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Cluster DMFT & Hubbard model: robust features 2

• Robust in various clusters: 2x2, 
8,  16, larger cluster at small U.

• Dome vs doping. 

• Role of J in the pairing 
mechanism ?

• Emerging from Mott insulator.

• k-space differentiation nodes/
antinodes. Fermi Arcs. 

• No long range order

• Role singlets. RVB ?
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic

Cf talks by Millis,
Kotliar, Tremblay

Pseudo-gap d-wave SC

Many authors: Civelli, Ferrero, 
Georges, Gull, Haule, Jarrell, Kotliar, 

Lichtenstein, Katsnelson, Maier, 
Millis,Sordi, Tremblay,OP, .... 

Many observed features in pseudo-gap and SC phase
Many open questions (low T, CDW, ...)



Outline

• A minimal picture of the pseudo-gap with a dimer in a bath. 

• Liquid of singlets/dimers (RVB) 

• Mean field with a dimer in a bath ? 
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• Spin-fluctuation and Mott physics : a unified framework

• Motivations:

• DMFT clusters miss effect of long-range (spin) fluctuations.

• k resolution for A(k,ω), Σ(k,ω) is still poor.

• Convergence is too slow with cluster size in e.g. pseudo-gap 
region.  Sign problem. 

• Better use of a little impurity/dimer in a bath ?



4

Quantum dimer in a bath ....

M. Ferrero, P. S. Cornaglia, L. De Leo, O. P. , G. Kotliar, A. Georges, EPL, PRB 2009-2010
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that the properties of each region will be described by
one orbital of the effective impurity model. More pre-
cisely, we choose the minimal set of two patches of equal
area P+ and P− represented in Fig. 1: P+ is a central
square centered at momentum (0, 0) and containing the
nodal region; the complementary region P− extends to
the edge of the BZ and contains in particular the antin-
odal region and the (π, π) momentum. On Fig. 2, we also
present the partial density of state of both patches.
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FIG. 1: (Color online) The Brillouin zone is divided into two
patches P+ (inside the inner blue square) and P− (between
the two squares). The dotted line is the free (U = 0) Fermi
surface at δ = 0.1 for t′/t = −0.3. P+ (resp. P−) encloses the
nodal (resp. antinodal) region.
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FIG. 2: (Color online) Partial density of states of the two
patches P+ (solid blue curve with circles) and P− (solid
red curve with squares), and total density of states (dashed
curve); t′/t = −0.3.

It is important to check that the main qualitative re-
sults of our approach are independent of the precise shape
of the patches. We will discuss this point in Sec. III E,
and show that indeed our results are qualitatively similar
for a family of patches in which the P+ patch encloses a
variable part of the bare Fermi surface around the nodal

point. Moreover, we have also considered another clus-
ter method, cellular-DMFT (CDMFT),4,18 and obtained
qualitatively similar results. Because two-site CDMFT
breaks the lattice square symmetry, we focus here on a
generalized DCA approach.

Following the DCA construction (see also Ap-
pendix A), we associate a momentum-independent self-
energy Σ±(ω) to each patch of the Brillouin zone. This
self-energy is then identified with the Fourier transform
of the cluster self-energy of a two-site cluster of Ander-
son impurities embedded in a self-consistent bath. This
two-site Anderson impurity model is given by

Seff = −
∫∫ β

0
dτdτ ′

∑

a,b=1,2
σ=↑,↓

c†aσ(τ)G−1
0,ab(τ, τ

′)cbσ(τ ′)

+

∫ β

0
dτU

∑

a=1,2

na↓na↑(τ) (3)

G−1
0ab(iωn) = (iωn + µ)δab − t̄(1 − δab) − ∆ab(iωn), (4)

where a, b = 1, 2 is the site index, U is the on-site inter-
action, ∆ is the hybridization function with a local com-
ponent ∆11(ω) = ∆22(ω) and an inter-site one ∆12(ω).
We choose a convention in which the hybridization ∆
vanishes at infinite frequencies and therefore denote the
constant term separately (t̄). Since we restrict ourselves
to paramagnetic solutions, we dropped the spin depen-
dence of G0, ∆ and t̄. The self-consistency condition de-
termines both ∆ and t̄ and is written in the Fourier space
of the cluster, which in this case reduces to the even and
odd orbital combinations c†±σ = (c†1σ ± c†2σ)/

√
2:

ΣK(iωn) =G0K(iωn)−1 − GK(iωn)−1 (5)

GK(iωn) =
∑

k∈PK

1

iωn + µ − εk − ΣK(iωn)
. (6)

In this expression, momentum summations are normal-
ized to unity within each patch, and the index K = ±
refers both to the inner/outer patch index and to the
even/odd orbital combinations of the two-impurity prob-
lem. t̄ is determined by the 1/ω2 expansion of the previ-
ous equations, leading to

t̄ =
∑

k∈P+

εk = −
∑

k∈P−

εk. (7)

The impurity model has the same local interaction as the
original lattice model: This is a consequence of the fact
that both patches have equal surface (see Appendix A).

As usual in the DMFT problems, the quantum impu-
rity model (3) can be rewritten in a Hamiltonian form,
i.e. as the Hamiltonian for a dimer coupled to a self-
consistent bath

H = Hdimer + Hbath, (8)

kx

ky

Two sites in a self-consistent bath ...

• Cut the Brillouin zone into 
two patches P+, P- (of equal volume)
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Inner patch P+ : Nodes

Outer patch P- : Antinodes

Free Fermi surface

2-patch “DCA” construction

Two-site Anderson impurity model

1

Bath	
  	
  	
  	
  	
  

2Even (bonding) orbital 1+2 ↔ nodal patch

Odd (antibonding) orbital 1-2  ↔ antinodal patch
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic



Orbital selective transition in k-space

• At high doping/temperature, DMFT not corrected by cluster terms.

• Around 16%, orbital corresponding to outer patch P- becomes 
insulating : μ - Σ_(0) reaches the band edge of P- patch

• Quasi-particles only exists in the inner patch
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and t′/t = −0.3, which are values commonly used for
modeling hole-doped cuprates in a single-band frame-
work. All energies (and temperatures) are expressed
in units of D = 4t = 1, and the doping is denoted
by δ. We use a two-site effective Anderson impurity
problem, involving the on-site interaction U and two hy-
bridization functions: a local one ∆11(ω) = ∆22(ω) and
an inter-site one ∆12(ω), which are self-consistently de-
termined by relating the two-impurity problem to the
original lattice one. We have investigated several such
embeddings, both of the dynamical cluster approxima-
tion (DCA) and cellular-DMFT (CDMFT) type [4, 12]
with similar results. Here, we focus on a somewhat gen-
eralized form of the DCA embedding, which preserves
the symmetries of the square lattice, in which the Bril-
louin zone is decomposed into two patches of equal sur-
face: a central square (denoted P+) centered at momen-
tum (0, 0) and the complementary region (P−) extend-
ing to the edge of the BZ and containing in particular
the (π, π) momentum. From the lattice Green’s func-
tion, two coarse-grained Green’s functions in momen-
tum space are constructed: G±(ω) =

∑
k∈P±

G(k, ω)

(with momentum summations normalized to unity within
each patch). Following the DCA construction, the in-
ner (resp. outer) patch self-energy is associated with the
even- (resp. odd) parity self-energy of the two-impurity
effective problem, i.e to the even (resp. odd) orbital com-
binations (c†1 ± c†2)/

√
2. Indeed, the states close to (0, 0)

have more bonding character while those close to (π, π)
have more antibonding character. The self-consistency
condition reads: GK(ω) =

∑
k∈PK

[ω+µ−εk−ΣK(ω)]−1.
In this expression, the index K = ± refers both to the in-
ner/outer patch index and to the even/odd orbital combi-
nations. We solve the self-consistent two-impurity prob-
lem using both continuous-time quantum Monte Carlo
(CTQMC) [20] which sums the perturbation theory in
∆ab(iωn) on the Matsubara axis, and an approximate
method geared at low-energy properties: the rotation-
ally invariant slave-boson formalism (RISB) presented
in [19]. The RISB method introduces slave-boson ampli-
tudes φΓn, a density matrix connecting the eigenstates
|Γ〉 of the isolated dimer to the quasiparticle Fock states
|n〉, determined by minimizing (numerically) an energy
functional.

In Fig. 1, we display the real part of the even- and
odd-orbital self-energy at zero frequency, as determined
by both methods, as a function of δ. We find a rather re-
markable agreement between the CTQMC solution and
the low-energy RISB. The two orbitals behave in a simi-
lar way at high doping δ ! 25%. Below this doping level,
we observe an onset of orbital differentiation, which is a
manifestation of momentum differentiation in the lattice
model. This differentiation increases as δ is reduced, un-
til a transition is reached at δ $ 16% (in CTQMC). At
this characteristic doping, µ − Σ ′
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FIG. 1: (Color online) Left: real part of Σ±(0) as a function of
doping level, computed with RISB (lines) and CTQMC (sym-
bols). µ − Σ ′

−(0) (diamonds) reaches the odd-orbital band
edge (dotted line), which becomes empty at low energy be-
low δ ∼ 16%. Right: statistical weights of the various dimer
cluster eigenstates. S is the intra-dimer singlet, 1+ the (spin-
degenerate) state with one electron in the even orbital, E the
empty state and T the intra-dimer triplet. β = 100.

edge corresponding to the odd orbital, and the latter be-
comes empty at low energy and remains so for all lower
dopings. G(k, ω) no longer has poles at ω = 0 in the
outer patch, and low-energy quasiparticles exist only in-
side the inner patch. Hence, at low doping, momentum-
space differentiation becomes strong and manifests itself
as an orbital-selective transition in VB-DMFT.

In order to gain further qualitative insight, we also
plot in Fig. 1 (right part) the statistical weight of several
cluster eigenstates |Γ〉, given within slave bosons by the
amplitude pΓ =

∑
n |φΓn|2. We compare it to a simi-

lar estimate [21] from CTQMC. The agreement between
CTQMC and RISB is again very good, and even quanti-
tative for the two states with highest weights. At large
doping, the empty state and the two spin-degenerate
states with one electron in the even orbital dominate, as
expected. As doping decreases, these states lose weight
and the intra-dimer singlet prevails, reflecting the strong
tendency to valence-bond formation. The states with
immediately lower weights are the one-electron states
and the valence-bond breaking triplet excitation which
dominates over the empty state. Therefore, the orbital
(momentum) differentiation at low doping is governed by
intra-dimer singlet formation, reminiscent of the singlet
regime of the two-impurity Anderson model.

The gaping of the odd orbital (outer patch) is actu-
ally a crude description of the pseudogap phenomenon.
To illustrate this, we compute the tunneling conduc-
tance dI/dV as a function of voltage V . This calcula-
tion is made possible by the high quality, low-noise, of
the CTQMC results on the Matsubara axis, allowing for
reliable analytical continuations to the real axis at low
and moderate energy, using simple Padé approximants.
The conductance is displayed on Fig. 2 together with
the gap ∆ in the odd Green’s function, obtained from
∆ = Σ ′

−(∆) + εmin − µ, with εmin the lower edge of the
band dispersion εk in the outer patch. Note the overall

β=200

band edge of
 P- patch

Effective band transition at low energy
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that the properties of each region will be described by
one orbital of the effective impurity model. More pre-
cisely, we choose the minimal set of two patches of equal
area P+ and P− represented in Fig. 1: P+ is a central
square centered at momentum (0, 0) and containing the
nodal region; the complementary region P− extends to
the edge of the BZ and contains in particular the antin-
odal region and the (π, π) momentum. On Fig. 2, we also
present the partial density of state of both patches.
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FIG. 1: (Color online) The Brillouin zone is divided into two
patches P+ (inside the inner blue square) and P− (between
the two squares). The dotted line is the free (U = 0) Fermi
surface at δ = 0.1 for t′/t = −0.3. P+ (resp. P−) encloses the
nodal (resp. antinodal) region.
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FIG. 2: (Color online) Partial density of states of the two
patches P+ (solid blue curve with circles) and P− (solid
red curve with squares), and total density of states (dashed
curve); t′/t = −0.3.

It is important to check that the main qualitative re-
sults of our approach are independent of the precise shape
of the patches. We will discuss this point in Sec. III E,
and show that indeed our results are qualitatively similar
for a family of patches in which the P+ patch encloses a
variable part of the bare Fermi surface around the nodal

point. Moreover, we have also considered another clus-
ter method, cellular-DMFT (CDMFT),4,18 and obtained
qualitatively similar results. Because two-site CDMFT
breaks the lattice square symmetry, we focus here on a
generalized DCA approach.

Following the DCA construction (see also Ap-
pendix A), we associate a momentum-independent self-
energy Σ±(ω) to each patch of the Brillouin zone. This
self-energy is then identified with the Fourier transform
of the cluster self-energy of a two-site cluster of Ander-
son impurities embedded in a self-consistent bath. This
two-site Anderson impurity model is given by

Seff = −
∫∫ β

0
dτdτ ′

∑

a,b=1,2
σ=↑,↓

c†aσ(τ)G−1
0,ab(τ, τ

′)cbσ(τ ′)

+

∫ β

0
dτU

∑

a=1,2

na↓na↑(τ) (3)

G−1
0ab(iωn) = (iωn + µ)δab − t̄(1 − δab) − ∆ab(iωn), (4)

where a, b = 1, 2 is the site index, U is the on-site inter-
action, ∆ is the hybridization function with a local com-
ponent ∆11(ω) = ∆22(ω) and an inter-site one ∆12(ω).
We choose a convention in which the hybridization ∆
vanishes at infinite frequencies and therefore denote the
constant term separately (t̄). Since we restrict ourselves
to paramagnetic solutions, we dropped the spin depen-
dence of G0, ∆ and t̄. The self-consistency condition de-
termines both ∆ and t̄ and is written in the Fourier space
of the cluster, which in this case reduces to the even and
odd orbital combinations c†±σ = (c†1σ ± c†2σ)/

√
2:

ΣK(iωn) =G0K(iωn)−1 − GK(iωn)−1 (5)

GK(iωn) =
∑

k∈PK

1

iωn + µ − εk − ΣK(iωn)
. (6)

In this expression, momentum summations are normal-
ized to unity within each patch, and the index K = ±
refers both to the inner/outer patch index and to the
even/odd orbital combinations of the two-impurity prob-
lem. t̄ is determined by the 1/ω2 expansion of the previ-
ous equations, leading to

t̄ =
∑

k∈P+

εk = −
∑

k∈P−

εk. (7)

The impurity model has the same local interaction as the
original lattice model: This is a consequence of the fact
that both patches have equal surface (see Appendix A).

As usual in the DMFT problems, the quantum impu-
rity model (3) can be rewritten in a Hamiltonian form,
i.e. as the Hamiltonian for a dimer coupled to a self-
consistent bath

H = Hdimer + Hbath, (8)

kx

ky

Outer/odd Orbital gets 
(pseudo-)gapped



 ARPES intensity maps at Fermi level
• With “cumulant” interpolation...
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FIG. 21: (Color online) Comparison between the recon-
structed Σ(0,π) using M -interpolation (red solid line) and Σ-
interpolation (blue dashed line) in the dimer and the cluster
self-energy of the plaquette calculation at k = (0, π) (black
diamonds), for δ = 0.08 (upper panel) and δ = 0.16 (lower
panel) . β = 200.

reconstructed by interpolation, and as such is the most
direct test of the reconstructed momentum dependence.

B. Fermi arcs and momentum differentiation

We can now study momentum differentiation using the
M -interpolation. As we shall see, VB-DMFT indeed pro-
vides a simple description of momentum differentiation
as observed in ARPES experiments. This is illustrated
by the intensity maps of the spectral function A(k, 0)
displayed in Fig. 22. At very high doping δ ! 25% (not
shown), cluster corrections to DMFT are negligible and
the spectral intensity is uniform along the Fermi surface.
In contrast, as the doping level is reduced, momentum
differentiation sets in around the characteristic doping
at which the localization of the outer orbital takes place.
The intensity maps then display apparent “Fermi arcs”
at finite temperature with higher spectral intensity in the
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FIG. 22: (Color online) Intensity maps of the spectral func-
tion A(k, 0) for different doping levels obtained with M -
interpolation.

nodal direction in comparison to antinodes, in qualitative
agreement with experiments (see e.g. Refs. 13,61) and
earlier CDMFT calculations with larger clusters.23,24,29

The mechanism behind the suppression of spectral weight
at the antinodes at low doping is clearly associated, in
our results, to Mott localization and the importance of
singlet correlations. In technical terms, this is associated
with the large real part in Σ− = Σ(π, π) (cf. Fig. 3),
which induces a pseudogap in the antinodal orbital, and
with the large imaginary part of the self-energy in the
(π, 0) and (π, π) regions, which also contribute to the
suppression of spectral weight in the antinodal region.
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FIG. 23: (Color online) Left panel: Normalized intensity
A(φ, 0)/A(0, 0) along the Fermi surface vs the angle to the
diagonal of the Brillouin zone in degrees (φ = 0 is the node,
φ = ±45 the antinode). The nodal intensity A(0, 0) is 0.045
for δ=6%, 1.66 for δ=10% and 4.61 for δ=14%. β = 200.
Right panel: Angular dependence of the spectral weight along
the Fermi Surface in Ca2−xNaxCuO2Cl2 at x = 0.05 (black
diamonds), x = 0.10 (red squares), and x = 0.12 (blue cir-
cles) along with data from La2−xSrxCuO4 for x = 0.05 and
x = 0.10 (open symbols). Figure reprinted from Ref. 61
(Fig. 3b). Copyright 2005 by Science.

In order to compare this momentum-space differen-
tiation to experiments in a more quantitative manner,

A(k,� = 0)

• Rough resolution.
Two k points only : 
node & antinode, 
the rest is interpolation.



Compatible with larger clusters
• Selective Mott transition in k-space also with 8, 16 clusters

Cf Millis’ talk.

• Appearance of Arcs due to Mott, short range correlation.

• Probably not a real transition at large cluster size

• Gull, OP, Millis Phys. Rev. Lett. 110 216405 (2013) 

• Gull, OP, Werner, Millis Phys. Rev. B 80 245102 (2009)

• Werner, Gull, OP, MillisPhys. Rev. B 80 045120 (2009)  

• Gull, Ferrero, OP, Georges, Millis Phys. Rev. B 82 155101 (2010) 
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic



Singlet state dominates at low doping 9

β=200
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and t′/t = −0.3, which are values commonly used for
modeling hole-doped cuprates in a single-band frame-
work. All energies (and temperatures) are expressed
in units of D = 4t = 1, and the doping is denoted
by δ. We use a two-site effective Anderson impurity
problem, involving the on-site interaction U and two hy-
bridization functions: a local one ∆11(ω) = ∆22(ω) and
an inter-site one ∆12(ω), which are self-consistently de-
termined by relating the two-impurity problem to the
original lattice one. We have investigated several such
embeddings, both of the dynamical cluster approxima-
tion (DCA) and cellular-DMFT (CDMFT) type [4, 12]
with similar results. Here, we focus on a somewhat gen-
eralized form of the DCA embedding, which preserves
the symmetries of the square lattice, in which the Bril-
louin zone is decomposed into two patches of equal sur-
face: a central square (denoted P+) centered at momen-
tum (0, 0) and the complementary region (P−) extend-
ing to the edge of the BZ and containing in particular
the (π, π) momentum. From the lattice Green’s func-
tion, two coarse-grained Green’s functions in momen-
tum space are constructed: G±(ω) =

∑
k∈P±

G(k, ω)

(with momentum summations normalized to unity within
each patch). Following the DCA construction, the in-
ner (resp. outer) patch self-energy is associated with the
even- (resp. odd) parity self-energy of the two-impurity
effective problem, i.e to the even (resp. odd) orbital com-
binations (c†1 ± c†2)/

√
2. Indeed, the states close to (0, 0)

have more bonding character while those close to (π, π)
have more antibonding character. The self-consistency
condition reads: GK(ω) =

∑
k∈PK

[ω+µ−εk−ΣK(ω)]−1.
In this expression, the index K = ± refers both to the in-
ner/outer patch index and to the even/odd orbital combi-
nations. We solve the self-consistent two-impurity prob-
lem using both continuous-time quantum Monte Carlo
(CTQMC) [20] which sums the perturbation theory in
∆ab(iωn) on the Matsubara axis, and an approximate
method geared at low-energy properties: the rotation-
ally invariant slave-boson formalism (RISB) presented
in [19]. The RISB method introduces slave-boson ampli-
tudes φΓn, a density matrix connecting the eigenstates
|Γ〉 of the isolated dimer to the quasiparticle Fock states
|n〉, determined by minimizing (numerically) an energy
functional.

In Fig. 1, we display the real part of the even- and
odd-orbital self-energy at zero frequency, as determined
by both methods, as a function of δ. We find a rather re-
markable agreement between the CTQMC solution and
the low-energy RISB. The two orbitals behave in a simi-
lar way at high doping δ ! 25%. Below this doping level,
we observe an onset of orbital differentiation, which is a
manifestation of momentum differentiation in the lattice
model. This differentiation increases as δ is reduced, un-
til a transition is reached at δ $ 16% (in CTQMC). At
this characteristic doping, µ − Σ ′

−(0) reaches the band
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FIG. 1: (Color online) Left: real part of Σ±(0) as a function of
doping level, computed with RISB (lines) and CTQMC (sym-
bols). µ − Σ ′

−(0) (diamonds) reaches the odd-orbital band
edge (dotted line), which becomes empty at low energy be-
low δ ∼ 16%. Right: statistical weights of the various dimer
cluster eigenstates. S is the intra-dimer singlet, 1+ the (spin-
degenerate) state with one electron in the even orbital, E the
empty state and T the intra-dimer triplet. β = 100.

edge corresponding to the odd orbital, and the latter be-
comes empty at low energy and remains so for all lower
dopings. G(k, ω) no longer has poles at ω = 0 in the
outer patch, and low-energy quasiparticles exist only in-
side the inner patch. Hence, at low doping, momentum-
space differentiation becomes strong and manifests itself
as an orbital-selective transition in VB-DMFT.

In order to gain further qualitative insight, we also
plot in Fig. 1 (right part) the statistical weight of several
cluster eigenstates |Γ〉, given within slave bosons by the
amplitude pΓ =

∑
n |φΓn|2. We compare it to a simi-

lar estimate [21] from CTQMC. The agreement between
CTQMC and RISB is again very good, and even quanti-
tative for the two states with highest weights. At large
doping, the empty state and the two spin-degenerate
states with one electron in the even orbital dominate, as
expected. As doping decreases, these states lose weight
and the intra-dimer singlet prevails, reflecting the strong
tendency to valence-bond formation. The states with
immediately lower weights are the one-electron states
and the valence-bond breaking triplet excitation which
dominates over the empty state. Therefore, the orbital
(momentum) differentiation at low doping is governed by
intra-dimer singlet formation, reminiscent of the singlet
regime of the two-impurity Anderson model.

The gaping of the odd orbital (outer patch) is actu-
ally a crude description of the pseudogap phenomenon.
To illustrate this, we compute the tunneling conduc-
tance dI/dV as a function of voltage V . This calcula-
tion is made possible by the high quality, low-noise, of
the CTQMC results on the Matsubara axis, allowing for
reliable analytical continuations to the real axis at low
and moderate energy, using simple Padé approximants.
The conductance is displayed on Fig. 2 together with
the gap ∆ in the odd Green’s function, obtained from
∆ = Σ ′

−(∆) + εmin − µ, with εmin the lower edge of the
band dispersion εk in the outer patch. Note the overall

Cf Sachdev’s talk.

• Relative weight of various cluster states,  measured: 

• in the Monte Carlo (time spent in the state in the path integral)

• in a (rotationally invariant) slave boson solution
(Lechermann, Georges, Kotliar, OP, 2007)

• Two states of the dimer dominate at low doping : 

• Two spins in a singlet (S)

• 1 spin 1/2 + 1 hole (1+)
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Antinode : not a sharp gap, a pseudogap !

• At the antinode, a pseudogap appears below the transition. 
Correlations have a strong effect (e.g. prominent Hubbard bands)
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nodal region. Instead, in the antinodal region, the Fermi
surface is destroyed and the spectral function vanishes at
the chemical potential. A more precise description of the
actual formation of the Fermi arcs requires to specify a
procedure for reconstructing the momentum dependence
of the self-energy from this two-orbital description: This
is the topic of Sec. V.

A marked difference of behavior between the two or-
bitals at low doping is also found for the quasiparticle
residues (see Fig. 5) defined by

Z± =
(

1 −
dΣ′

±(ω)

dω

∣

∣

∣

ω→0

)−1
. (26)

The CTQMC data and RISB approximation for Z± dif-
fer in absolute value but they both display similar trends.
Again, at high doping Z+ and Z−are close to each other.
As the doping is reduced, Z− decreases (with roughly a
linear dependence on doping) while Z+ remains essen-
tially constant. Below the critical doping, Z− cannot be
interpreted as the spectral weight of a quasiparticle (the
odd orbital is localized), but it does indicates that the
correlations continue to affect the odd-orbital self-energy.
Hence, correlations preferentially act on the antinodal
electrons. In contrast, correlations appear to have lit-
tle influence on Z+ below δc, indicating that the nodal
quasiparticles appear to be “protected” by the opening
of the (pseudo-) gap in the antinodal regions.
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FIG. 6: (Color online) Real parts of the self-energies at ω = 0,
extrapolated from CTQMC results at β = 200, as a function
of U at a fixed doping δ = 8%. The dotted line is the lower
band edge of the P− patch represented in Fig. 2.

The value of the critical doping δc at which the transi-
tion appears depends on the value of the interaction U .
The larger U , the larger δc. To illustrate the effect of U ,
we plot, in Fig. 6, the real parts of the self-energies ex-
trapolated to zero frequency for different values of U at
a fixed doping δ = 8%. The difference between the even
and the odd orbital increases with U . Above U " 1.5,
the renormalized chemical potential falls below the lower
edge of the partial DOS for the outer patch and the odd

spectral function is vanishing at the chemical potential.
However, when U < 1.5, the odd orbital is metallic again,
showing clearly that the Coulomb interaction is at the
origin of the differentiation in momentum space.

B. Spectral functions and the pseudogap at low
doping
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FIG. 7: (Color online) Spectral function A−(ω) for the odd
orbital, obtained with Padé approximants (see Appendix B),
for various dopings at β = 200. A shift of 0.3 has been added
between the curves for clarity. Inset: Zoom of the same curves
at low frequencies (no shift added).

In the previous section, we have shown that strong
orbital differentiation sets in at low-doping levels δ !
16%. In a simplified low-energy description, the effective
chemical potential for the odd orbital is pushed below
the lower band edge. This corresponds to the vanishing
of the low-energy spectral weight of the odd orbital, and
signals the disappearance of low-energy quasiparticles in
the antinodal regions. In this section, we go beyond this
simple low-energy analysis and study the full frequency
dependence of the spectral functions of both the even and
odd orbitals. One of the main outcomes of this study, as
we shall see, is that the odd orbital does not have zero
spectral weight in a finite frequency range around ω = 0,
but rather develops a pseudogap.

The computation of real-frequency spectral functions
is made possible by the very high quality of the CTQMC
results on the Matsubara axis, allowing for reliable an-
alytical continuations to the real axis at low and inter-
mediate energy, using simple Padé approximants42 (see
Appendix B). This is a definite advantage of our simpli-
fied two-orbital approach, in which the statistical noise
of Monte Carlo data can be reduced down to very small
values at a reasonable computational cost. In Fig. 7, we
plot the spectral function A−(ω) of the odd orbital at a
fixed interaction U = 2.5. At high energies, the spectra
display the expected lower and upper Hubbard bands,
and from now we focus on the lower energy range. In

• Effective band transition at low energy, but....

9

this range, the spectra display a central peak. At high
doping, this peak is centered at the Fermi level ω = 0.
As the doping level is reduced, this peak shifts toward
positive energies. At the critical doping δc ! 16%, the
chemical potential is at the lower edge of the peak, in
agreement with the low-energy analysis discussed above.

Correspondingly, the spectral weight at ω = 0 is
strongly suppressed as the doping is reduced from δc !
16%. A pseudogap is formed at low energy, as clear from
the inset of Fig. 7, which deepens as the doping level
is reduced. There is no coherent spectral weight at the
chemical potential. The finite spectral weight at ω = 0 is
due to thermal excitations. In contrast, the finite spec-
tral weight at small but non-zero frequency survives as
temperature is reduced, corresponding to a pseudogap
rather than a true gap in A−(ω).
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FIG. 8: (Color online) Gap to positive coherent excitations in
the odd orbital, obtained from Eq. (28).

The prominent peak at low energies in A−(ω) is asso-
ciated with the first coherent excitations at positive ener-
gies. By neglecting the effect of the imaginary part of the
self-energy, it is possible to precisely identify the position
of this peak as the scale ∆ where the first positive-energy
poles appear in the expression of the odd-orbital Green’s
function

G−(ω) =
∑

k∈P−

1

ω + µ − εk − Σ′
−(ω)

. (27)

Hence, ∆ is the solution of

∆ + µ − εmin − Σ′
−(∆) = 0, (28)

where εmin is the lower-band edge of the outer-patch par-
tial DOS. The solution of this equation is shown in Fig. 8.
The gap ∆ opens below δc and provides a characteris-
tic energy scale for the position of the peak, see inset
in Fig. 7. Note that this energy scale is much smaller
than the deviation of the renormalized chemical potential
µ−Σ′

−(0) from the lower outer-patch band edge because
of the non-trivial frequency behavior of the self-energy.

Furthermore, the magnitude of ∆ as obtained from Fig. 8
is in the range of tens of meV ’s consistent with the typical
magnitude of the pseudogap in cuprates.
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FIG. 9: (Color online) Spectral function A+(ω) for the even
orbital, obtained with Padé approximants (see Appendix B),
for various dopings at β = 200. A shift of 0.2 has been added
between each curves for clarity. Inset: Zoom of the same
curves at low frequencies (no shift added).

In Fig. 9, we display the spectral function A+(ω) of the
even orbital for different doping levels. The dependence
of A+(ω) on doping is rather weak. The main feature
of the non-interacting density of states corresponding to
the central patch (Fig. 2) is recovered on these spectra,
namely a broad peak centered at negative energy with
a tail leaking above the Fermi level. The absence of a
visible lower Hubbard band, as well as the relatively small
spectral weight of the upper Hubbard band (at the same
position ω ! 2 as in A−(ω)), indicate that correlations
have a much weaker effect on the even orbital (central
patch, nodal regions) than on the odd (antinodal) one, as
already anticipated in the previous section. The spectral
function A+(ω) is quite asymmetric, with more hole-like
excitations than particle-like excitations (in line with the
fact that the central patch corresponds mainly to filled
states). At low doping, a small dip appears close to the
chemical potential. The position of this dip is close to
that of the prominent peak in the odd-orbital spectral
function.

C. Comparison with tunneling experiments

A direct comparison can be made between our VB-
DMFT cluster calculations and tunneling experiments in
the normal state of cuprate superconductors. Indeed,
tunneling directly probes the momentum-integrated
spectral density, and hence the comparison is free of the
possible ambiguities associated with momentum-space
reconstruction which influence the comparison of clus-
ter calculations to momentum-resolved spectroscopies (as

Energy scale of pseudogap 
on positive energy side
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FIG. 10: (Color online) Total spectral function Atot(ω) for
various temperature at δ = 0.08. A shift of 0.3 has been
added between each curves for clarity.

discussed in more detail in Sec. V). The tunneling con-
ductance dI/dV as a function of the voltage V is given
by48

dI

dV
∝

∫ +∞

−∞
dω [−f ′(ω − eV )]Atot(ω). (29)

In this expression, tunneling between a normal metal
(with a featureless density of states) and the correlated
sample is considered, f ′ designates the derivative of the
Fermi function, e > 0 is the absolute value of the electron
charge and Atot(ω) is the local (momentum-integrated)
spectral function. The energy dependence of tunneling
matrix elements has been neglected, and the correlated
sample is considered to be homogeneous.

In Fig. 10, we display Atot(ω) = A+(ω) + A−(ω) for
different temperatures T = 1/β at a fixed doping δ = 8%.
In this local spectral function, we recognize the features
discussed above, namely the broad band at negative en-
ergy originating from A+(ω), and the sharp peak at a
small positive energy found in A−(ω), separated by the
pseudogap at low energy.

In Fig. 11, we display the voltage dependence of the
tunneling conductance obtained using the spectral func-
tion Atot(ω) calculated within VB-DMFT. The results
are displayed at a fixed, low-doping level δ = 8% in the
pseudogap regime, for different temperatures. For com-
parison, we also display the experimental data of Renner
et al.48,49 for underdoped Bi2212. When comparing the
two set of curves, attention should be paid to the fact
that our calculation applies at this stage only to the nor-
mal state T > Tc. Our calculation compares quite fa-
vorably to the experimental data, in several respects. At
low temperature, both the theoretical and experimental
conductance displays i) a dip at low voltage correspond-
ing to the pseudogap ii) a peak at a small positive volt-
age (corresponding to empty hole-like states) and iii) an
overall particle-hole asymmetry dI/dV < 0 at negative

voltage as well as at positive voltage above the peak, as
indeed expected in a doped Mott insulator. Furthermore,
we observe that the temperature dependence reveals the
gradual buildup of the positive-voltage coherence peak as
temperature is lowered, as well as the gradual opening of
the pseudogap at low voltage. One aspect of our theo-
retical results which departs from the experiments is the
detailed shape of the conductance at negative voltage: In
experiments a more pronounced dip is visible, while our
results rather display a gradual, linear-like decrease.

Our results have direct implications for the interpre-
tation of tunneling experiments, and also suggest some
further experiments to test these predictions. First, the
coherence peak at small positive voltage must be asso-
ciated, according to our theory, mainly with low-energy
empty states in the antinodal regions. Second, the po-
sition of this peak is predicted to have a definite doping
dependence, tracking ∆ in Fig. 8 and hence moving to
higher energy as the doping level is reduced from ‘opti-
mal’ doping.

D. Frequency-dependence of the self-energy and
the inelastic scattering rates

Here, we discuss the frequency dependence of the imag-
inary part of the self-energies Σ

′′

±(ω) ≡ ImΣ±(ω + i0+)
and its physical implications for the inelastic scattering
rates of the nodal and antinodal quasiparticles in the dif-
ferent regimes of doping. These quantities are displayed
on Figs. 12, 13. Let us recall that these quantities are
directly related to the quasiparticle lifetimes, which is
given by the inverse of Z±Σ

′′

±(ω).
Again, we observe that at large doping, these quan-

tities have rather similar behavior. An approximately
quadratic frequency dependence is found at low energy,
corresponding to a Fermi liquid behavior of both orbitals,
and the self-energies display high-energy peaks corre-
sponding to the structures in the spectral functions de-
scribed above. Overall, the self-energies at large doping
are quite similar to those found in the single-site DMFT
description of a correlated Fermi liquid.

The situation becomes radically different as the doping
level is reduced. The first observation is that the over-
all scale for Σ

′′

+(ω) and for Σ
′′

−(ω) then becomes very
different. Clearly, away from the very low-energy re-
gion, Σ

′′

−(ω) becomes much larger than Σ
′′

+(ω), indicating
again a stronger effect of correlations on the antinodal re-
gions (odd orbital) than on the nodal ones (even orbital),
and a much larger degree of coherence of the nodal quasi-
particles.

Focusing on the even orbital (nodes) at low frequency,
we observe that Σ

′′

+(ω = 0) displays a marked decrease as
the doping level is reduced from the characteristic doping
δc $ 16% at which orbital differentiation sets in and the
pseudogap opens. Physically, this means that the open-
ing of the pseudogap leads to a protection of the nodal
quasiparticles by increasing their inelastic lifetime at low

Pseudo-gap opens upon cooling

•  Total spectral function Atot(ω) for various temperature at δ =0.08. 
A shift of 0.3 has been added between each curves for clarity.
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Optics : σc(ω)

• Pseudo-gap opening in optics. 
Qualitative agreement with experiments

12
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dom describing the antinodal regions becomes insulating
while that associated to the nodal quasiparticles remains me-
tallic. The orbital-selective mechanism responsible for the
pseudogap has also been confirmed in studies involving
larger clusters.18–20 In Refs. 14 and 15, we used the VB-
DMFT to compute tunneling and ARPES spectra in good
agreement with experiments.

II. INTERPLANE OPTICAL CONDUCTIVITY

We first compute the frequency-dependent c-axis optical
conductivity !c!"", given by

!c!"" =
2e2c

#ab
# d$

f!$" − f!$ + ""
"

1
N$

k
t!
2 !k"A!k,$"A!k,"

+ $" , !2"

where f is the Fermi function, A!k ,$" the in-plane spectral

function, N the number of lattice sites, e the electronic
charge, a ,b the in-plane lattice constants, c the interplane
distance, and t!!k"= t0%cos!kx"−cos!ky"&2 the interplane tun-
neling matrix element.21,22 Note that in this expression t!!k"
has a strong k dependence with contributions stemming
mainly from the antinodal region of the Brillouin zone. For
convenience, we will express energies in units of the half-
bandwidth D of the electronic dispersion and the optical con-
ductivity in units of !"=2e2ct0

2 /#abD2. In YBa2Cu3Oy
compounds, D'1 eV'8000 cm−1 and !" is of order
!"'50 "−1 cm−1.

In the left panel of Fig. 2, we display the computed !c!""
for three levels of hole doping and several temperatures. Our
results show three distinctive behaviors. At high doping
%&16%, the conductivity displays a metalliclike behavior
with the buildup of a Drude-type peak as the temperature is
decreased. Note that as the peak increases additional spectral
weight appears at low energy. At low doping %'10%, !c!""
is characterized by a gaplike depression at low frequencies
where spectral weight is suppressed with decreasing tem-
perature. The width of the gap when it opens at high tem-
perature is '0.15D and remains approximately the same as
the temperature is lowered. Note that the spectral weight that
is lost in the gap is redistributed over a wide range of ener-
gies. The appearance of the depression in the spectra can be
directly linked to the formation of a pseudogap in the antin-
odal region.14,15 Indeed, the matrix element t! appearing in
the expression of the optical conductivity Eq. !2" essentially
probes the region25 close to !() ,0" , !0, ()" so that a loss
of coherent antinodal quasiparticles results in a loss of low-
energy spectral weight in the c-axis optical conductivity. In
Refs. 14 and 15, it has been shown that in a zero-temperature
analysis of VB-DMFT, coherent quasiparticles disappear in
the antinodal region at a doping '16%. This is consistent
with !c showing a depression only for doping levels below
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FIG. 1. !Color online" The two patches dividing the Brillouin
zone. The line shows a noninteracting Fermi surface for the disper-
sion *k of Eq. !1". The central !red" patch covers the nodal region of
the Fermi surface while the border !blue" patch covers the antinodal
region.
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dom describing the antinodal regions becomes insulating
while that associated to the nodal quasiparticles remains me-
tallic. The orbital-selective mechanism responsible for the
pseudogap has also been confirmed in studies involving
larger clusters.18–20 In Refs. 14 and 15, we used the VB-
DMFT to compute tunneling and ARPES spectra in good
agreement with experiments.

II. INTERPLANE OPTICAL CONDUCTIVITY
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function, N the number of lattice sites, e the electronic
charge, a ,b the in-plane lattice constants, c the interplane
distance, and t!!k"= t0%cos!kx"−cos!ky"&2 the interplane tun-
neling matrix element.21,22 Note that in this expression t!!k"
has a strong k dependence with contributions stemming
mainly from the antinodal region of the Brillouin zone. For
convenience, we will express energies in units of the half-
bandwidth D of the electronic dispersion and the optical con-
ductivity in units of !"=2e2ct0

2 /#abD2. In YBa2Cu3Oy
compounds, D'1 eV'8000 cm−1 and !" is of order
!"'50 "−1 cm−1.

In the left panel of Fig. 2, we display the computed !c!""
for three levels of hole doping and several temperatures. Our
results show three distinctive behaviors. At high doping
%&16%, the conductivity displays a metalliclike behavior
with the buildup of a Drude-type peak as the temperature is
decreased. Note that as the peak increases additional spectral
weight appears at low energy. At low doping %'10%, !c!""
is characterized by a gaplike depression at low frequencies
where spectral weight is suppressed with decreasing tem-
perature. The width of the gap when it opens at high tem-
perature is '0.15D and remains approximately the same as
the temperature is lowered. Note that the spectral weight that
is lost in the gap is redistributed over a wide range of ener-
gies. The appearance of the depression in the spectra can be
directly linked to the formation of a pseudogap in the antin-
odal region.14,15 Indeed, the matrix element t! appearing in
the expression of the optical conductivity Eq. !2" essentially
probes the region25 close to !() ,0" , !0, ()" so that a loss
of coherent antinodal quasiparticles results in a loss of low-
energy spectral weight in the c-axis optical conductivity. In
Refs. 14 and 15, it has been shown that in a zero-temperature
analysis of VB-DMFT, coherent quasiparticles disappear in
the antinodal region at a doping '16%. This is consistent
with !c showing a depression only for doping levels below
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Partial summary

• Two impurities in a self-consistent bath à la DMFT capture basic 
features of pseudo-gap: 

• Selective Mott transition in k-space.

• Node-antinode differentiation,  Fermi Arcs

• Pseudogap in spectral function vs ω, optics (σc)

• Dominated by singlet & (spin1/2; hole) states.

• How to do better ? Improve resolution ?

13



14

Spin fluctuations and Mott physics

T. Ayral, O.P.: arxiv/1503.07724

Marry spin-fluctuation and Mott physics ? 
Better use of a little impurity/dimer in a bath ?



Spin fluctuations vs Mott physics

• Effect on the (long-range) AF 
fluctuations on electrons. QCP.

• Simplest diagrammatic form.

15

• Describe doped Mott insulator.

• Cluster DMFT methods : Mott, 
short range fluctuations.

G0 3

(�, �)

(0, 0)

(0, �)

(�, 0)(0, 0)

(�, �) (0, �)

(�, 0)

(�, �)

(0, 0) (0, 0)

(�, �)

(�/2, �/2)

(�, 0)

(0, 0)

(�, �)

FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic

Spin fluctuation Mott physics

Both in the same formalism ?

• Hot/cold spots, d-SC, ...

• No Mott physics • Miss the effect of long 
range AF fluctuations.

G

W spW sp

Σ(k, iω) ≈

Cf talks by Chubukov, Pépin,

Many authors e.g.: Pines, Chubukov, 
Pépin, Onufrieva, Pfeuty, Sachdev, ...

Cf talks by Millis, Kotliar, Tremblay

Many authors: Civelli, Ferrero, 
Georges, Gull, Haule, Jarrell, Kotliar, 
Maier, Millis,Sordi, Tremblay,OP, .... 



• Approximation : local Λ computed via a self-consistent impurity model 

Electron-boson interaction vertex 

• Decouple the interaction with a boson, in charge/spin channels.

16

• Approximation for the vertex Λ, not for self-energy Σ like DMFT.
(Cf also, DΓA, dual fermions/bosons)

The self-energy and the three-leg vertex:
exact relation

with 

Bosonic fluctuations 
in charge and spin channel

Vertex

bare vertex vertex corrections

W η(q, iΩ)

G(q+ k, iω + iΩ)
Λη(k, q, iω, iΩ)

Σ(k, iω) =
∑

η=ch,sp

• Central object : 1PI irreducible interaction vertex Λ
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Figure 1: (color online) Description of the TRILEX method
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is the tight-binding hopping matrix,
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rewrite the operators of the interaction term as:
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the Pauli matrices. In the rotationally-invariant case,
Uxx = Uyy = Uzz ⌘ U sp and U00 ⌘ U ch, reducing the
number of channels to ⌘ = ch, sp. U sp and U ch satisfy:
U = U ch � 3U sp. In this paper, we fix the ratio of the
channels by requiring the expansion of the charge and
spin susceptibilities to be exact at second order in U ,
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are conjugate �-antiperiodic Grassmann
fields, and �I = 1. We are now dealing with an inter-

acting lattice problem with a local electron-boson cou-
pling. The fermionic and bosonic self-energies are given
by the exact expressions (written here for the paramag-
netic phase) [67]:
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= 3, G(k, i!) and W ⌘(q, i⌦)
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the Fourier transforms of �hc
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i,
respectively), k and q are momentum variables and
i!(i⌦) stands for a fermionic (bosonic) Matsubara fre-
quency. ⇤⌘(q,k, i!, i⌦) is the exact one-particle ir-
reducible electron-boson coupling (or Hedin) vertex,
namely the effective interaction between electrons and
bosons renormalized by electronic interactions. The lat-
tice Green’s functions G(k, i!) and W ⌘(q, i⌦) are com-
puted via Dyson equations:
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now construct a local effective model and use its three-leg
vertex as a local approximation to ⇤:
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The resulting self-energy and polarization, computed
from (4a-4b), are thus momentum-dependent while con-
taining local vertex corrections which will be essential
to capture Mott physics (see also [50]). As in DMFT,
the local effective model is constructed by imposing
self-consistency conditions on the fermionic and bosonic
Green’s functions:
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Definition

• Two simple limits : 

• Atomic limit : t=0, isolated atoms

• Weak coupling limit : U=0, free electrons.

17

H = �
�

⇤ij⌅,�=�,⇥

tijc
†
i�cj� + Uni�ni⇥, ni� ⇥ c†i�ci�



DMFT

• A local approximation of the Luttinger-Ward functional Φ (2-
particle irreducible diagrams) (Georges-Kotliar ’92).

18

• DMFT definition: 

⌃ =
��

�G

F (G) = Tr lnG� Tr(G�1
0 G) + �(G)

• DMFT is exact for U=0 and in the atomic limit (t=0).

• Impurity model in a self-consistent bath: an auxiliary problem, like 
Kohn-Sham potential in DFT, Cf Kotliar et al. RMP 2007

• Which quantity of the quantum many-body problem shall I approximate 
with the atomic quantity ?

• A functional of the vertex Λ ?

�(G) ⇡
X

i

�
atomic

(G
ii

) + cluster corrections



TRILEX (triply-irreducible local expansion). 19

• A functional of the vertex De Dominicis-Martin, Math. Phys. 1, ’64,

⇤� 1 =
�K
�⇤

F (G,W,⇤) = F0(G,W,⇤) +K(G,W,⇤)

Explicit Vertex corrections 
3-particle irreducible diagrams

• Trilex definition :  

“Weak coupling”, U ⟶0 Atomic limit, t⟶0 

• No vertex correction: Λ =1

• Spin fluctuation diagram

• Exact in this limit

• Mott physics (DMFT)

Spin-fluctuation and DMFT are two “asymptotic” regimes of  TRILEX.

W η(q, iΩ)

G(q+ k, iω + iΩ)
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Self-consistent impurity model 20

• Compute Λ from three point correlation. Boson integrated here. 

• A single site (E)DMFT, much faster to solve than cluster

• Algorithm : CTQMC-HYB with double expansion (J. Otsuki, 2013). 
No sign problem.

Retarded interaction 
(including spin-spin)

bath
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Features: theory summary

• Spin fluctuations and Mott Physics built in, as two asymptotic 
regimes.

• k-dependent self-energies

• Susceptibilities (charge, spin), fnt (q,ω)

• The central object is the vertex Λ, i.e. effective interaction between 
electrons and bosonic fluctuation. Mechanisms ?

• Controlled by clusters, up to the exact solution, like cluster DMFT.

• Solvable with today’s algorithms ...

21



22

Some results ...



Phase diagram at half-filling 23

Long AF correlation or order 



Metal to insulator 24

⇤imp(i!, i⌦)

!

Im⌃
loc

(i!)

Λimp=Λatomic 

Metal Insulator

Correlated metal

Λimp=1

Vertex  Λ drives the Mott transition



k-dependent self-energy and polarization 25

Metal
Σ(k,ω)

Insulator
Σ almost local
≈ DMFT

Correlated metal
Vertex correction

Not DMFT, 
k dependent  Σ



• t’=-0.4t, δ=10%, βD=96

Doping at intermediate U 26

Fermi Arc



Where is the dimer ?

• Systematic cluster corrections for TRILEX.
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W η(q, iΩ)
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Λη
imp

Spin-fluctuation Spin-fluctuation
Mott Physics

1 impurity ClusterDimerNo vertex

Spin-fluctuation
Mott Physics
Local singlets

Spin-fluctuation
Mott Physics
Local singlets

Control

• Decoupling in the physically relevant channel (spin, charge ...)
leads to a much faster convergence vs cluster size ?



Conclusion

• Two impurities in a bath :  a minimal approach to pseudogap 

• TRILEX : Spin-fluctuations and Mott physics in the same framework

• k-dependant self-energies

• Mott physics

• Long range spin/charge fluctuations

• Materials ? Multiorbitals ? Easier to solve than clusters ?

• Work in progress :

• d-SC in TRILEX

• Dimer and cluster corrections

• Systematic benchmark of the method.
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Thank you for your attention



Quasiparticle weights and lifetime: node “protected”

• Below the critical doping, when the odd orbital is insulating, the 
even (nodal) orbital has a roughly constant quasiparticle residue: 
it is “protected”

30
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FIG. 11: (Color online) Left panel: STM curve for various temperature at δ = 0.08, in arbitrary units. A shift has been added
between each curves for clarity. Right panel: DOS measured by STM experiments on Bi2212 with Tc = 83K. Figure reprinted
with permission from Ref. 48 (Fig. 22b). Copyright 2007 by the American Physical Society.
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FIG. 12: (Color online) Left panel: Imaginary part of the self-energy Σ+(ω) for the even orbital. A shift of 0.1 has been added
between the curves for clarity. Right panel: Zoom over the low-frequency region (no shift added).

energy. Indeed, Σ
′′

+(ω) displays a quite remarkable shape
at low doping, with a rather large interval of frequency
around ω = 0 in which it is very small and flat, indicating
almost free nodal quasiparticles at low doping.

This is in marked contrast to the behavior of the odd
(antinodal) orbital. In this case, our real-frequency data
lack the precision required to assess precisely the doping
dependence of the very low-frequency rate Σ

′′

−(ω = 0).
However, as soon as one focuses on a small but finite fre-
quency (which indeed is relevant to the lifetime of antin-
odal quasiparticles at the edge of the pseudogap), it is ap-
parent from Fig. 13 that Σ

′′

−(ω) rapidly increases as the
doping is reduced from δc. This corresponds to increas-
ingly incoherent antinodal quasiparticles at low doping
level.

Making contact with experiments, these observations

appear to be in good qualitative agreement with the fact
that the in-plane resistivity of cuprate superconductors
is reduced when the pseudogap opens and that nodal
quasiparticles survive at low doping while the antinodal
ones loose their coherence.

E. Other patches

So far we have presented results for a particular patch-
ing scheme of the BZ. The motivation behind this choice
is based on the known phenomenology of the cuprates:
The central patch is shaped in such a way as to contain
the nodal point while the outer patch is modeled to con-
tain the incoherent antinodal region. Phenomenological
patch models using related patches have been used to

Z- not a 
qp residue



Computation of  T_AF 31



Two “simple” limits 32

⇤imp ⇡ �

“Weak coupling”, U ⟶0 Atomic limit, t⟶0 

• No vertex correction.

• Spin fluctuation diagram

• Exact in this limit

• Mott physics (DMFT)

W η(q, iΩ)

G(q+ k, iω + iΩ)
Λη
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∑

η=ch,sp

H = �
�

⇤ij⌅,�=�,⇥

tijc
†
i�cj� + Uni�ni⇥, ni� ⇥ c†i�ci�

Spin-fluctuation and DMFT are two “asymptotic” regimes of  TRILEX.

⇤
imp

(i!, i⌦) ⇡ ⇤
atomic
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Functionals ...

• DMFT is a local approximation of the Luttinger-Ward functional Φ 
(2-particle irreducible diagrams) (Georges-Kotliar ’92).

33

• Here, we make a similar approximation on the higher-order functional 
introduced in De Dominicis-Martin, Math. Phys. 1, ’64,
made of 3-particle irreducible diagrams ... 

K(G,W,⇤) ⇡ K
atomic

(G
ii

,W
ii

,⇤
iii

)

DMFT

TRILEX (triply-irreducible local expansion).

⌃ =
��

�G

⇤� 1 =
�K
�⇤

�(G) ⇡ �
atomic

(G
ii

)



TRILEX : overview

• Solved via a self-consistent, auxiliary quantum impurity model 

34

Simp[G(iω),Uη(iΩ)]

Σ(k, iω) =

P η(q, iΩ) =

G

W η

lattice quantities

G(k, iω)
W η(q, iΩ)

Dyson
equations consistency

condition

self-

Λη
imp(iω, iΩ)

impurity
vertex

G

G solve

self-energies
k-dependent

impurity
model

quantum



DMFT & clusters ... 35

• Cluster DMFT : a systematic approach to study Mott physics.

• Mott physics and short-range fluctuations.

• One control parameter : 
Nc, size of cluster or number of patches

• Better algorithms for large clusters (Gull, Werner,OP, Troyer 2008)
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic

Reciprocal space
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No FL
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SC
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AF
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Cluster DMFT & Hubbard model

• Pionneering work 2x2 clusters 

• Lichtenstein, Katsnelson PRB 62, R9283 (2000). 

• Maier, Jarrell, Pruschke, Keller, PRL 85, 1524 (2000).

• DCA method M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. 
Krishnamurthy Phys. Rev. B 61, 12739 (2000)

• Rutgers Group ; Kotliar, Haule, et al.

• 8 sites : Gull, OP, Millis (2009-2013).
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic
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