A Finer Structure of the Hawaiian Mantle Plume: Relation to the Earth's deep mantle

Dominique Weis

Collège de France - Dec 2016 Flow in the Deep Mantle

Oceanic Islands, Mantle Plumes and Mantle End-Members

Oceanic Islands, Mantle Plumes and Mantle End-Members

Albarède & Van der Hilst 2002

Subducting Slabs & Recycling

Down-going subducted
oceanic lithosphere can be
traced by seismic
tomography using P- and S wave variations.

Subducted material:
peridotites, harzburgites,
gabbros, tholeiitic and alkali
basalts, terrigenous and
pelagic sediments, and
lower crustal metamorphic
rocks.

Albarède & Van der Hilst 2002

Recycled Material Mass Balance

Sediment – 0.3-0.7 km³/year subducts

In 3 Ga that's equal to subducting 1/3 of the modern continents

<u>Oceanic Crust</u> – 20 km³/year subducts

In 3 Ga that's equal to ~60 billion km^3 , which is 5% of the mantle's mass

Subducting Slabs & Recycling

Down-going subducted
oceanic lithosphere can be
traced by seismic
tomography using P- and S wave variations.

Subducted material:
peridotites, harzburgites,
gabbros, tholeiitic and alkali
basalts, terrigenous and
pelagic sediments, and
lower crustal metamorphic
rocks.

Albarède & Van der Hilst 2002

Recycled Material Mass Balance

<u>Sediment</u> – 0.3-0.7 km³/year subducts

In 3 Ga that's equal to subducting 1/3 of the modern continents

<u>Oceanic Crust</u> – 20 km³/year subducts

In 3 Ga that's equal to ~60 billion km³, which is 5% of the mantle's mass-

Subducting Slabs & Recycling

Down-going subducted
oceanic lithosphere can be
traced by seismic
tomography using P- and S wave variations.

Subducted material:
peridotites, harzburgites,
gabbros, tholeiitic and alkali
basalts, terrigenous and
pelagic sediments, and
lower crustal metamorphic
rocks.

How could the mantle not be heterogeneous?

Dynamic Models and Mantle Heterogeneity

Dynamic model of the compositional heterogeneity of the mantle after 4.65 Ga of mixing

Variable mixing of recycled and primordial materials

Most of the mantle is depleted in composition, i.e. has been partially melted

Harzburg

X_{LM} (%)

Why Hawai'i?

Magma Flux – Largest Best Studied – More to Know Deep Mantle Origin – CMB First Documented Occurrence of Double Chains

Kaua'i, Waimea Canyon

Why Hawai'i?

Magma Flux - Largest Best Studied - More to Know Deep Mantle Origin - CMB First Documented Occurrence of Double Chains

Weis et al. 2011

Weis et al. 2011

Weis et al. 2011

Significant cross-over at Kohala-Mahukona & Ko'olau

Seismic tomography shows deep mantle heterogeneity

- Shear wave seismic tomographic model of the mantle at 2800 km depth
- 2 large, low shear wave velocity provinces (named the LLSVPs), underneath the Pacific Ocean and the African plate
- Anomalies caused by elevated density, i.e. compositional changes

Seismic tomography shows deep mantle heterogeneity

- Shear wave seismic tomographic model of the mantle at 2800 km depth
- 2 large, low shear wave velocity provinces (named the LLSVPs), underneath the Pacific Ocean and the African plate
- Anomalies caused by elevated density, i.e. compositional changes

Lowermost-mantle V_{s} perturbations

Evidence in Other Mantle Plumes in the Pacific

Evidence in Other Mantle Plumes in the Pacific

Tristan-Gough

Atlantic Ocean

132 Myr

Rohde et al. 2013 Hoernle et al. 2015

Evidence in Other Mantle Plumes

OIB Source Components

⁸⁷Sr/⁸⁶Sr 0.710 + MORB Loa shield EM-II ♦ Azores lavas ♦ Austral-Cook 0.709- \diamond Kea ♦ Ascension & St. Helena • Galapagos • I celand 0.708-• Hawaii ▲ Marquesas ▲ Samoa 0.707 ▲ Society Is. ▲ Juan Fernandez ♦ Kerguelen & Heard 0.706 Tristan & Gough ♦ Pitcairn-Gambier 0.705-0.704-HEMU 0.703-PRFMA Modified from White 2010 MORB 0.702-19 20 21 18 22 ²⁰⁶Pb/²⁰⁴Pb

OIB Source Components

Lowermost-mantle V_s perturbations

How to Move Forward? Need to Break some Boundaries ...

How to Move Forward? Need to Break some Boundaries ...

Experiments at 1 atm, 298 K

Hawai'i

Back to Hawai'i Shield Lavas

High-Precision Pb Data: Hawai'i

a Different Look

²⁰⁸Pb*/²⁰⁶Pb*

¹⁴³Nd/¹⁴⁴Nd

Geographical Distribution of Hawai'i Geochemical Components

Geographical Distribution of Hawai'i Geochemical Components

Geographical Distribution of Hawai'i Geochemical Components

-159

160

-157

Transitional Kea E Molokai - W Maui Haleakala Kohala

KEA

-154

Numerical Simulation of the Hawaiian Plume Radiogenic Pb zonation across the conduit and melting zones, flow trajectories

Farnetani et al 2012

Updated Model:

A Fine Structure of the Hawaiian Mantle Plume

with a compositional gradient away from the Pacific ULVZ that provides the enriched components in the Loa Trend volcanoes

Updated Model:

A Fine Structure of the Hawaiian Mantle Plume

with a compositional gradient away from the Pacific ULVZ that provides the enriched components in the Loa Trend volcanoes

Conceptual Cross Section: Mapping the Hawaiian Geochemical Components at the Base of the Mantle

Hawai'i, so far

Loa is the dominant mantle source composition on the Archipelago.

Four geochemical groups are identified on the islands, and the HMP is zoned along a compositional gradient perpendicular to the edge of the LLSVP.

What about the rest of the Hawaiian Ridge and Emperor Seamounts, 80 mar of plume activity?

Hawaiian Ridge - Emperor Seamounts: 85 myr

Northwestern Hawaiian Ridge Movie

John Smith, SOEST

Northwestern Hawaiian Ridge Movie

John Smith, SOEST

Northwestern Hawaiian Ridge Movie

John Smith, SOEST

Very limited isotopic data were available for the entire Hawaiian Ridge up to now

Northwestern Hawaiian Ridge

Papahānaumokuākea Marine National Monument UNESCO World Heritage Site

Papahānaumokuākea Marine National Monument UNESCO World Heritage Site

NWHR: Pb Isotope Systematics

EPSL in press

EPSL in press

Sampling lower mantle heterogeneity accounts for Loa trend arrival

Sampling lower mantle heterogeneity accounts for Loa trend arrival

Sampling lower mantle heterogeneity accounts for Loa trend arrival 2.5 Ma

Figure modified from Farnetani et al., 2012

Evolution of the Hawaiian Plume Source at the CMB

Harrison et al EPSL in press

Evolution of the Hawaiian Plume Source at the CMB

Harrison et al EPSL in press
Evolution of the Hawaiian Plume Source at the CMB

Harrison et al EPSL in press

Conclusions:

Four geochemical groups are identified in Hawai'i.

The HMP is zoned along a compositional gradient perpendicular to the edge of the LLSVP.

Loa compositions sample the Pacific LLSVP, hence the EM-I signature (ULVZ) and larger heterogeneity.

HMP source components refresh and grade into and out of existence on a smaller timescale than previously thought. Mike Garcia James Scoates Don DePaolo Mark Jellinek Mike Rhodes Matt Jackson - Shichun Huang

Acknowledgements

Lauren Harrison Diane Hanano Nicole Williamson Catherine Armstrong Andrew Greene – I nês Nobre Silva Maia Kuga – Lisa Swinnard Rhy McMillan

Claude Maerschalk – Jane Barling Bruno Kieffer – Liyan Xing Kathy Gordon – Marg Amini

Thank You !

Kaua'i, Sunset