glacial climate. Other types of records have thus been used to continue the calibration effort: annually laminated sediments (Goslar et al., 1995; Hughen et al., 1998; Kitagawa and van der Plicht, 1998) and shallow corals from tropical islands which can be cross-dated by high-precision 14C and 230Th/234U dating by means of mass spectrometric techniques (Bard et al., 1990a, 1993, 1996, 1998; Edwards et al., 1993).

The use of corals has been boosted by the development of mass spectrometric techniques which enable the dating of much smaller samples and which yield better precisions than traditional techniques of radioactivity counting (beta for 14C and alpha for 230Th/234U). Accelerator mass spectrometry was developed in the 1970s to determine 14C/12C ratios in natural samples ranging between 10^{21} and 10^{25} (Nelson et al., 1977; Bennett et al., 1977). Since the 1980s, this revolutionary technique has been used to date milligram-sized carbon samples, thus allowing thorough screening and cleaning of biogenic carbonates (Andree et al., 1984; Broecker et al., 1984; Dup...
lessy et al., 1986; Bard et al., 1987). The same principle, counting atoms instead of waiting for them to decay, was applied in the 1980s for the development of 234U/230Th dating by thermal ionization mass spectrometry (Edwards et al., 1987). Modern mass spectrometers equipped with ion-counting detectors make it possible to obtain $\pm 20 - 60$ years for 230Th ages ranging from 8,000 to 14,000 yr BP (Edwards et al., 1993; Bard et al., 1996; BP stands for before present, present being taken as the year 1950).

Altogether, the different calibration methods led to the reconstruction of significant variations of the atmospheric 14C/12C ratio through time usually expressed as a deviation from the present day ratio: i.e., Δ^{14}C in terms of ‰ (Broecker and Olson, 1961; Stuiver and Polach, 1977). Figure 2 compiles the updated tree-ring data (Kromer and Spurk, 1998) and coral data from Barbados, Mururoa, Tahiti (Bard et al., 1993, 1996, 1998), and New-Guinea (Edwards et al., 1993). This Δ^{14}C record indicates clearly that the atmospheric Δ^{14}C was about 400–500‰ higher between about 20,000 and 30,000 yr BP and that it essentially decreased between 18,000 and 3000 yr BP. As shown by high-resolution studies based on 14C in tree rings, there are also numerous high-frequency peaks, with durations of the order of a few centuries, which are superimposed on the long-term decreasing trend.

Fig. 8. Geomagnetic intensity and cosmogenic nuclide production during the last 40,000 cal-yr BP. Thin curves are associated with the left-hand y-axis and represent the intensity of Earth’s magnetic dipole (M) normalized to the present-day value (M^0). The thin grey curve is a fit through data measured on volcanic rocks and compiled by McElhinny and Senanayake (1982). The thin black curve shows the compilation by Gruyodo and Valet (1996) which is based on relative geomagnetic intensities measured in marine sediments from all oceanic basins. Thick curves are associated with the right-hand y-axis and represent the global cosmogenic production (P) normalized to the present-day value (P^0). The thick grey and black curves are inferred from the two paleomagnetic time-series (thin grey and black curves, respectively) and theoretical calculations by Lal (1988) shown in Fig. 9. The grey curve with open dots shows the global 10Be flux during the past 40,000 yr compiled recently by Frank et al. (1997). This record is in good agreement with the theoretical predictions based on both paleomagnetic records.
the atmospheric 12CO$_2$ pool which is connected to larger reservoirs of the carbon cycle such as the biosphere and bicarbonate dissolved in the oceans. Atmospheric 14C thus follows the average global production, but short-term variations are strongly damped by the carbon cycle. The use of a mathematical model is required to quantify this inherent bias (Craig, 1956; deVries, 1958; Oeschger et al., 1975; Siegenthaler et al., 1980).

The relative fluctuations of 10Be concentrations measured in the South Pole ice record were recently used as an input to a twelve-box numerical model to convert the data into a synthetic Δ^{14}C record (Bard et al., 1997). On Fig. 4, the modelled curve is compared with the decadal 14C data measured in tree rings. It is easy to identify periods of maximum Δ^{14}C which correspond to solar activity minima centred at about 120 yr BP (Dalton), 260 yr BP (Maunder), 450 yr BP (Spörer), 630 yr BP (Wolf), 890 and 1040 yr BP. Cross correlation calculations suggest that there is no significant lag between the 10Be-based Δ^{14}C and the measured tree-ring Δ^{14}C records. This study confirms the dominance of solar modulation on the variations of cosmoneucleide production over the last millenium.

Similar analyses of the tree-ring Δ^{14}C and Greenland ice 10Be and 36Cl records were performed for the last 5,000 years (Beer et al., 1988; Finkel and Nishizumi, 1996). As illustrated on Fig. 5, these studies revealed that the Sun has spent roughly a third of its recent history in magnetic minima that are equivalent to the Maunder minimum. Statistical analyses by astronomers (Baliunas and Jastrow, 1990; Lockwood et al., 1992) suggest that this is indeed a typical behaviour for solar-type stars (Fig. 6).

The concomitant variations of the 14C, 10Be, and 36Cl productions could ultimately be used as proxies for the solar irradiance provided that astrophysicists and solar dynamicists improve their knowledge of the relationship between star brightness and magnetic activity (Zhang et al., 1994). Furthermore, 14C, 10Be, and 36Cl data may provide additional climatic information if a direct link between cosmic rays, water vapour condensation, and cloud cover is confirmed (Tinsley, 1994; Svensmark and Friis-Christensen, 1997).

3.2. The Long-Term Trend between 30,000 and 3000 cal-yr-B

By contrast, the long-term 400–500‰ decrease in the atmospheric Δ^{14}C ratio cannot be explained by magnetic fluctuations of the Sun. One major argument for this conclusion comes from the variations observed for 10Be and 36Cl measured in records spread over different latitudes. Due to its orientation (see Fig. 7), the geomagnetic field acts as a shield against primary cosmic-ray protons mainly at low and mid latitudes (Fig. 3). 14C, being rapidly mixed in the atmospheric CO$_2$ reservoir, looses its latitudinal dependance. This is not the case for 10Be and 36Cl, which are mainly modulated between 60°S and 60°N.

A broad picture tends to emerge from several studies of 10Be and 36Cl fluxes in polar ice and other records: a long-term decrease during the last 30,000 yr is present in low and mid latitudes 10Be and 36Cl records (Lao et al., 1992; Frank et al., 1997; Plummer et al., 1997) but, by contrast, this is essentially absent in polar profiles (Raisbeck et al., 1992; Yiou et al., 1998; Finkel and Nishizumi, 1996, 1998). These observations strongly suggest that the long-term decrease of cosmoneucleide production is a response to a slow change of the global geomagnetic dipole.

![Fig. 9. Global 14C production as a function of the intensity of Earth’s magnetic dipole (data from Lal, 1988; the present day production is 2.72 14C atoms.cm$^{-2}$.s$^{-1}$). Note that the shielding effect levels off at low values below 20% of the present geomagnetic dipole. Above this threshold, the log of the 14C production is negatively correlated to the log of M/M° with a slope of about –0.5. This corresponds to the simple formula $P/P° = (M/M°)^{-1/2}$ derived by Elsasser et al. (1956).](image-url)
Paleomagneticians have been able independently to reconstruct past variations of the geodynamo strength by studying volcanic rocks, lacustrine and marine sediments (McElhinny and Senanayake, 1982; Tric et al., 1992; Thouveny et al., 1993; Tauxe, 1993). As compiled recently by Guyodo and Valet (1996) the deep-sea sediment record is mainly characterized by a twofold increase of the geomagnetic field during the period between 30,000 and 5000 yr BP (Fig. 8). By using calculations of Lal (1988; Fig. 9), these paleomagnetic records can then be used to make theoretical predictions of cosmonuclide production through time which must have been significantly enhanced during periods of weak magnetic shielding. In order to make a comparison with the \(^{14}C \) data, it is again necessary to take into account the secondary effect of \(^{14}C\) mixing within the global carbon cycle which slightly smooths fast changes and introduces a delay and a memory effect into the system. The resulting \(^{14}C \) records (Fig. 10) suggest that a significant part of the 400–500‰ decrease based on corals data can be accounted for by an increase of the geomagnetic field.

The global \(^{10}Be\) flux record compiled from marine sediments by Frank et al. (1997) is in very good agreement with the theoretical predictions based on the paleomagnetic variations (Fig. 8). Comparing this \(^{10}Be\) record with the \(^{14}C \) data reinforces the conclusion that the long-term decrease of the atmospheric \(^{14}C \) is due to a long-term increase of the geomagnetic field (Fig. 10).

Between 20,000 and 30,000 yr BP, it seems that the atmospheric \(^{14}C \) data measured on corals are slightly higher than the model results based on the paleomagnetic and \(^{10}Be\) records. Nevertheless, these modelled curves are not yet precise enough to really be sure that the difference is significant (see uncertainties on Fig. 10). In addition, the paleomagnetic intensity and \(^{10}Be\) flux records could suffer from natural smoothing due to several causes such as the stacking procedure, bioturbation phenomena, and the fact that high-latitude sediments are under-represented in the published compilations. Furthermore, this 20,000–30,000 cal-yr-BP interval corresponds to the last glacial period during which major changes affected the carbon cycle.
and hence the atmospheric $\Delta^{14}C$ (Fig. 11). For example, studies of air bubbles enclosed in old polar ice show that the atmospheric CO$_2$ concentration was 30% lower during the glacial period than during the Holocene (Delmas et al., 1980; Neftel et al., 1982). During this glacial period, the global biosphere reservoir was also reduced (Adams et al., 1990; Van Campo et al., 1993; Crowley, 1995) and the penetration rate of $^{14}CO_2$ into the deep ocean was significantly diminished in response to a sluggish thermohaline circulation (Broecker et al., 1990) and the presence of widespread sea-ice at high-latitudes. Numerical model calculations (e.g., Fig. 11) combined with other paleo-data suggest that the total effect of carbon cycle changes could account for about a 100‰ additional increase in the atmospheric $\Delta^{14}C$, in rough agreement with the $\Delta^{14}C$ observations shown in Fig. 10.

3.3. The $^{14}C/^{12}C$ Transient Centred at about 12,000 cal-yr-BP

The paleomagnetic (McElhinny and Senanayake, 1982; Guyodo and Valet, 1996; Fig. 8) and the ^{10}Be records (Yiou et al., 1998; Finkel and Nishiizumi, 1998) do not exhibit a significant transient that could explain the atmospheric ^{14}C excursion centered at between 13,000 and 12,000 cal-yr-BP (Figs. 12, 13). As proposed by Oeschger et al. (1980), Goslar et al. (1995), and Hughen et al. (1998), major changes in the rate of exchange within the carbon cycle must have caused this millennium-scale event which occurred during the Younger Dryas (YD) cold period (Fig. 13). Using box models, these authors suggested that an abrupt slow-down of the North-Atlantic deep water (NADW) convection was responsible for the early rise of atmospheric $\Delta^{14}C$ at about 13,000 cal-yr- associated with the initial cooling of the YD event. Based on a detailed dataset from the Cariaco basin varves, Hughen et al. (1998) showed that the atmospheric $\Delta^{14}C$ began its subsequent decrease during and not at the end of the YD. As explained by Hughen et al. (1998) and Broecker (1998), this paradox could be explained if the excess atmospheric ^{14}C was sucked up by other parts of the ocean which have less influence on the global climate than the North Atlantic area of deep convection.

Inherent to their box-modelling approach, Goslar et al. (1995) and Hughen et al. (1998) make ad hoc assumptions about the timing of the oceanic convection changes. By using physically realistic models, Stocker and Wright (1996) and Mikolajewicz (1996) attempted to calculate simultaneously the oceanographic and climatic changes during the YD and the concomitant atmospheric $\Delta^{14}C$ maximum. In both of these modelling studies, the initial cause of all these variations is the dramatic increase in the flux of deglacial freshwater known as meltwater pulse 1A (MWP1A; Fairbanks, 1989; Bard et al., 1990b, 1996; Fig. 14). This major climatic event corresponds to an abrupt sea-level rise at a mean rate of 4–5 m per century over a period of about 400 yr. This is equivalent to an annual melting of about 16,000 km2 of continental ice and to an increase by 0.5 Sv of the freshwater flux into the Atlantic ($1Sv = 10^9$ m3. s$^{-1}$). The main effect of this massive injection of freshwater in the North-Atlantic is to reduce abruptly the

![Fig. 11. Variations of atmospheric $\Delta^{14}C$ expected from carbon cycle changes. These theoretical curves represent equilibrium values computed by means of a box-diffusion model (Oeschger et al., 1975). The upper panel (11a) shows that the atmospheric $\Delta^{14}C$ increases when atmospheric pCO$_2$ decreases. As shown by studies of air bubbles in ice cores (Delmas et al., 1980; Neftel et al., 1982), the glacial pCO$_2$ was 80 ppm lower than the present-day natural value (ca. 280 ppm). This pCO$_2$ change alone was probably accompanied by a $\Delta^{14}C$ increase by ca. 25‰ (see also Siegenthaler, 1980 and Lal and Revelle, 1984 for similar estimates). This value is probably a lower bound since several authors have shown that the biospheric reservoir was also reduced during the glacial period (Adams et al., 1990; Van Campo et al., 1993; Crowley, 1995). The lower panel (11b) shows the effect of changes of deep-sea ventilation parameterized with a single eddy diffusivity coefficient in the model (K in m2.yr$^{-1}$). The present-day K value is 4000 m2.yr$^{-1}$ which leads to an average $\Delta^{14}C$ gradient of ca. 1150 yr between surface and deep sea (grey curve associated with the right-hand y-axis). AMS-^{14}C data on contemporaneous benthic and planktonic foraminifera (Broecker et al., 1984) indicate that this gradient was larger during the glacial period (Shackleton et al., 1988; Broecker et al., 1990). For simplicity, an increase of this ^{14}C gradient by 500 yr was assumed for the glacial period which can be produced with a reduced value of K (2665 m2.yr$^{-1}$). This sluggish ventilation is responsible for an increase of ca. 60‰ in the atmospheric $\Delta^{14}C$ (black curve associated to the left-hand y-axis).]
formation of NADW (Fig. 15). The strong reduction in NADW formation had a direct influence on the atmospheric ^{14}C (Figs. 16, 17) and on the climate of high-latitudes in the North Atlantic and European sectors (Fig. 17) when compared to box modelling simulations, the GCM approach is certainly a major improvement but a puzzling problem remains to be solved: the relative timing of simulated ^{14}C variations and climatic changes disagrees with the observations. The data demonstrate that the atmospheric ^{14}C and climatic excursions (i.e., start of YD) began in phase (Fig. 13) but about a millennium later than MWP1A, that was centred at about 14,000 cal-yr-BP (Fig. 14). By contrast, the numerical simulations summarized on Figs. 16 and 17 suggest essentially no time lag between the meltwater discharge and its effects on climate and atmospheric ^{14}C (Stocker and Wright, 1996; Mikolajewicz, 1996).

3.3. The Older Part of the Calibration and its Relationship with the 10Be Peak

Between 30,000 and 45,000 yr BP (practical limit of the ^{14}C method) the calibration curve suffers mainly from a lack of accurate data. Bard et al. (1998) analysed a single coral sample collected from the lower uplifted terrace from Huon Peninsula, Papua New Guinea, previously dated by TIMS U-Th at 41,100 ± 500 cal-yr-BP (Dia et al., 1993). The discrepancy between the ^{14}C and U-Th age is about 5500 yr (Fig. 1), also corresponding to a surprisingly high ^{14}C of ca. 700‰. For such an old sample, the diagenetic alteration and ^{14}C chemistry blank are critical problems, and this data on an isolated coral is tentative and needs to be replicated. However, it is worth pointing out that similar age shifts of the order of 5000 yr have been obtained by comparing mass spectrometric ^{14}C and U-Th ages.
measured in an archeological site (Bishoff et al., 1994). In addition, Vogel and Kronfeld (1997) applied conventional radioactive counting techniques to date old stalagmites from South Africa by U-Th and ^{14}C. Although the reliability of ^{14}C and U-Th ages in speleothems is not as high as for corals (problems of unknown or variable initial ^{14}C age and detrital Th contamination in speleothems), the main outcome of the work by Vogel and Kronfeld (1997) is that ^{14}C dates between 35,000 and 45,000 cal-yr-BP are indeed 5000 yr too young. Large differences between ^{14}C and TIMS U-Th ages were also obtained recently on lacustrine inorganic aragonite (Schramm et al., 1996) and on speleothems from the Bahamas (Richards et al., 1997).

These five independent works comparing ^{14}C and U-Th ages are in apparent contrast with the atmospheric ^{14}C reconstructed by using varved sediments from a Japanese lake (Kitagawa and van der Plicht, 1998). However, as acknowledged by these authors, their varve counts between 20,000 and 38,000 cal-yr-BP should be considered as minimum ages due to the high probability of missing varves. Furthermore, beyond 38,000 cal-yr-BP, the ^{14}C record from the Japanese lake is only based on an extrapolation of the sedimentation rate and not on true annual counts (see Figs. 1a and 3 in Kitagawa and van der Plicht, 1998).

This 35,000–45,000 cal-yr-BP interval was a troubled one for cosmogenic isotopes because it encompasses the Laschamp geomagnetic excursion (Bonhommet and Zähringer, 1969; Hall and York, 1978; Gillot et al., 1979; Levi et al., 1990) and includes prominent and concomitant ^{10}Be and ^{36}Cl maxima first revealed in polar ice (Raisbeck et al., 1987; Beer et al.,...
Fig. 14. Sea-level variation history reconstructed for long drill cores from Barbados (black squares and circles), Tahiti (large open squares and circles), and New Guinea (open triangles and small open circles). For clarity, samples dated by 14C only were converted to calendar years by means of calibration formulae (Bard et al., 1993) and are indicated by circular symbols. The sea-level curves based on U-Th ages can be found in the following references: Bard et al. (1990b) for Barbados, Edwards et al. (1993) for New Guinea and Bard et al. (1996) for Tahiti. The sea-level curves based on 14C ages can be found in the following references: Fairbanks (1989) for Barbados, Chappell and Polach (1991) for New Guinea, and Bard et al. (1996) for Tahiti. Local vertical movements were corrected for the different sites; the small but systematic shifts could be attributed to different hydro-isostatic responses for the three islands. Arrows indicate the median ages of MWP-1A and MWP-1B, first revealed in the case of Barbados (Fairbanks, 1989; Bard et al., 1990).

Fig. 15. Δ^{14}C isolines of dissolved inorganic carbon for the Atlantic Ocean after the injection of MWP-1A (after Stocker and Wright, 1996). The North Atlantic overturning is in a collapsed state and this cross-section is similar to the present-day Pacific (note the very low Δ^{14}C values at 3 km depth between 50 and 80°N).
1992; Yiou et al., 1997; Baumgartner et al., 1998). This 10 Be-36 Cl peak corresponds approximately to a doubling of the flux over a period of about 2000 yr which occurred at about 41,000 cal-yr-BP as dated in Greenland ice (Yiou et al., 1997; Finkel and Nishiizumi, 1996, 1997). A preliminary explanation for the 10 Be-36 Cl peak could be a direct causal link with the Laschamp excursion during which the magnetic field fell drastically in intensity (Levi et al., 1990; Baumgartner et al., 1998). This explanation remains hypothetical and other causes have been invoked such as an extreme solar modulation (Raisbeck et al., 1987), the shockwave of a supernova explosion (Sonett et al., 1987) or even the fortuitous combination of several of these causes (McHargue et al., 1995; Robinson et al., 1995).

Simulating the atmospheric 14 C for the 35,000–45,000 cal-yr-BP period is not an easy task because the geodynamo was probably not dipolar during the Laschamp event and because the magnitude of 14 C changes associated with the 10 Be-36 Cl peak depends on its causes which are still hypothetical. As a working hypothesis, I assumed that the 10 Be-36 Cl doubling seen in polar ice cores is due to a solar effect superimposed on geomagnetic intensity variations as compiled by Guyodo and Valet (1996; see Fig. 8).

Fig. 16. Evolution of mean 14 C in the major reservoirs of the carbon cycle perturbed by meltwater injection during the last deglaciation (after Stocker and Wright, 1996). The thin dashed line represents the Barbados meltwater record taken as the first derivative of the Barbados sea level curve (Fig. 14). The black curve refers to the atmosphere, the grey curve to the biosphere, the dashed curve to the upper 1000 m of the ocean and the dashed-dotted curve to the deeper ocean. The atmospheric 14 C increases by up to 35‰ which agrees with simpler box model calculations (Goslar et al., 1995).

Fig. 17. Simulation of a 14 C age plateau by numerical models: the black line corresponds to the coupled global ocean-ice-atmosphere-biosphere (GCM) model of Stocker and Wright (1996) and the grey line to the twelve-box model of Bard et al. (1997). The GCM model is perturbed by meltwater injection during the last deglaciation. The 14 C age plateau occurs when the North-Atlantic overturning is restored, which also corresponds to an abrupt warming of the northern troposphere at high-latitudes (dotted curve associated with right axis). In the box model experiment, the 14 C age plateau begins when NADW formation is restored from a reduced state (10 Sv) to a modern rate (20 Sv). As explained in the text, there is a puzzling problem concerning the relative timing of climatic and 14 C changes. Hence, the start of the 14 C age plateau is set arbitrarily at about 1800 yr BP. Note, however, that the simulated age plateau is significantly shorter than the real plateau shown in Fig. 12.

Fig. 18. Atmospheric 14 C vs. time as calculated by using the AMS-14 C ages vs. TIMS-230 Th comparison. Statistical errors for coral data are quoted at the 2σ level. Open dots represent the data from Barbados, black dots the data from Tahiti, black squares with small errors the data from Mururoa (Bard et al., 1990, 1993, 1996 and 1998) and open triangles the data from New Guinea (Edwards et al., 1993). The oldest black square at ca. 41,100 cal-yr-BP with a large error corresponds to sample KWA-I-1 collected in the lower uplifted terrace of Huon Peninsula, Papua New Guinea. The thick black curve shows the atmospheric 14 C expected as a response to a doubling of the cosmogenic production between 42,000 and 40,000 cal-yr-BP, the time of the major 10 Be peak. This production scenario was used as an input for a simple carbon cycle box-model used in Bard et al. (1990). In a similar way, the thick grey curve was obtained by assuming that this doubling of the production is superimposed on geomagnetic intensity variations as compiled by Guyodo and Valet (1996; see Fig. 8).
explain the very elevated atmospheric $\Delta^{14}C$ in excess of 500‰ over a duration of 10,000 yr (Fig. 18).

4. CONCLUSIONS

Significant variations of the atmospheric $^{14}C/^{12}C$ ratio have been caused by a variety of geophysical, climatological, and astrophysical causes: (1) Most short term ^{14}C excursions occurring over the time scale of centuries are linked to cosmic-ray modulation by the magnetic properties of the solar wind. (2) The long-term $\Delta^{14}C$ decrease during the last 30,000 cal-yr-BP is clearly a response to a slow increase of the intensity of the Earth magnetic dipole. (3) In addition to ^{14}C production variations, the atmospheric $\Delta^{14}C$ was also affected by internal changes within the carbon cycle. In particular, the so-called ^{14}C age plateaux are probably linked to abrupt changes in oceanic ventilation which occurred during the last deglaciation.

More work is still needed to supplement our knowledge of the variations of the atmospheric $\Delta^{14}C$ ratio, especially for the time period between 30,000 and 45,000 cal-yr-BP. In order to make significant advances in understanding the causes of atmospheric $\Delta^{14}C$ variations, it is highly desirable to obtain new datasets for other cosmogenic nuclides from records spread over different latitudes as well as new $\Delta^{14}C$ data from other reservoirs of the carbon cycle, in particular from the deep and intermediate ocean by analysing benthic foraminifera and deep sea corals (e.g., Mangini et al., 1998; Adkins et al., 1998).

Acknowledgements—I thank Drs. M. Arnold, T. Goslar, B. Hamelin, G. Raisbeck, and F. You for fruitful collaborations and discussions over the last 10 years, Dr. D. Bourlès for review of the manuscript, Dr. B. Kromer for early release of data, J. J. Mette for drawing, and Dr. M. S. N. Carpenter for correcting the English style. This work was supported by IUF, CNRS, and EC grants.

REFERENCES

Finkel R. C. and Nishizumi K. (1996) 10Be and 3He concentrations in the GISP2 ice core compared with Δ14C in tree rings. Abstract of AGU Fall Meeting, EOS 77, F428 (abstr.).

Thouveny N., Corre K., and Williamson D. (1993) Geomagnetic mo-

