Electric field control of magnetism in oxide heterostructures

Manuel Bibes

Unité Mixte de Physique CNRS / Thales, Palaiseau
Université Paris Saclay (FRANCE)

http://oxitronics.wordpress.com
manuel.bibes@cnrs-thales.fr
Power consumption of ICT systems

Global Semiconductor market size ~ $5 trillion by 2030

Average US Household Computing Power Consumption: 2-3kWh / day

Year

TWh

0 2000 4000 6000 8000 10000

Do Nothing
Energy ~ 100pJ/op
~20% primary energy

New Moore scaling
In 20 yrs
Energy = 20pJ/op
IT=30-40% growth

New Moore scaling in 10 yrs
Energy = 20fJ/op
IT=hold to 8%

Projection based on consumer electronics + data centers

Courtesy R. Ramesh
Power needs in microprocessors

Intel « Sandy bridge »

- Read one 64-bit number in SRAM: 14 pJ
- Multiply two 64-bit numbers: 50 pJ
- Move one 64-bit number 10 mm away: 300 pJ
- Move one 64-bit number from external RAM: 10000 pJ

Power needs in microprocessors

Data transfer on-chip consumes most of the power!

- « Bring memory into logic »
- Embed memory elements in the logic units
- Ferroic materials can bring solutions for beyond CMOS electronics

GPUs and the future of parallel computing, W.J. Dally et al, IEEE Micro (2011)
Enter spintronics...

The electron has a charge (-e) and a spin (↑,↓).

Electronics
- Charge
- Electric field
- Current or voltage measurement

Magnetism
- Magnetization
- Magnetic field
- External element (magnetometer)

Spintronics
- Electron spin
- Magnetic field, spin-polarized current
- Current or voltage measurement

Information vector
Control
Detection
Enter spintronics...

The electron has a charge (-e) and a spin (↑, ↓).

Information vector

Electronics
Charge
Electric field
Current or voltage measurement

Magnetism
Magnetization
Magnetic field
External element (magnetometer)

Spintronics
Electron spin

Electric field?

External element (magnetometer)

Current or voltage measurement
Non-magnetic metal: DOS is the same for spin up and spin down
Ferromagnetic metal: different DOS for spin up and spin down
- spin-polarization of electrons near E_F
- different transport properties for spin up and spin down electrons

Spintronics exploits spin-sensitivity of electron transport
MTJ: Trilayer device: two ferromagnetic electrodes separated by thin insulator

MTJs show tunnel magnetoresistance (TMR)
- The TMR amplitude increases with the spin-polarization of the electrodes
- Typically switching between P and AP configuration is done by a magnetic field
- Useable for **non-volatile data storage**
Magnetic random access memory (MRAM)

- MRAM are commercial since 2006
- Chip capacity approaching 1 Gb
- Market ~ $ 1 billion
- So far small companies (Everspin, Freescale)
- Samsung announced mass production for 2018
Electric field control of magnetism with oxide heterostructures

Magnetic random access memory (MRAM)

- Move from current-based approaches to electric-field-based approaches
- Electric-field applied across an insulator: power consumption \(\sim 0 \)

GOAL

- How to achieve electric-field control of magnetism?
 - Use multiferroic materials or multiferroic architectures

E > 1000 fJ/bit

E ~ 10-100 fJ/bit

E < 0.1 fJ/bit
Introduction to ferroic orders

Ferroic orders

- **Ferroelectric**
 - P vs E
 - Hysteretic dependence of order parameter: good for data storage

- **Ferromagnetic**
 - M vs H
 - Multiple order parameters: increased storage density
 - Coupled orders: enhanced flexibility for data writing

- **Ferroelastic**
 - σ vs T

- **Ferrotoroidic**
 - S vs T

Multiferroic / Magnetoelectric

- P vs E
 - "Intrinsic"

- M vs H
 - "Artificial"

Different approaches for E-field control of magnetism

Intrinsic magnetoelectric
- Use single-phase multiferroic material

Field-effect
- Combine strong ferroelectric with carrier-mediated ferromagnet

Strain-driven
- Combine piezoelectric or ferroelectric/ferroelastic with magnetostrictive ferromagnet
Controlling magnetism with electric fields

Magnetic anisotropy

Exchange bias

Magnetic moment

Magnetic order

Curie temperature

Spin polarization

Different approaches for E-field control of magnetism

Intrinsic magnetoelectric

- Use single-phase multiferroic material

Field-effect

- Combine strong ferroelectric with carrier-mediated ferromagnet

Strain-driven

- Combine piezoelectric or ferroelectric/ferroelastic with magnetostrictive ferromagnet
E-field control of magnetism with intrinsic multiferroics

There are very few (room-temperature) multiferroics

BiFeO$_3$: a room-temperature multiferroic

Ferroelectric properties
- Very high $T_C \approx 1100$ K
- Very large $P=100$ µC/cm2

Béa, MB et al, APL 93, 072091 (2008)

Magnetic properties
- G-type antiferromagnetic + cycloidal modulation ($\lambda=62$ nm)
- Weak moment with periodic modulation
- $T_N \approx 640$ K

Influence of epitaxial strain on the magnetic properties of BiFeO$_3$

Strain (%)

- Cycloidal state is destabilized by strain-induced (magnetoelastic) anisotropy
- Weak-FM state at high tensile or compressive state
- New cycloid stabilized at low tensile strain

\[W - W_{L=[1\overline{1}0]} \text{ (kJ/m}^3\text{)} \]

E-field induced magnetization switching with BiFeO$_3$ thin films

Sequential switching of P promotes switching of weak M

Application of out-of-plane voltage to BFO film promotes local switching of magnetization in Co film grown on top of BFO

Heron et al, Nature 370, 516 (2014)
Different approaches for E-field control of magnetism

Intrinsic magnetoelectric
- Use single-phase multiferroic material

Field-effect
- Combine strong ferroelectric with carrier-mediated ferromagnet

Strain-driven
- Combine piezoelectric or ferroelectric/ferroelastic with magnetostrictive ferromagnet
Field-effect control of magnetism

- Charge accumulation / depletion thanks to a dielectric or ferroelectric (non-volatile)
- If magnetism in channel material is (highly) sensitive to carrier density
 > **Change of magnetic properties by electric field**
- Effect occurs over small distance, typically **Thomas Fermi screening length** (Å for metals, nm for oxides)

Hemberger et al., PRB, 66, 094410 (2002)
Field-effect control of Curie temperature

- Combination of a **ferroelectric** and a **carrier-mediated ferromagnet**
- Switching P in ferroelectric PZT produces charge accumulation/depletion in manganite
- Change T_C of manganite
- Limited to low-temperature (also with GaMnAs)

Field-effect control of Curie temperature

Increase accumulated charge density: ionic liquids

- Large field effect in 0.6 nm Co film using ionic liquid gating
- Possible with ferroelectrics (i.e. PZT/ultrathin Co)?

Electric-field control of spin polarization

Change of spin polarization of Fe depending on ferroelectric polarization direction

Probe this effect in Fe/BTO/LSMO tunnel junctions

Duan et al., PRL 97, 047201 (2006)
Fechner et al, PRB 78, 212406 (2008)
Electric-field control of spin polarization

- Change of spin polarization of Fe depending on ferroelectric polarization direction
- Probe this effect in Fe/BTO/LSMO tunnel junctions

- TMR amplitude depends on direction of P
- Ferroelectric control of spin polarization
- Combination of field-effect and hybridization changes

Different approaches for E-field control of magnetism

Intrinsic magnetoelectric
- Use single-phase multiferroic material

Field-effect
- Combine strong ferroelectric with carrier-mediated ferromagnet

Strain-driven
- Combine piezoelectric or ferroelectric/ferroelastic with magnetostrictive ferromagnet
Strain-induced control of magnetic anisotropy

Principle:
E-field applied to PZT: change in PZT dimensions due to **converse piezoelectric effect**
→ Change in dimensions induced in Ni: strain effect
→ Due to **magnetostriction** in Ni, strain modifies the magnetic properties

Electric-field induced control of magnetization easy axis
Strain-induced control of magnetic order

\[\text{Fe CONTENT (at.\%)} \]
\[\begin{array} {c c c c c c}
20 & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline
300 & 600 & 900 & 1200 & 1500 \\
\end{array} \]

Paramagnetic phase Antiferromagnetic phase Ferromagnetic phase

\(\gamma \) phase : fcc ; \(\alpha \) phase : disordered bcc
\(\alpha' \) phase : Fe/rh ordered bcc

van Driel et al, JAP 85, 1026 (1999)

- Near Fe\(_{50}\)Rh\(_{50}\), transition from AFM to FM at about 370K
- Transition is first order
- Associated large resistivity drop
- Jump of cell volume by ~1% at \(T^* \)

Magnetic state of FeRh is sensitive to pressure

Grow on \textbf{ferroelectric/ferroelastic BaTiO}_3 substrate to achieve E-field control

Zakharov et al, Sov. Phys. JETP 19, 1348 (1964)
Strain-induced control of magnetic order

- At 0V at 20 kOe, $T^* \approx 360$ K
- Voltage shifts T^* by ~ 20K
- Effect is reversible
- Positive or negative voltages give roughly similar effect

Max magnetization change ~ 600 emu/cm3
- ME coupling $\alpha = 1.6 \times 10^{-5}$ s/m
- Larger than in any single phase material by 5 orders
- Larger than in any artificial multiferroic by factor > 10

Strain-induced control of magnetic order

Direct imaging of magnetic state using XCMD-PEEM

-20V
Ferromagnetic state

0V
Mixed ferro/antiferromagnetic state

50V
Antiferromagnetic state

T=385 K

Switch ferromagnetism **OFF and ON** by electric field, just above room temperature

Different approaches for E-field control of magnetism

Intrinsic magnetoelectric

- Use single-phase multiferroic material

- **✓** Simple approach, just one material
- **✓** Beautiful physics, potential for new science
- **✗** BFO only RT multiferroic
- **✗** Can be leaky, hard to switch

Field-effect

- Combine strong ferroelectric with carrier-mediated ferromagnet

- **✓** Broader choice of materials
- **✓** Well-suited for perpendicular transport
- **✗** Few ferromagnetic oxides with high T_C; need simple metals
- **✗** Effect occurs over very small thickness (few nm max)
- **✗** Needs very large fields

Strain-driven

- Combine piezoelectric or ferroelectric/ferroelastic with magnetostrictive ferromagnet

- **✓** Broader choice of materials
- **✓** Effect occurs over whole FM film
- **✗** Fatigue + low endurance
- **✗** Hard to miniaturize
Different approaches for E-field control of magnetism

- New approaches / new ingredients
 - Interconvert charge and spin currents using spin-orbit coupling
 - Engineer topological spin-textures controllable by electric fields

Hermes Trismegistus « Emerald tablet »
Yoshinori Tokura « Quantum Science on Strong Correlation Report 2014 »
Fermi contours in 2DEGs

Topological insulator

Rashba interface

Direct and inverse Rashba-Edelstein effects

Direct Rashba-Edelstein effect

- Inject a charge current J_C
- Generation of a spin accumulation \rightarrow Spin current J_S

V. M. Edelstein, Solid State Commun. 73, 233 (1990)

Inverse Rashba-Edelstein effect

- Inject a spin current J_S
- Inequivalent shift of both Fermi contours \rightarrow Generation of a charge current J_C

- 3D spin current produces 2D charge current \rightarrow figure of merit is a length

$$\lambda_{\text{IEE}} = \frac{J_C}{J_S} = \frac{\alpha_R \tau}{\hbar}$$

α_R : Rashba coeff.
τ : scattering time
LaAlO$_3$/SrTiO$_3$ interface system

- Well-known oxide interface system
- 2-dimensional electron gas forms at interface despite both LAO and STO being two insulators
- High mobility (>1000 cm2/Vs) and low carrier density (\sim1013 cm$^{-2}$)
- Gate-tuneable **Rashba spin-orbit coupling**
 A.D. Caviglia et al., PRL. 104, 126803 (2010)

- Combine 2 unit-cells of LAO and 2 nm of NiFe (permalloy)
- TEM and AFM analysis indicates smooth surface and interfaces
Detected voltage:
- Symmetric Lorentzian shape
- Sign reversal upon \(+H\rightarrow -H\) inversion

\[+\sigma \rightarrow -\sigma \]
\[+V \rightarrow -V \]
Efficient spin-to-charge current conversion via the Inverse Edelstein Effect (IEE):

\[\lambda_{IEE} = \frac{j_c}{j_s} = \frac{\alpha_R \tau}{\hbar} \]

Strong gate dependence, reminiscent of gate dependent Rashba coefficient in WAL data

Can one quantify \(\lambda_{IEE} \)?

E. Lesne, MB et al., Nature Mater. 15, 1261 (2016)
Spin to charge current conversion

- Efficient spin-to-charge current conversion via the Inverse Edelstein Effect (IEE):
 \[\lambda_{IEE} = \frac{j_c}{j_s} = \frac{\alpha_R \tau}{\hbar} \]

- Largest efficiency reported for any material

- Efficient larger than in Bi/Ag interface (\(\lambda_{IEE} = 0.3 \text{ nm}\)) and in topological insulator \(\alpha\)-Sn (\(\lambda_{IEE} = 4 \text{ nm}\))

- Values of \(\lambda_{IEE}\) compatible with reported values of \(\alpha_R \sim 0.01-0.05 \text{ eV.Å}\) and measured \(\tau \sim 10-100 \text{ ps}\)

 E. Lesne, MB et al., Nature Mater. 15, 1261 (2016)
Conclusions and perspectives

- Oxide materials and heterostructures offer **many possibilities for E-field control of magnetism**
 - With multiferroics (works but at room temperature limited to BiFeO$_3$)
 - Through field effect (limited efficiency, requires ultrathin films and large fields)
 - Through field-controlled strain (efficient but hard to miniaturize)
 - New possibilities for **spin/charge interconversion** at oxide interfaces with **Rashba SO coupling**
 - Could work at room temperature? Be larger in other systems than LAO/STO?

 Topological states at the (001) surface of SrTiO$_3 M. Vivek et al, ArXiv 1702.05974

- Opportunities for devices in spintronics
 - Memory: future generation of MRAMs?
 - **Memory into logic**: new spin-based transistors combining ME coupling + spin-charge conversion

 Spin-Orbit Logic with Magnetoelectric Nodes S. Manipatruni et al (INTEL), ArXiv 1512.05428

- Opportunities for new physical effects
 - **Topology meets correlations**
 - In real space:
 - Topological spin textures \(\Rightarrow\) new physical effects (topological Hall effect, top. orbital moment)
 - Effects amplified by correlations?
 - Controllable through field-effect?

 Role of Berry-phase for describing orbital magnetism J. Hanke et al, PRB 94, 12114 (2016)
 Giant topological Hall effect from skyrmion bubbles in correlated manganite thin films, L. Vistoli, MB et al, submitted

 - In reciprocal space:
 - Novel types of topological materials (iridates, osmates, etc)
 - New state variables for information processing (beyond spin and charge)