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TABLE I. Mn-Bi2Se3 film properties (without overlayers) derived from EDX and SQUID. The

stoichiometry is given in units of atomic percent with an error of ±0.5%.

xBi [%] xSe [%] xBi/xSe xMn[%] TC [K]

Series A (500 nm) 36.6 51.3 0.71 12.1 5.4

Series B (300 nm) 34.6 51.1 0.68 13.8 5.2

Melt-grown Bi2Se3 40.5 59.5 0.68 0 –
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FIG. 3. (a)-(d) ARPES data of (n-QLs Bi2Se3/Mn-Bi2Se3) heterostructures along the M̄� �̄� M̄

direction at photon energy h⌫ = 18 eV and T = 100K (sample series B). Overlaid are energy

distribution curves (EDC) derived from the k-interval [�0.01 Å
�1

, 0.01 Å
�1

] at respective binding

energies. (e) shows all EDCs for direct comparison.

geometries typical for twinning in chalcogenide TIs under the influence of 3d metal dopants.

In addition, the average terrace width is reduced compared to pure MBE-grown Bi2Se3.

The corresponding RHEED patterns do not significantly change with n, indicating that de-

spite the increased corrugation, the crystal growth conditions do not change dramatically at

the interface between Mn-doped and undoped Bi2Se3. LEED images in Fig. 1(d) and XPS

Se 3d3/2,5/2 and Bi 5d3/2 core level spectra shown in (e) confirm well-defined (111)-oriented

and chemically ordered surfaces after decapping.

Highly-resolved XPS allows to detect chemical shifts in Mn, Bi and Se CLs, which depend

on the atom‘s chemical environments within the XPS sampling depth �. First we are inter-

ested in the electronic ground state of Mn dopants itself. The Mn 3p core level spectrum in

Fig. 2(a) for n = 0 exhibits a sharp multiplet structure, suggesting a well defined Mn elec-

tronic configuration in the Bi2Se3 host. This is in contrast to a metallic Mn phases where a

broad almost featureless 3p spectrum is observed at same photon energies due to solid state
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We analyze fermionic spectral function in the spin-density-wave !SDW" phase of quasi-two-dimensional

!quasi-2D" cuprates at small but finite T. We use a nonperturbative approach and sum up infinite series of

thermal self-energy terms, keeping at each order nearly divergent !T /J"#log !# terms, where ! is a deviation

from a pure 2D, and neglecting regular T /J corrections. We show that, as SDW order decreases, the spectral

function in the antinodal region acquires peak/hump structure: the coherent peak position scales with SDW

order parameter while the incoherent hump remains roughly at the same scale as at T=0 when SDW order is

the strongest. We identify the hump with the pseudogap observed in angle-resolved photoemission spectros-

copy and argue that the presence of coherent excitations at low energies gives rise to magneto-oscillations in

an applied field. We show that the same peak/hump structure appears in the density of states and in optical

conductivity.
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I. INTRODUCTION

Understanding of the phase diagram of cuprate supercon-

ductors continue to be one of central topics in theoretical

condensed-matter physics.1 Parent compounds of cuprates

are quasi-two-dimensional !quasi-2D" antiferromagnetic in-

sulators, heavily overdoped cuprates are Fermi liquids. In

between, systems are d-wave superconductors at low T"Tc

and display the pseudogap behavior at larger Tc"T"T! .

How an insulator transforms into a Fermi liquid and what is

the origin of the pseudogap are still the subjects of intensive

debates among researchers.

The pseudogap region exists both in underdoped and

overdoped cuprates, but the physics evolves substantially be-

tween these two limits. For overdoped cuprates, there is

rather strong evidence2 that the pseudogap region is best de-

scribed as a disordered superconductor, when the gap is al-

ready developed but the phase coherence is not yet set.3–6 In

this doping range, fermions are reasonably well described as

strongly interacting quasiparticles with a large, Luttinger-

type underlying Fermi surface !FS".7 The d-wave pairing in

this doping range most naturally originates from the ex-

change of overdamped collective bosonic excitations of

which spin-fluctuation-mediated pairing is the key

candidate.7–11 In underdoped cuprates, situation is more com-

plex. On one hand, angle-resolved photoemission spectros-

copy !ARPES" data taken at low energies !below 50 meV"

and low T were interpreted as the indication that the under-

lying FS still has Luttinger form, and the gap extracted from

the position of the still visible narrow peak in the spectral

function has a simple d wave, cos 2# form over the whole

FS, including antinodal region around !0,$" and symmetry-

related points.1
2,13 On the other hand, ARPES data taken in

the antinodal region show that the spectral function in the

pseudogap regime develops a broad maximum at around

100–200 meV.13–15 The jury is still out16 whether the ob-

served high-energy hump and low-energy peak are separate

features or the peak and the hump describe the same gap,

%!k", which strongly deviates from cos 2# form with under-

doping. The experimental results in Refs. 13–15 and 17–20

were interpreted both ways. We side with the idea that the

pairing gap remains cos 2# even in underdoped materials,

and the hump is a separate feature, associated with Mott

physics. We further take the point of view that the origin of

the hump is the development of precursors to a Heisenberg-

like antiferromagnetically ordered state at half-filling.21–28

These precursors are generally termed as spin-density-wave

!SDW" precursors though one should keep in mind that the

half-filled state is the strong coupling version of SDW and is

best described by the Heisenberg model with short-range ex-

change interaction. The SDW precursor scenario has been

wildly discussed in mid-90s,21,23,29,30 and is nearly univer-

sally accepted scenario for electron-doped cuprates24,25,31 For

hole-doped cuprates, it was, however, put aside for a number

of years if favor of non-Fermi-liquid-type scenarios.32 The

SDW scenario, however, regained support in the last few

years, after magneto-oscillation experiments in a field of

30–60 T detected long-lived Fermi-liquid quasiparticles near

small electron and hole FSs.33 Such FS geometry is expected

for an SDW ordered state,21 and early theory prediction was

that a field drives the system toward an SDW instability.34

Long-range antiferromagnetic order in applied field has been

explicitly detected in recent neutron-scattering experiments

on underdoped YBCO !Ref. 35". !Another widely discussed

scenario of quantum oscillations, which we will not consider

here, is a d-wave density-wave order.36"

In this paper, we analyze the consistency between the de-

scription of quantum oscillations and the pseudogap in un-

derdoped cuprates within SDW scenario. The problem is the

following: to explain quantum oscillations one has to assume

the existence of small electron pockets.3
7,38 Such pockets do

exist in the SDW scenario near !0,$" and symmetry-related

points, but they are present only if SDW order $Sz!Q"%

= $Sz% is smaller than a threshold &Q= !$ ,$"'. For larger $Sz%,

only hole pockets around !$ /2,$ /2" are present, while ex-

citations near !0,$" have a gap of order 4t!(0.2 eV !see

Fig. 2". Antinodal pseudogap detected in ARPES experi-

ments in zero field is of the same magnitude.13 A field of
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Coulomb correlations and pseudogap effects in a preformed pair model for the cuprates

Jiri Maly, K. Levin, and D. Z. Liu
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We extend previous work on preformed pair models of superconductivity to incorporate Coulomb correla-

tion effects. For neutral systems, these models have provided a useful scheme which interpolates between BCS

and Bose-Einstein condensation with increasing coupling and thereby describes some aspects of pseudogap

phenomena. However, charge fluctuations ~via the plasmon, vp ) significantly modify the collective modes and

therefore the interpolation behavior. We discuss the resulting behavior of the pseudogap and thermodynamic

quantities such as Tc , x , and C
v as a function of vp . @S0163-1829~96!50846-5#

The role of the pseudogap 1
in the high-Tc cuprates is

emerging as an important indicator of the nature of the su-

perconductivity as well as the normal state. There are two

widely discussed but competing explanations for pseudogap

effects but no clear and decisive experiments to support one

scenario over the other. Early observations associated the

pseudogap with magnetic pairing 2 above Tc ~often called the

‘‘spin gap’’!. It is now clear, however, that some form of

normal-state pairing is seen in photoemission as well as

charge transport data. Moreover, at least in the photoemis-

sion data the pseudogap appears to have the d-wave

symmetry 1
of the ordered state and this leads naturally

to the association of this ‘‘gap’’ with precursor super-

conductivity. 3–5 This second scenario is further supported by

the observation of low dimensionality and short coherence

lengths in high-Tc superconductors, which suggests impor-

tant deviations from ideal mean field or BCS transitions. In-

deed, the approach of the present paper assumes the precur-

sor superconductivity scenario, in large part because it is

important to establish, at least as a base line, the extent to

which such superconducting ‘‘fluctuation’’ effects may be

responsible for pseudogap behavior.

Among those models which subscribe to a precursor su-

perconductivity scenario there are additionally two rather

distinct viewpoints. Emery and Kivelson 5 have argued that

the pseudogap state of the cuprates is similar to that observed

in granular films where phase coherence is not fully estab-

lished, although large regions of the material have a well

established superconducting amplitude. Because it is small,

in some sense, in the cuprates their approach focuses on

n/m* or alternatively on the plasma frequency vp as the key

‘‘phase stiffness’’ parameter. Alternatively, others 3,4,6,7 have

focused on the observed small size of the superconducting

correlation length j to argue for important corrections to

BCS theory associated with preformed or nearly formed

pairs 8 which exist well above Tc and therefore give rise to

significant pseudogap effects. The present paper is based on

the viewpoint that in the cuprates the characteristic parameter

of the charge degrees of freedom, n/m* or equivalently

vp , should be treated on a relatively equal footing with the

correlation length, j .
To study the role of Coulomb interactions on pseudogap

phenomena, we adopt a natural microscopic framework

which incoporates charge fluctuations into theories which

treat the crossover from BCS pairing to Bose-Einstein con-

densation ~BEC! of preformed pairs. 9 In neutral systems, this

crossover has been studied by a variety of investigators. 3,4,6

Numerical simulation studies, 7 which have been performed

in the context of attractive Hubbard models, include, in prin-

ciple, all diagrammatic contributions. On the other hand,

analytical work has mostly been confined to the T-matrix

approximation. The issue of nonconserving and conserving

T-matrix schemes has been widely discussed in the

literature 6 in the context of the BCS-BEC crossover problem.

In the original work of Nozières and Schmitt-Rink a noncon-

serving approach was used. Recent work 6 on neutral systems

has extended this scheme using a T-matrix approximation

which satisfies global conservation laws and in the process

introduces renormalized Green’s functions into the general-

ized susceptibilities. In the charged system, as a consequence

of gauge invariance, the analogue renormalized susceptibili-

ties must then appear in the particle-hole channel. As has

been known for some time, 10 however, the collective mode

spectrum is then treated incorrectly at this level of approxi-

mation and a more sophisticated scheme is needed. In order

to avoid this complexity and to develop an intuitive under-

standing of the effects of charge, however, we restrict the

analysis, in this paper, to the more familiar scheme intro-

duced by Nozières and Schmitt-Rink and defer consideration

of a fully conserving formalism. We note, however, that our

formulation will be locally conserving and in the case of

charged systems this approximation does not yield qualita-

tively different physics from that expected using a globally

conserving approach. Furthermore, it is our contention that

mode-mode coupling effects will ultimately lead to impor-

tant insights which we will discuss in a future paper.

The Hamiltonian under consideration contains an attrac-

tive interaction Vk,k8 , parametrized by a coupling constant

g , as well as long-range Coulomb terms. For definiteness we

take the same separable pairing potential, Vk,k8 5gvkvk8

where vk5(11k 2/k0
2) 21/2, as was used initially by Nozières

and Schmitt-Rink. Within this model, the pairing energy

scale ~or ‘‘Debye frequency’’! is the Fermi energy. We as-

sume a three-dimensional free electron model for the elec-

trons and defer discussion of anisotropy effects until later in

the text. It is assumed that in the cuprates there is sufficient

interlayer hopping so that a strictly two-dimensional model

and its associated Kosterlitz-Thouless transition is not the
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Abstract. We describe the spectral properties of underdoped cuprates as resulting from a momentum-
dependent pseudogap in the normal-state spectrum. Such a model accounts, within a BCS approach, for
the doping dependence of the critical temperature and for the two-parameter leading-edge shift observed
in the cuprates. By introducing a phenomenological temperature dependence of the pseudogap, which finds
a natural interpretation within the stripe quantum-critical-point scenario for high-Tc superconductors, we
reproduce also the Tc − T ∗ bifurcation near optimum doping. Finally, we briefly discuss the different role
of the gap and the pseudogap in determining the spectral and thermodynamical properties of the model
at low temperatures.

PACS. 74.25.Dw Superconductivity phase diagrams – 71.10.Hf Non-Fermi-liquid ground states, electron
phase diagrams and phase transitions in model systems – 74.20.Fg BCS theory and its development

1 Introduction

The non-Fermi-liquid behaviour of the normal phase of
the cuprates has two major features: (i) nearby optimum
doping the in-plane resistivity is linear in T , signaling the
absence of any other energy scale besides the temperature;
(ii) in the underdoped regime photoemission and tunnel-
ing experiments show that a pseudogap persists well above
the critical temperature Tc up to a crossover tempera-
ture T ∗ [1]. While Tc increases with increasing doping,
T ∗ starts from much higher values and decreases. The
two temperatures merge around or slightly above opti-
mum doping. Angle-resolved photoemission spectroscopy
(ARPES) experiments indicate that the pseudogap and
the superconducting gap have the same momentum depen-
dence across Tc, which almost resembles a dx2−y2-wave,
namely ∆k = ∆0(φ) cos(2φ), with φ = arctan(ky/kx), and
that both are tied to the underlying Fermi surface [2–4].
In the BCS d-wave approach ∆0 is φ-independent and
is proportional to Tc. Here instead ∆0(φ) is angle de-
pendent and the ARPES spectra of the pseudogap state
evolve smoothly and continuously in the superconducting
ones across the critical temperature. A smooth evolution
is also observed in tunneling spectra [5]. Moreover, the
pseudogap at different k points opens at different tem-
peratures. At T ∗ a leading-edge shift (LE) appears in the
ARPES spectra of underdoped Bi2212 for momenta near
the M ≡ (±π, 0); (0,±π) points of the Brillouin zone. The

a e-mail: Lara.Benfatto@roma1.infn.it

LE is observed as a finite minimum distance of the quasi-
particle peak from the Fermi level in the non supercon-
ducting state, and leaves disconnected arcs of Fermi sur-
face. When the temperature is lowered, the LE regions
around the M points enlarge and the arcs of Fermi sur-
face reduce and shrink towards the nodal points of the
corresponding d-wave superconducting gap below Tc. At
the same time the doping dependence of the momentum
structure of the LE is not trivial. As the doping is in-
creased, the zero temperature LE at the M points, ∆0(0),
remains constant or decreases [2–4,7], while the LE around
the nodal points ∆0(π/4) seems to increase [4,6,7] and
follow the rising of the critical temperature. Penetration-
depth measurements of the superfluid density ρs(T ) at low
temperature probe the low-energy excitations around the
nodal points in a d-wave superconductor, and therefore
∆0(π/4). The correspondence between ARPES measure-
ments of ∆0(π/4) and the slope of ρs(T ) at T = 0 is
made however more involved by the presence of the Lan-
dau renormalization factors [4].

Many theoretical models have been proposed to obtain
a non-Fermi-liquid behaviour and to describe a pseudogap
state. A firm result is however that above one dimension
the Landau Fermi-liquid theory is generically stable and a
strongly singular effective potential is required to disrupt
it [8]. This result, together with the above phenomenol-
ogy, suggests that a consistent description of the cuprates
requires a strong momentum-, doping-, and temperature-
dependent effective interaction. This interaction should af-
fect the states near the M points of the Brillouin zone



Electronic correlations at the one- and two- particle level:
origin of fluctuations

(AR)PES,  InvPES,  (STM)

A. Tamai, et al. Phys. Rev. X 9, 021048 (2019)
M.K. Chan, et al., Nat. Comm. 7, 10819 (2016)

S. Petit, EPJ Web of Conferences 155, 00007 (2017)

IR, INS, NMR

What are possible strategies for a
“fluctuation diagnostics” in theory?



Outline: diagnostics of fluctuations in correlated systems

Introduction
• Experimental spectra at the one- and two-particle level
• The Hubbard model
• Two-particle level quantities: linear response, vertex and

Dyson-Schwinger equation of motion
• Two general approaches to tackle complex problems

Parquet decomposition
• Parquet equations and description of the method
• Examples
• Breakdown

Fluctuation diagnostics
• Partial sums of the Dyson-Schwinger equation of motion
• Examples

Conclusions, outlook and general perspective



Strongly correlated systems: a simple (?) modellization

-t : hopping U:  local Coulomb
interaction

Hubbard Hamiltonian:

J. Hubbard, Proc. Royal Soc. A, 276, 238– 257 (1963)
M. Qin, TS, et al., ”The Hubbard model: a computational perspective“, arXiv:2104.00064, submitted to Annual Reviews

In this talk: one band, (mostly) 2D, no symmetry broken phases [espc. SU(2)]

Results from: diagrammatic Monte Carlo (DiagMC)
dynamical mean-field theory (DMFT)
dynamical cluster approximation (DCA)
dynamical vertex approximation (DΓA)
dual fermion approach (DF)
triply irreducible local expansion (TRILEX)

RMP 68, 13 (1996)
RMP 77, 1027 (2005)

Seminar of F. Šimkovic

RMP 90, 025003 (2018)



Quantum field theoretical description of spectra:
one-particle Green functions

Fourier transforms
time-/translation invariance

k=(k, iν) four vector
ν = (2n+1)πT, n integer

One-particle spectrum: 

G0 (free) propagation with momentum k                                     

U local interaction

Σ: “self-energy”
(one-particle irreducible)

Dyson equation



Quantum field theoretical description of linear response:
two-particle Green functions

Fourier transforms (ph convention)
time-/translation invariance

Full vertex F

physical susceptibility χ(q,ω)
(e.g. charge, spin, pairing) “bubble contribution” “vertex corrections”

q=(q,iω) four vector
ω=2nπT, n integer



Connecting one- and two-particle level:
the Dyson-Schwinger equation of motion (DSE)

How can we tackle the complex problem
of analyzing the DSE with F?

Full vertex F (from G2)

U

U



Strategies of tackling complex problems:
rely on Latin mottos!

”teach everything”
good start (however, not very constructive)

“divide and rule”
“change what has to 

be changed”

TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021), Special Issue: Emerging Leaders 2020



All connected
2P

diagrams

F =   Λ +  Φpp + Φph + ΦphT

Fully irreducible vertex Λ

Full vertex F
(“scattering amplitude”)

“Divide et impera”:
subdividing the full vertex F via the parquet equations

C. de Dominicis and P. C. Martin, J. Math. Phys. 5, 14/31 (1964) 



“Divide et impera”:
the parquet decomposition of the self-energy

O. Gunnarsson, TS, et al., Phys. Rev. B 93, 245102 (2016)



Parquet decomposition: application 1
first DMFT and DCA calculations

Model: Hubbard model
Techniques: DMFT, DCA with Nc=8

O. Gunnarsson, TS, et al., Phys. Rev. B 93, 245102 (2016)
TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)

3D cubic, DMFT, n=1, T=0.19t, U=4.9t 2D square, DCA, n=0.85, T=0.33t, U=4t

K=(π,0)



Parquet decomposition: application 2
two magnetic regimes at weak coupling

T. Schäfer, et al., Phys. Rev. X 11, 01158 (2021)
TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)

Model: 2D Hubbard, n=1 (half filling), simple square lattice, U=2t



Parquet decomposition: application 2
two magnetic regimes at weak coupling

T. Schäfer, et al., Phys. Rev. X 11, 01158 (2021)
TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)

Model: 2D Hubbard, n=1 (half filling), simple square lattice, U=2t

Magnetic correlation length exponentially growing!

Condition for pseudogap at weak coupling (Vilk criterion):

à Footprints of spin fluctuations in all observables
(on the one- and two-particle level)

𝑣!
𝜋𝑇

≪ 𝜉



Parquet decomposition: application 2
two magnetic regimes at weak coupling

Model: 2D Hubbard, n=1 (half filling), simple square lattice, U=2t
Technique: DΓA (ladder in spin channel)

TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)



Parquet decomposition: application 3
Hubbard nano rings

Model: 1D Hubbard nano ring with four sites, n=1 (half filling), U=2t
Technique: DΓA (ladder in spin channel)

A. Valli, TS, et al., Phys. Rev. B 91, 115115 (2015)
TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)



Parquet decomposition: application 4
current-current response functions

Model: 2D Hubbard, n=1, U=4t
Technique: DΓA

A. Kauch, et al., Phys. Rev. Lett. 124,047401 (2020)
TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)



Parquet decomposition: application 4
current-current response functions

Model: 2D Hubbard, n=1, U=4t
Technique: DΓA

A. Kauch, et al., Phys. Rev. Lett. 124,047401 (2020)
TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)
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FIG. 3. (Color online) Reducible contributions � in the ph

and ph-channel to the full vertex F
⌫n⌫0

n!n

d,kk0q=0 correcting the op-
tical conductivity. Top: HM at various temperatures and
U = 4t. Bottom: ExtHM at U = 4t, T = 0.17t and various
V . Shown is the contribution ⌫n = ⌫0

n = ⇡T ; !n = 0 at fixed
k = 0 as a function of k0 � k.

through the parquet equations, which leads to the con-
siderable contributions of the pp-channel. In other words,
these pp contributions arise (only) as a consequence of the
enhanced AFM and CDW fluctuations.[46]

To demonstrate the importance of the (⇡,⇡) contribu-
tion, we plot in Fig. 3 the reducible contributions � to
the full vertex F as a function of k0

�k for the ph and ph-
channel, setting q = 0 for the optical conductivity. Note
that the reducible ph and ph vertices are interrelated, i.e.,

�
⌫n⌫

0
n!n

ph,d,kk0q=0
= �

1
2 (�ph,d + 3�ph,m)

⌫n⌫n+!n⌫
0
n�⌫n

kkk0�k with d

(m) denoting the even (odd) spin combination [17, 27],
but the part of the ph-channel that enters the optical

conductivity is a very di↵erent one: �
⌫n⌫

0
n!n

ph,(ph),d,kk0q=0
.

As we see in Fig. 3 this ph-contribution is small and
the ph-contribution is strongly peaked at the wave vec-
tor k0

� k = (⇡,⇡) because of the strong AFM and
CDW fluctuations for the HM and ExtHM, respectively.
Hence we can conclude that it is indeed predominately
the k0

� k = (⇡,⇡) contribution that is responsible for
the vertex corrections in the optical conductivity, and
therefore we call these polaritons ⇡-tons.

A similar peak at k0
�k in the ph-channel is also found

for the PPP in Fig. 4, where we only have six momenta
so that we can additionally show the dependence on the
Matsubara frequencies. This confirms the picture of the
⇡-tons feeding upon strong AFM or CDW fluctuations.

Interesting questions which can however not finally be
answered at the moment are: Has the ⇡-ton a peak at a
single frequency ! like an exciton or does the light rather
couple to a continuum of bosonic excitations with di↵er-
ent !’s for di↵erent k’s in Eq. (2)? In the latter case,

do the ⇡-tons rather shift the quasiparticle-quasihole ex-
citation spectrum or result in additional peaks for every
k?

Characteristics of the ⇡-ton. While AFM and CDW
fluctuations are dominant at all parameters and temper-
atures analyzed, they become—as a matter of course—
stronger when we approach a corresponding phase tran-
sition. This e↵ect can be seen in Fig. 3 For the HM
(top panel of Fig. 3), reducing the temperature means
that AFM fluctuations become strongly enhanced, cf.
[21, 35, 47–49]. While there is no finite-temperature
phase transition in two dimensions, the correlation length
becomes exponentially large [50]. For the ExtHM, Fig. 3
(bottom), we instead enhance the non-local interaction
V . This way we approach a phase transition towards
CDW ordering (at 4V = U in the atomic limit and at a
slightly larger V ’s here [34]).

Conclusion and outlook. We have provided compelling
evidence for what appears to be the generic polaritons in
strongly correlated electron systems—at least in one and
two dimensions. These polaritons, coined ⇡-tons, consist
of two particle-hole pairs coupled to the incoming and
outgoing light, respectively, and glued together by AFM
and CDW fluctuations.

Although the optical conductivity has been studied for
a wide range of materials [51–56], it is di�cult to quan-
tify vertex corrections and even more di�cult to rule out
that these stem from excitons or weak localization cor-
rections. If we enhance AFM or CDW fluctuations by
reducing temperature or by approaching a phase transi-
tion the one-particle physics and the one-particle gap will
be modified as well because of the onset of AFM or CDW
order including additional spin polaron peaks [57, 58], by
enhanced life times in a Fermi liquid or by emergent pseu-
dogap physics [59]. Against this background, we feel that
a combination of optical experiments with angular re-
solved photoemission spectroscopy (ARPES) or neutron
scattering and accompanying theoretical calculations is
needed to identify ⇡-tons in experiment. A characteris-
tic of at least AFM ⇡-tons will also be a high sensitivity
of the optical gap to an external magnetic field.

Acknowledgements. We would like to thank Jan
Kunes, Gang Li, Patrik Thunström, and Angelo Valli for
many stimulating discussions, Josef Kaufmann for the
help with analytical continuation, and Monika Waas for
graphical assistance. The present work was supported
by the European Research Council under the European
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through ERC Grant No. 306447, the Austrian Science
Fund (FWF) through project P 30997-N32 and Doctoral
School “Building Solids for Function” (P.P.). Calcula-
tions have been done on the Vienna Scientific Cluster
(VSC).
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⇡-tons — generic optical excitations of correlated systems
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aInstitute of Solid State Physics, TU Wien, 1040 Vienna, Austria and
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(Dated: February 26, 2019)

The interaction of light with solids gives rise to new bosonic quasiparticles, with the exciton
being—undoubtedly—the most famous of these polaritons. While excitons are the generic polaritons
of semiconductors, we show that for strongly correlated systems another polariton is prevalent—
originating from the dominant antiferromagnetic or charge density wave fluctuations in these sys-
tems. As these are usually associated with a wave vector (⇡,⇡, . . .) or close to it, we propose to
call the derived polaritons ⇡-tons. These ⇡-tons yield the leading vertex correction to the opti-
cal conductivity in all correlated models studied: the Hubbard, the extended Hubbard model, the
Falicov-Kimball, and the Pariser-Parr-Pople model, both in the insulating and in the metallic phase.

Since the springtime of modern physics, the interac-
tion of solids with light has been of prime interest. The
arguably simplest kind of interaction is Einstein’s Noble
prize winning photoelectric e↵ect [1], where the photon
excites an electron across the band gap. More involved
processes beyond a mere electron-hole excitation can be
described in general by e↵ective bosonic quasiparticles,
coined polaritons since a polar excitation is needed to
couple the solid to light.

The prime example of a polariton is the exciton [2, 3],
where the excited electron-hole pair is bound due to the
Coulomb attraction between electron and hole. This in-
teraction is visualized in Fig. 1 (a). Since it is an attrac-
tive interaction, an exciton requires the exciton binding
energy less than an unbound electron-hole pair. Other
polaritons describe the coupling of the photon to surface
plasmons, magnons or phonons.

Fig. 1 (b) describes the exciton in terms of Feynman
diagrams: the incoming photon creates the electron-
hole pair (distinguishable by the di↵erent [time] direc-
tion of the arrows) which interact with each other re-
peatedly and finally recombine emitting a photon. Since
the energy-momentum relation of light is very steep com-
pared to the electronic bandstructure of a solid, the trans-
ferred momentum from the photon is negligibly small
q = 0. Thus, electron and hole have the same momen-
tum. For semiconductors this is often the preferable mo-
mentum transfer as well, connecting the bottom of the
conductance with the top of the valence band as in Fig. 1
(a).

In this paper we show that the generic polaritons
for strongly correlated systems are strikingly di↵erent.
While semiconductors are band insulators with a filled
valence and empty conduction band, strongly correlated
systems are typically closer to a half-filled (or in general
integer filled) band which is split into two Hubbard bands
by strong electronic correlations as visualized in Fig. 1 (c)
for a Mott insulator. (In case of a metallic system there
is an additional quasiparticle band). Both metal and
insulator are prone to strong antiferromagnetic (AFM)
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FIG. 1. (Color online) Sketch of the physical processes (top)
and Feynman diagrams (bottom) behind an exciton (left) and
a ⇡-ton (right). The yellow wiggled line symbolizes the incom-
ing (and outgoing) photon which creates an electron-hole pair
denoted by open and filled circles, respectively. The Coulomb
interaction between the particles is symbolized by a red wig-
gled line; dashed line indicates the recombination of the par-
ticle and hole; dotted line denotes the creation of a second
particle-hole pair (right); black lines the underlying band-
structure (top panels).

or charge density wave (CDW) fluctuations with a wave
vector close to q = (⇡,⇡, . . .) [4, 5]. Indeed these fluctu-
ations can be described by the central part of the Feyn-
man diagram Fig. 1 (b), where the bare ladder diagrams
correspond to the random phase approximation (RPA).
However the wave vector q = (⇡,⇡, . . .) cannot directly
couple to light, which only transfers q = 0. Hence an
exciton-like polariton as displayed in Fig. 1 (b) is not
possible for AFM or CDW fluctuations.

As we will show in this paper, the (⇡,⇡, . . .) fluctu-
ations nonetheless constitute the dominant vertex cor-
rections beyond a bare (bubble) particle-hole excitation.
This is possible through a process where the central part
of the Feynman diagram Fig. 1 (b), i.e., the (⇡,⇡, . . .)
fluctuations, are rotated (and flipped) as sketched in
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⇡-tons — generic optical excitations of correlated systems
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The interaction of light with solids gives rise to new bosonic quasiparticles, with the exciton
being—undoubtedly—the most famous of these polaritons. While excitons are the generic polaritons
of semiconductors, we show that for strongly correlated systems another polariton is prevalent—
originating from the dominant antiferromagnetic or charge density wave fluctuations in these sys-
tems. As these are usually associated with a wave vector (⇡,⇡, . . .) or close to it, we propose to
call the derived polaritons ⇡-tons. These ⇡-tons yield the leading vertex correction to the opti-
cal conductivity in all correlated models studied: the Hubbard, the extended Hubbard model, the
Falicov-Kimball, and the Pariser-Parr-Pople model, both in the insulating and in the metallic phase.

Since the springtime of modern physics, the interac-
tion of solids with light has been of prime interest. The
arguably simplest kind of interaction is Einstein’s Noble
prize winning photoelectric e↵ect [1], where the photon
excites an electron across the band gap. More involved
processes beyond a mere electron-hole excitation can be
described in general by e↵ective bosonic quasiparticles,
coined polaritons since a polar excitation is needed to
couple the solid to light.

The prime example of a polariton is the exciton [2, 3],
where the excited electron-hole pair is bound due to the
Coulomb attraction between electron and hole. This in-
teraction is visualized in Fig. 1 (a). Since it is an attrac-
tive interaction, an exciton requires the exciton binding
energy less than an unbound electron-hole pair. Other
polaritons describe the coupling of the photon to surface
plasmons, magnons or phonons.

Fig. 1 (b) describes the exciton in terms of Feynman
diagrams: the incoming photon creates the electron-
hole pair (distinguishable by the di↵erent [time] direc-
tion of the arrows) which interact with each other re-
peatedly and finally recombine emitting a photon. Since
the energy-momentum relation of light is very steep com-
pared to the electronic bandstructure of a solid, the trans-
ferred momentum from the photon is negligibly small
q = 0. Thus, electron and hole have the same momen-
tum. For semiconductors this is often the preferable mo-
mentum transfer as well, connecting the bottom of the
conductance with the top of the valence band as in Fig. 1
(a).

In this paper we show that the generic polaritons
for strongly correlated systems are strikingly di↵erent.
While semiconductors are band insulators with a filled
valence and empty conduction band, strongly correlated
systems are typically closer to a half-filled (or in general
integer filled) band which is split into two Hubbard bands
by strong electronic correlations as visualized in Fig. 1 (c)
for a Mott insulator. (In case of a metallic system there
is an additional quasiparticle band). Both metal and
insulator are prone to strong antiferromagnetic (AFM)
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FIG. 1. (Color online) Sketch of the physical processes (top)
and Feynman diagrams (bottom) behind an exciton (left) and
a ⇡-ton (right). The yellow wiggled line symbolizes the incom-
ing (and outgoing) photon which creates an electron-hole pair
denoted by open and filled circles, respectively. The Coulomb
interaction between the particles is symbolized by a red wig-
gled line; dashed line indicates the recombination of the par-
ticle and hole; dotted line denotes the creation of a second
particle-hole pair (right); black lines the underlying band-
structure (top panels).

or charge density wave (CDW) fluctuations with a wave
vector close to q = (⇡,⇡, . . .) [4, 5]. Indeed these fluctu-
ations can be described by the central part of the Feyn-
man diagram Fig. 1 (b), where the bare ladder diagrams
correspond to the random phase approximation (RPA).
However the wave vector q = (⇡,⇡, . . .) cannot directly
couple to light, which only transfers q = 0. Hence an
exciton-like polariton as displayed in Fig. 1 (b) is not
possible for AFM or CDW fluctuations.

As we will show in this paper, the (⇡,⇡, . . .) fluctu-
ations nonetheless constitute the dominant vertex cor-
rections beyond a bare (bubble) particle-hole excitation.
This is possible through a process where the central part
of the Feynman diagram Fig. 1 (b), i.e., the (⇡,⇡, . . .)
fluctuations, are rotated (and flipped) as sketched in
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Parquet decomposition:
from weak to strong coupling

Model: 3D Hubbard, n=1 (half filling), simple cubic lattice, T=0.19t
Technique: DMFT

O. Gunnarsson, TS, et al., Phys. Rev. B 93, 245102 (2016)
TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021)

U=4.9t U=9.8t



Parquet decomposition:
from weak to strong coupling

Model: 3D Hubbard, n=1 (half filling), simple cubic lattice, T=0.19t
Technique: DMFT

O. Gunnarsson, TS, et al., Phys. Rev. B 93, 245102 (2016)
TS, et al. Phys. Rev. Lett. 110, 246405 (2013), TS, et al., Phys. Rev. B 94, 235108 (2016), O. Gunnarsson et al., Phys. Rev. Lett. 119, 056402 (2017), …
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excitations in the different scattering channels while the
parquet equation (8) provides for their mutual renormalization.
Equations (8)–(10) form a closed set of four equations for

F, Γl (l ¼ pp; ph; ph), and Λ, which can be solved self-
consistently, provided one of these five quantities and the one-
particle Green’s function are known (for the case in which Λ is
given, see the left part of Fig. 6). As we usually do not know
the exact vertex, we have to consider approximations. For
instance, the so-called parquet approximation assumes that the
fully irreducible vertex is replaced by the constant bare
interaction, i.e., Λkk0q ¼ U (Bickers, 2004); or in parquet
DΓA, Λkk0q is approximated by its local counterpart (Λνν0ω).
The set of four parquet equations corresponds to loop II in

Fig. 6 and needs to be supplemented by the self-consistent
calculation of the one-particle Green’s function and self-
energy (loop I in Fig. 6). For obtaining these one-particle
functions from the two-particle vertex, we exploit the relation
between Green’s functions of different particle number in the
(Heisenberg) equation of motion. This leads to the Schwinger-
Dyson equation, which connects the vertex F with the self-
energy Σ and reads for a Hubbard-like model with a local
interaction U [cf. Hamiltonian (12)]:

Σkν ¼
Un
2

−U
X

ν0ω
k0q

Fνν0ω
↑↓;kk0qGk0ν0Gðk0þqÞðν0þωÞGðkþqÞðνþωÞ:

ð11Þ

Here n denotes the particle density of the system. For the
generalization to multiple orbitals and nonlocal interactions,
see, for example, Galler, Thunström, Gunacker et al. (2017).
Equation (11) represents an exact relation between the two-
and one-particle correlation functions. Hence for a given Λ we
have altogether five equations and five unknowns which can
be calculated self-consistently as indicated in Fig. 6.
In diagrammatic extensions of DMFT discussed in Sec. III,

the Schwinger-Dyson equation (11) is also often used when
obtaining F via other (e.g., ladder) resummations of Feynman
diagrams. The Schwinger-Dyson equation also provides the
basis for the fluctuation diagnostics method. By performing
partial summations over k0 and ν0 in Eq. (11), the physical

origin of the spectral features in the self-energy can be
identified (Gunnarsson et al., 2015).
The dependence of two-particle Green’s and vertex func-

tions on several indices makes their numerical calculations,
postprocessing, and storage evidently much more challenging
than that of the single-particle Green’s functions. Hence
exploiting all the symmetries of the system is vital to reduce
the numerical and memory storage requirements. Various
symmetry relations are summarized in Table I for Hubbard-
type models. While the symmetry properties reported there are
valid for the vertices F and Λ, they do not hold in general for
the explicitly channel dependent quantities Φl and Γl since
the symmetry relations will mix one channel with the others.
For an exhaustive discussion of the specific symmetry proper-
ties of Φl and Γl, see Rohringer, Valli, and Toschi (2012) and
Rohringer (2013).
Starting with the next section, we also consider local vertex

functions, Green’s functions, and self-energies of an AIM
problem. These quantities are frequency but not momentum
dependent. In the following we distinguish such local vertices
from the lattice vertices by dropping the momentum index,
i.e., we write Fνν0ω

r for the full local vertex instead of Fνν0ω
r;kk0q

for the lattice quantity defined in Eq. (7), and the same holds

FIG. 5. Parquet decomposition of the one-particle irreducible vertex F into its two-particle fully irreducible contribution Λ and
the three contributions Φl reducible in the particle-hole (ph), vertical particle-hole (ph), and particle-particle channels (pp). The latter
can be separated into two parts by cutting two Green’s functions as indicated by the dashed lines. For instance, for the l ¼ ph channel,
the legs 12 and 34 are separated. The subsets of diagrams marked in violet (light gray) are part of the irreducible ph vertex Γl¼ph which
contains all diagrams that cannot be separated in channel l ¼ ph. Note that all diagrams in this figure are meant as so-called skeleton
diagrams, i.e., all lines correspond to fully interacting Green’s functions, except for the external legs that mark only the incoming and
outgoing generalized momenta. The red dots denote the bare Hubbard interaction U.

FIG. 6. Flow diagram for solving the parquet equations. Left: If
the fully irreducible vertex Λ is given, the parquet equation (8)
and the three BSEs (10) for l ¼ ph; ph; pp allow us to calculate
the four unknowns F, Γl. Right: As in the BSE (10) the
interacting Green’s function G also enters, we need to extend
the self-consistency loop by two additional unknowns (G and Σ)
and equations [the equation of motion (11) and the Dyson
equation (3)]. The latter has the noninteracting Green’s function
G0 as input.
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Excluding the trivial situation when all four external lines
enter at the same interaction vertex (which gives just the
constant contribution U), these considerations suggest the
following threefold classification of the diagrams of F:
(i) The first group includes all diagrams where both the

incoming and outgoing particle-hole (or particle-particle)
pairs enter at the respective same bare interaction vertex;
see Fig. 7(a). Such diagrams depend only on the correspond-
ing frequency differences between the particle and hole
entering the diagram at the respective same bare vertex. In
the case of Fig. 7(a) this frequency is ω, which one can
see from the fact that all internal frequency summations in
Fig. 7(a) depend only on ω but not on ν and ν0. Note that the
diagram in Fig. 7(a) is reducible in theph channel; it belongs to
Φph in Fig. 5. The two other possibilities of how two external
legs can be pairwise attached to bare vertices are diagrams

reducible in theph andpp channels. These depend on only one
(bosonic) frequency (combination) ν−ν0 and νþν0þω, respec-
tively. In Fig. 8 (left), these diagrams are responsible for the
constant background (ω ¼ 0), the main (ν − ν0 ¼ 0), and
secondary (νþ ν0 þ ω ¼ 0) diagonals of the DMFT vertex
F. From a physical perspective, diagrams of type (i) correspond
to physical susceptibilities. For example, the contribution to F
originating from the sum of all diagrams of type Fig. 7(a)
corresponds to a ph (charge or spin) susceptibility (Rohringer,
Valli, and Toschi, 2012; Rohringer et al., 2013; Wentzell
et al., 2016).
(ii) The second class includes all diagrams where only

one pair of external lines is attached to the same bare vertex.
Their contribution depends on two (one bosonic and one
fermionic) Matsubara frequencies. For example, Fig. 7(b)
depends on ω and ν0 but not on ν. Such diagrammatic

(a) (b) (c)

FIG. 7. Categorization of diagrams according to their frequency dependence. (a) Diagram where the left and right pairs of external lines
are attached to the same two bare interaction vertices, (b) diagram where only the left external lines are connected to the same bare
vertex, and (c) diagram where all external lines enter at different bare vertices. The external frequencies, on which the diagram depends
explicitly, are marked in red (gray).

FIG. 8. DMFT results for the full local vertex (Fνν0ðω¼0Þ
c − U, left), the 2PI vertex in the ph charge channel (Γνν0ðω¼0Þ

c − U, middle), and
the fully 2PI vertex (Λνν0ðω¼0Þ

c − U, right) at Matsubara frequencies νð0Þ ¼ ð2nð0Þ þ 1Þπ=β. The calculations have been performed for the
Hubbard model on a square lattice with nearest-neighbor hopping t at T ¼ 0.4t, U ¼ 4.8t (lower panel) and U ¼ 5.08t (upper panel).
The intensity (color bar) is given in units of 4t. Adapted from Schäfer et al., 2016.
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Reason: divergences of vertex parts of the
parquet decomposition

F
Well 

behaved



How to circumvent the divergences?

O. Gunnarsson, TS, et al., Phys. Rev. B 93, 245102 (2016)
TS, et al. Phys. Rev. Lett. 110, 246405 (2013), TS, et al., Phys. Rev. B 94, 235108 (2016), O. Gunnarsson et al., Phys. Rev. Lett. 119, 056402 (2017), …

J. Vučičević et al., Phys. Rev. B 97, 125141 (2018), 

Bethe-Salpeter summations (well behaved dominant channel)

Different decomposition (not parquet, but, e.g. single boson exchange)

F. Krien, et al., 
Phys. Rev. B 100, 155149 (2019)



Strategies of tackling complex problems:
rely on Latin mottos!

”teach everything”
good start (however, not very constructive)

“divide and rule”
“change what has to 

be changed”

TS and A. Toschi, J. Phys.: Condens. Matter 33 214001 (2021), Special Issue: Emerging Leaders 2020



“Mutatis mutandis”:
changing the representation of the DSE…

O. Gunnarsson, TS, et al., Phys. Rev. Lett. 114, 236402 (2015)

Equivalent due to
SU(2)-symmetry and
crossing relations

Same result, if all sums are performed –
what about partial sums?



“Mutatis mutandis”:
… and performing partial sums…

O. Gunnarsson, TS, et al., Phys. Rev. Lett. 114, 236402 (2015)

… omitting the sum over the transfer momentum Q

… omitting the sum over the bosonic frequency iΩn

à histograms

à pie charts



Fluctuation diagnostics: application 1
The attractive Hubbard model

O. Gunnarsson, TS, et al., Phys. Rev. Lett. 114, 236402 (2015)

Model: 2D Hubbard, n=0.87, square lattice, T=0.1t, U=-4t
Technique: DCA, Nc=8

Charge and pp fluctuations
well-defined and long-lived!



Fluctuation diagnostics: application 2
The repulsive Hubbard model: origin of the pseudogap

O. Gunnarsson, TS, et al., Phys. Rev. Lett. 114, 236402 (2015)

Model: 2D Hubbard, n=0.94, square lattice, t’=-0.15t, T=0.067t, U=7t
Technique: DCA, Nc=8

long-lived short-lived

Spin wins!



Fluctuation diagnostics: application 2
The repulsive Hubbard model: origin of the pseudogap

W. Wu, et al., Phys. Rev. B 96, 041105(R) (2017)

Model: 2D Hubbard, square lattice,
t’=-0.15t, T=0.1t, U=7t

Technique: DCA with NC=8

n=0.94
t’=-0.3t, T=0.2t, U=5.6t

DiagMC

X. Dong, et al., Phys. Rev. B 100, 235107 (2019)

Charge picture

Spin picture



Fluctuation diagnostics: application 2
Origin of the pseudogap: what about d-wave pp-fluctuations?

4

bution to the k′ summation stems from the single term
proportional to χsp(k′ − k) in Eq. (12b), evaluated for
(K′−K) = Π and ν′−ν = 0. This explains the rather
small values of Σ̃Q and Σ̃ω for Q "= Π or ω "= 0, respec-
tively, in the spin picture. We note that this situation
corresponds to histograms and pie charts, very similar to
those observed for the DCA calculation of Fig. 1 in the
manuscript.

At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
tion of k′−k (or q−k−k′), see Eqs. (12a) and (12c).
Therefore, when performing the partial summations over
k′ in the EOM, only the single contribution forK′−K=Π

and ν′−ν=0 (Q−Q−K′=Π and ν−ν′−ω=0) is large
in this sum. On the other hand, such a contribution ap-
pears for each value of Q and ω. This explains well the
fact that in the charge and the particle-particle pictures
the contributions Σ̃Q and Σ̃ω, respectively, to the self-
energy are uniformly distributed among all values of Q
and ω as it is observed in the histograms and pie chart
(only particle-particle) in Fig. 2. Let us stress, that χsp

does contribute to Fr in the charge and particle-particle
picture, but only as a function of k′−k rather than q.
Hence, one can argue that in the charge and particle-
particle representation spin fluctuations are seen from a
not “convenient” perspective. From this specific point
of view, a well-defined collective spin-mode will appear
as short-range (or even local) and short-lived charge or
particle-particle fluctuations, as indicated by the demo-
cratic distribution of Σ̃Q and Σ̃ω among all values of Q
and ω.

Obviously the above analysis is applicable also to the
attractive Hubbard model (U < 0): In this situation
charge and particle-particle fluctuations are expected to
dominate while spin fluctuations are strongly suppressed.
Hence, χch(Q = Π,ω = 0) and χpp(Q = 0,ω = 0),
0= (0, 0), are enhanced. In the spin picture these ar-
guments for χch and χpp appear for only one value of k′

when performing the k′ summation. On the contrary, in
the charge and in the particle-particle picture, χch

(or χpp) is a function of Q and ω and the above men-

tioned large contribution to Σ̃Q and Σ̃ω appears for each

value of k′. Hence, Σ̃Q and Σ̃ω get strongly peaked at
Q=Π and ω=0, respectively, in the charge description
and Q=0 and ω=0 in the particle-particle description,
while in the spin picture Σ̃Q is almost independent of Q.

The above discussion based on the vertex decompo-
sition in Eqs. (12) is rigorously justified only for small
values of U where corrections beyond Eqs. (12) are neg-
ligible. This highlights the importance of the fluctuation
diagnostics approach which is applicable for all values of
the interaction. In fact, the fluctuation diagnostics for
the DCA self-energy in the pseudogap regime of the re-
pulsive two-dimensional Hubbard model gives gives his-
tograms/pie charts for Σ̃Q and Σ̃ω dominated by Q=Π

and ω=0 in the spin representation, indicating the domi-
nant role played by a well defined and long-lived (Q=Π,
ω=0) spin collective mode. We note that this hold even
in a regime, where Eqs. (12) break down. Specifically
we note that while the main bosonic structures of F de-
scribed in Eqs. (12) give a significant contribution to the
self-energy even in the non-perturbative regime, the mo-
mentum differentiation observed in the histograms orig-
inates from contributions beyond Eqs. (12).

d-WAVE PAIRING FLUCTUATIONS

Let us finally comment on the role of particle-particle
fluctuations for the self-energy in the repulsive Hubbard
model: In the decomposition of the vertex [Eqs. (12)]
only the s−wave superconducting susceptibility χpp en-
ters, which is always suppressed for U > 0. The corre-
sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
graph.
In the following we show explicitly that d−wave pairing

fluctuation are irrelevant for the self-energy even close to
the corresponding superconducting instability. Consider-
ing the d−wave pairing operator∆†=
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K f(K)c†K↑c

†
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where f(K)= f(−K) =cosKx−cosKy, the corresponding
pairing fluctuations are given by
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where the Q = (0, 0) term corresponds to contributions
from superconductivity fluctuations. For large supercon-
ducting fluctuations, one might then have expected also
a large contribution to Σ due to the similar structure of
Eq. (14) and Eq. (13), which is, however, not observed
in our DCA results. This absence of significant effects
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bution to the k′ summation stems from the single term
proportional to χsp(k′ − k) in Eq. (12b), evaluated for
(K′−K) = Π and ν′−ν = 0. This explains the rather
small values of Σ̃Q and Σ̃ω for Q "= Π or ω "= 0, respec-
tively, in the spin picture. We note that this situation
corresponds to histograms and pie charts, very similar to
those observed for the DCA calculation of Fig. 1 in the
manuscript.

At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
tion of k′−k (or q−k−k′), see Eqs. (12a) and (12c).
Therefore, when performing the partial summations over
k′ in the EOM, only the single contribution forK′−K=Π

and ν′−ν=0 (Q−Q−K′=Π and ν−ν′−ω=0) is large
in this sum. On the other hand, such a contribution ap-
pears for each value of Q and ω. This explains well the
fact that in the charge and the particle-particle pictures
the contributions Σ̃Q and Σ̃ω, respectively, to the self-
energy are uniformly distributed among all values of Q
and ω as it is observed in the histograms and pie chart
(only particle-particle) in Fig. 2. Let us stress, that χsp

does contribute to Fr in the charge and particle-particle
picture, but only as a function of k′−k rather than q.
Hence, one can argue that in the charge and particle-
particle representation spin fluctuations are seen from a
not “convenient” perspective. From this specific point
of view, a well-defined collective spin-mode will appear
as short-range (or even local) and short-lived charge or
particle-particle fluctuations, as indicated by the demo-
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Obviously the above analysis is applicable also to the
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tograms/pie charts for Σ̃Q and Σ̃ω dominated by Q=Π
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ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
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perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
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ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
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inates from contributions beyond Eqs. (12).
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ters, which is always suppressed for U > 0. The corre-
sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
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we note that while the main bosonic structures of F de-
scribed in Eqs. (12) give a significant contribution to the
self-energy even in the non-perturbative regime, the mo-
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nant role played by a well defined and long-lived (Q=Π,
ω=0) spin collective mode. We note that this hold even
in a regime, where Eqs. (12) break down. Specifically
we note that while the main bosonic structures of F de-
scribed in Eqs. (12) give a significant contribution to the
self-energy even in the non-perturbative regime, the mo-
mentum differentiation observed in the histograms orig-
inates from contributions beyond Eqs. (12).

d-WAVE PAIRING FLUCTUATIONS

Let us finally comment on the role of particle-particle
fluctuations for the self-energy in the repulsive Hubbard
model: In the decomposition of the vertex [Eqs. (12)]
only the s−wave superconducting susceptibility χpp en-
ters, which is always suppressed for U > 0. The corre-
sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
graph.
In the following we show explicitly that d−wave pairing

fluctuation are irrelevant for the self-energy even close to
the corresponding superconducting instability. Consider-
ing the d−wave pairing operator∆†=

∑
K f(K)c†K↑c

†
−K↓,

where f(K)= f(−K) =cosKx−cosKy, the corresponding
pairing fluctuations are given by

〈∆†∆〉 =
∑

K,K′

f(K)f(K′)〈c†K↑c
†
−K↓c−K′↓cK′↑〉

−
∑

K

[f(K)]2〈c†K↑cK↑〉〈c
†
−K↓c−K↓〉, (13)

To make a connection with the self-energy we rewrite
Eq. (1) of the main text

N

Uβ

∑

ν

[Σ(k)−
Un

2
]g(k) =

∑

K′,Q

〈c†K↑c
†
Q−K↓c−K′↓cQ+K′↑〉

−
∑

K′

〈c†K↑cK↑〉〈c
†
K′↓cK′↓〉, (14)

where the Q = (0, 0) term corresponds to contributions
from superconductivity fluctuations. For large supercon-
ducting fluctuations, one might then have expected also
a large contribution to Σ due to the similar structure of
Eq. (14) and Eq. (13), which is, however, not observed
in our DCA results. This absence of significant effects
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bution to the k′ summation stems from the single term
proportional to χsp(k′ − k) in Eq. (12b), evaluated for
(K′−K) = Π and ν′−ν = 0. This explains the rather
small values of Σ̃Q and Σ̃ω for Q "= Π or ω "= 0, respec-
tively, in the spin picture. We note that this situation
corresponds to histograms and pie charts, very similar to
those observed for the DCA calculation of Fig. 1 in the
manuscript.

At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
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does contribute to Fr in the charge and particle-particle
picture, but only as a function of k′−k rather than q.
Hence, one can argue that in the charge and particle-
particle representation spin fluctuations are seen from a
not “convenient” perspective. From this specific point
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cratic distribution of Σ̃Q and Σ̃ω among all values of Q
and ω.

Obviously the above analysis is applicable also to the
attractive Hubbard model (U < 0): In this situation
charge and particle-particle fluctuations are expected to
dominate while spin fluctuations are strongly suppressed.
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(or χpp) is a function of Q and ω and the above men-

tioned large contribution to Σ̃Q and Σ̃ω appears for each
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Conclusions and perspective

• General strategies for insight in the
origins of correlated spectra via the 
Dyson-Schwinger equation of motion

• Prerequisite: access to (unbiased) one- and two-particle Green function

• Parquet decomposition
• Numerically heavier (parquet inversions)
• Unstable for increasing U
• Generalizable to response functions

• Fluctuation diagnostics
• Relatively lightweighed
• Flexible / applicable everywhere

O. GUNNARSSON et al. PHYSICAL REVIEW B 93, 245102 (2016)

Ref. [42], that the positive (i.e., non-Fermi-liquid) slope of
Im!(K,iν) in the lowest-frequency region for K = (π,0)
indicates a pseudogap spectral weight suppression at the
antinode. The parquet decomposition of the two self-energies
is, however, very similar: The strong oscillations of the
various channels clearly demonstrate that in the parameter
region where a pseudogap behavior is found in DCA, the
parquet decomposition displays already strong oscillations.
It is also interesting to notice that, similarly as we discussed
in the previous section, also in this case, the spin-channel
contribution of the parquet decomposition is the only one
displaying a well-behaved shape, with values of the order of
the self-energy and no frequency oscillations. Consequently,
also for the DCA self-energy in the pseudogap regime, a
Bethe-Salpeter decomposition in the spin channel of the
self-energy remains valid (see right panel of Fig. 8). As
discussed in the previous section, this might be interpreted as a
hallmark of the predominance of the spin-scattering processes
in a nonperturbative regime, where a well-behaved parquet
decomposition is no longer possible. In this perspective, the
physical interpretation would match very well the conclusions
derived about the origin for the pseudogap self-energy of DCA
by means of the recently introduced fluctuation diagnostics

method [42]. At present, hence, the post processing of a given
numerical self-energy provided by the fluctuation diagnostics
procedure appears the most performant because, differently
from the parquet decomposition, it remains applicable, without
any change, also to nonperturbative cases.

After discussing our parquet decomposition calculations,
their proposed physical interpretation, and their limitation in
applicability, it is natural to wonder where such limitations
arise from. This analysis is, in fact, very important also beyond
the calculations presented in this work because the parquet
equations represent the base-camp of several novel quantum
many-body schemes aiming at the description of strongly
correlated electron beyond the perturbative regime.

As we anticipated before, the reason for the occurrence
of strong low-frequency oscillations in the parquet decom-
position can be traced to the divergence of the 2PI vertex
functions observed by increasing U [48] or, equivalently,
to the occurrence of singularities in the generalized ph
charge (χch) and pp (↑↓ and/or singlet) (χpp) susceptibilities.
The investigation of the exact relation between the peculiar
behavior of the parquet decomposition by increasing U and the
singularities of the corresponding generalized susceptibility
matrix will be explicitly addressed below.
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FIG. 8. Parquet decomposition of the DCA self-energy ![K,iν] with Nc = 8 for the low-T , underdoped case n = 0.94 with U = 1.75 eV
and β = 60 eV−1 (see text). Left upper panel: parquet decomposition for the antinodal DCA self-energy [K = (π,0)]; right upper panel:
Bethe-Salpeter decomposition of the antinodal DCA self-energy. Left lower panel: parquet decomposition of the nodal [K = ( π

2 , π
2 )] DCA

self-energy. Right lower panel: Bethe-Salpeter decomposition of the nodal DCA self-energy.
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Conclusions and perspective

• Very versatile tools: 
• Many techniques applicable (DiagMC, DCA, etc.)
• Many applications

• Pseudogap phase of repulsive Hubbard model
• Different regimes of magnetic fluctuations
• Fluctuations of phonons
• …

• Outlook
• Multiorbital systems
• Symmetry-broken phases
• Cluster diagnostics, symmetry diagnostics
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