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Abstract

Growth has fallen in the U.S., while firm concentration and profits
have risen. Meanwhile, labor’s share of national income is down, mostly
due to the rising market share of low labor share firms. We propose a
theory for these trends in which the driving force is falling firm-level costs
of spanning multiple markets, perhaps due to accelerating ICT advances.
In response, the most efficient firms spread into new markets, thereby
generating a temporary burst of growth. Because their efficiency is
difficult to imitate, less efficient firms find their markets more difficult to
enter profitably and innovate less. Even the most efficient firms do less
innovation eventually because they are more likely to compete with each
other if they try to expand further.
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1. Introduction

Recent studies have documented the following patterns in the U.S. economy

over the past several decades:1

1. Falling “long run” growth (interrupted by a temporary burst of growth)

2. Falling labor share due to rising revenue shares of low labor share firms

3. Rising firm concentration within industries

In this paper we construct a theory of endogenous growth with

heterogeneous firms which speaks to these facts. There are two main sources

of heterogeneity in our model. First, product quality which improves

endogenously on each product line through innovation and creative

destruction. Second, process efficiency, which is time-invariant and is unevenly

distributed across firms in the economy. High process efficiency firms

command a higher markup than low productivity firms, conditional on having

the same product quality advantage over their competitors.

A possible source of persistent differences in process efficiency across firms

is their organizational capital. Firms such as Walmart and Amazon have

established successful business models and logistics that are evidently hard to

copy. Both firms experienced considerable expansion into new geographic and

product markets over the past two decades. Similarly, Amazon and Microsoft

have acquired dominant positions in cloud storage and computing due to their

logistical advantage over potential competitors. Such firms have achieved a

level of process efficiency which is arguably harder to reverse engineer and

build upon than quality, which is more observable.

Our story is that the ICT (Information and Communication Technology)

wave in the 1990s has allowed high productivity firms to extend their

boundaries — to expand over a wider set of product lines. We model the ICT

1We discuss papers presenting evidence on these patterns in the next section.
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wave as a downward shift in the overhead cost C(n) of running n product lines.

This cost is assumed to be convex in n, which puts a brake on the quality

innovation (creative destruction) efforts of high process efficiency firms. Since

high productivity firms enjoy higher profits per product line, while sharing the

same overhead cost function and cost of R&D inputs as low productivity firms,

the downward shift in the overhead cost schedule will allow high productivity

firms to expand to a higher fraction of lines. The expansion of high

productivity firms fuels a temporary surge in aggregate productivity growth —

both because they innovate to take over more markets (bringing quality

improvements) and because they apply their superior process efficiency to

those additional markets.

Since high productivity firms have higher markups and lower labor shares

on average across their product lines, their expansion into more lines will

result in an increase in the aggregate markup and a reduction of the aggregate

labor share. This is entirely driven by firm composition rather than within-firm

changes. Within-firm average markups can actually fall, as the quality leader

on a product line is more likely to face a high process efficiency incumbent,

limiting their markups whether they are a high or low process efficiency firm.

The expansion of high productivity firms into more lines eventually deters

innovation. This is because innovating on a line where the incumbent firm has

high productivity yields lower profits than when the incumbent firm is a low

productivity firm. This results in lower within-firm markups. Both high and

low productivity firms eventually curtail their efforts at creative destruction,

knowing they will face stiffer competition. This in turn lowers long run

innovation and productivity growth. The drop in long run growth leads to a

lower pace of job reallocation, which is tied to creative destruction.

We calibrate our model to gauge the strength of the model’s mechanism. We

choose parameter values to fit the % point decline in labor share (and its firm

composition component), the rise in firm concentration, “initial” productivity

growth (before the drop in overhead costs), and an initial real interest rate, and
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rate of investment in R&D. The model can plausibly generate around one half

of the slowdown growth seen in recent years.

Most closely related to our paper are Akcigit and Ates (2018) and Liu, Mian

and Sufi (2019), who both study declining growth and rising concentration. We

differ from these papers by emphasizing the ICT wave and its effect on high

productivity versus low productivity firms as a main driving force. They

emphasize, instead, changes in competition policy or the decline in the cost of

credit as main driving forces. Unlike these two papers, we generate opposite

trends for labor share (and markups) within versus across firms. Finally, our

model generates a burst of growth before a long run growth slowdown.

Our paper also relates to Chatterjee and Eyigungor (2017) which studies the

rise in concentration; to recent papers on declining labor share, in particular

Karabarbounis and Neiman (2013, 2018), Barkai (2016), Eggertsson, Mehrotra,

Singh and Summers (2016), Autor, Dorn, Katz, Patterson and Van Reenen

(2017), Martinez (2017), and Farhi and Gourio (2018). Whereas Autor et al.

(2017) looked at labor share in U.S. Census data, Baqaee and Farhi (2017) and

De Loecker and Eeckhout (2017) estimate markups in Compustat firms. These

latter papers decompose the recent evolution of of the aggregate markup into

within-firm and between-firm components. They find the dominant

contributor to be the rising market share of high markup firms. We contribute

to this literature by providing a theoretical framework that links the rise in

concentration and the rise in average markups (similarly, decline in aggregate

labor share) to the slowdown in U.S. growth in recent decades.

The rest of the paper is organized as follows. Section 2. describes the

empirical patterns documented by other studies that motivate our modeling

effort. Section 3. lays out our model, and solves analytically for its steady state.

Here we qualitatively characterize the steady state comparative statics due to

falling overhead costs. In section 4. we calibrate the model to see whether it

can generate a realistic decline in long run growth. Section 5. concludes.
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2. Stylized facts

Fact 1: Falling “long run” growth (after a burst of growth) Figure 1 presents

U.S. annual TFP growth over subperiods from the U.S. Bureau of Labor

Statistics (BLS). Note that the BLS attempts to net out the contribution of both

physical and human capital growth to output growth. The BLS sometimes

subtracts contributions from R&D and other intellectually property

investments; we consistently included this portion in residual TFP growth as

part of what we are trying to explain.

The Figure shows growth accelerating from its 1949–1995 average of 1.8%

per year to 2.8% per year from 1996–2005, before falling to just 1.1% per year

from 2006–2017. Fernald, Hall, Stock and Watson (2017) argue that the recent

slowdown is statistically significant and predates the Great Recession. Syverson

(2017) and Aghion, Bergeaud, Boppart, Klenow and Li (2019) contend that the

slowdown is real and unlikely to be fully attributable to growing measurement

errors.

Fact 2: Falling labor share (mostly due to composition) Figure 2 shows that,

according to the BLS, the aggregate U.S. labor share of output in the nonfarm

business sector fell about six % points in the last two decades.2 Autor, Dorn,

Katz, Patterson and Van Reenen (2017) find declining labor share in a number

of Census sectors, but most sharply in manufacturing. Table 1 reproduces their

statistics on the cumulative change in labor share for six Census sectors in

recent decades. Finance is the contrarian, with rising labor share. In five of the

six sectors the sales shares shifted to low labor share firms, so that the

“between” component pushed labor share downward notably. And

within-firm labor shares actually rose in all sectors but manufacturing.

In the business cycle literature, labor share is often used as an inverse

measure of price-cost markups. See Karabarbounis (2014) and Bils, Klenow

2Since this is the business sector, it is not affected by the Rognlie (2016) critique that the rise
of housing is exaggerating the decline in labor share.
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Figure 1: U.S. productivity growth rate
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Source: BLS multifactor productivity series. We calculate yearly productivity
growth rate by adding R&D and IP contribution to BLS MFP and then converting
the sum to labor augmenting form. The figure plots the average productivity
growth within each subperiod. The unit is percentage points.

and Malin (2018). Thus one interpretation of falling labor share due to

composition effects is that markups are rising due to composition effects. De

Loecker and Eeckhout (2017) and Baqaee and Farhi (2017) do just that, though

with a broader measure of variable inputs that adds intermediates to labor

costs. A competing interpretation is that the elasticity of output with respect to

capital has risen. Barkai (2016), Gutiérrez and Philippon (2016, 2017), and

Farhi and Gourio (2018) argue against this interpretation and in favor of rising

markups on the grounds that the investment rate and capital-output ratio

have not risen.3

3Koh, Santaeulalia-Llopis and Zheng (2016) and Traina (2018) argue that labor share has
not fallen and markups have not increased if one adds intangibles investment such R&D and
marketing. But these expenditures are arguably not part of variable costs.
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Figure 2: U.S. labor share
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Source: BLS. The figure plots the aggregate labor compensation of all employed
persons as a share of aggregate output for the nonfarm business sector. The unit
is percentage points.

Table 1: Cumulative change in labor share over given period (ppt)

1982–2012 92–12 92–07

MFG RET WHO SRV FIN UTL

∆
Payroll
Sales -7.01 -0.79 0.19 -0.19 3.25 -1.89

Within -1.19 3.74 4.01 2.43 6.29 0.58

Between -4.97 -4.03 -4.38 -0.44 -3.62 -2.39

Source: Table 5 in Autor et al. (2017). This is a Melitz-Polanec decomposition

of the change in the labor share. The unit is percentage points.

Fact 3: Rising concentration Table 2, which is also based on Autor, Dorn,

Katz, Patterson and Van Reenen (2017), presents the average 5-year change in

top 4 or top 20 firm concentration ratios in 4-digit NAICS. These results are,
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again, from firm-level data in U.S. Census years. Across the six sectors, the top

4 firm shares increase from 0.4 to 2.5 percentage points per five-year period,

while the top 20 firm shares increase between 0.8 and 3.6 percentage points

per year. Concentration increased the most rapidly in retail and finance, and

least rapidly in manufacturing and wholesale.

The rise in concentration in Table 2 is at the national level. In contrast,

Rossi-Hansberg, Sarte and Trachter (2018) and Rinz (2018) find that local

concentration declined. One explanation for the diverging trends is that the

largest firms grew by adding establishments in new locations. Figure 3 shows

cumulative growth of the number of establishments per firm, by firm size bins,

in the Business Dynamic Statistics from the Census Bureau. The red line is the

growth of establishments for the largest firms. It shows that, between 1990 and

2014, the largest firms expanded by adding establishments. The average

number of establishments rose for smaller firms too but not as quickly as for

the largest firms. In a parallel study, Cao, Mukoyama and Sager (2018)

document a similar pattern in the Quarterly Census of Employment and Wages

data and Rinz (2018) documents increasing number of markets with at least

one establishment belonging to a top 5 firm. To the extent that growth in the

number of establishments is connected to growth in the number of products

or markets, this evidence suggests that the rise in national concentration may

not reflect an increase in market power of the largest firms.
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Table 2: Average 5-year change in national concentration (ppt)

1982–2012 92–12 92–07

MFG RET WHO SRV FIN UTL

∆ Top 4 firms

sales share

0.7 2.5 0.4 0.7 2.1 1.9

∆ Top 20 firms

sales share

0.8 2.7 1.0 1.0 3.6 1.2

Source: Table 1 of Autor et al. (2017). Averages across 4-digit industries, with

the industries weighted by industry sales shares.

Figure 3: Growth in establishment per firm by firm size
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Year
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Source: U.S. Census Bureau Business Dynamic Statistics. The graph plots the
number of establishments per firm within employment bins relative to 1990

ICT as a driving force We focus on changes in ICT as a possible driver of the

patterns described above for three reasons. First, Figure 4 displays growth rate

of multi-factor productivity for IT-producing, IT-intensive and non-IT-

intensive industries, classified based on Fernald (2015). The figure shows a
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Figure 4: Productivity growth by ICT intensity rate
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Source: updated version of Fernald (2015) Fig 6A. % per year, 4 year MA.

burst of growth for the IT-intensive sectors in early 2000s after a burst of

growth for IT-producing sectors in the second half of 1990. In contrast, the

non-IT-intensive sectors did not experience a burst of growth.

Second, price declines for ICT goods accelerated sharply for a decade from

the mid-1990s to the mid-2000s. See Figure 5. This is in the middle of the period

of rising concentration.

Third, Crouzet and Eberly (2018) and Bauer, Boussard and Laskhari (2018)

document that bigger firms invest a higher share of their sales in intangibles

and ICT, respectively. Lower costs of ICT would seem to benefit larger firms

more. The former evidence is for U.S. firms and the latter for French firms.
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Figure 5: Relative price of ICT
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Source: BEA. % Change per year in the price of ICT relative to the GDP deflator.

3. Model

As motivated by the empirical micro evidence behind the trend in aggregate

labor income share the data asks for a model of firm heterogeneity.

Furthermore in order to make a prediction regarding the more recently

observed productivity slowdown a model of endogenous growth is needed.

Our strategy is to lay out a simple such framework that is however rich enough

to speak to the facts in Section 2. The goal is to build a parsimonious

theoretical building block that can straightforwardly be augmented in various

ways and then still serve as a backbone in much richer frameworks. We discuss

various extensions and generalizations of our framework in order to make the

theory more quantitative. However, we also show in a first calibration that

even tractable baseline model has already some quantitative bite. This simple

calibration does generate significant quantitative effects in line with the trends

observed in the U.S. over the past 30 years.
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3.1. Preferences

The household side is relatively standard. Time is discrete and the economy is

populated by a representative household who chooses consumption C to

maximizes the preferences

U0 =
∞∑
t=0

βt log (Ct) ,

subject to

at+1 = (1 + rt)at + wtL− Ct, (1)

a standard no-Ponzi game condition and a given initial wealth level a0 > 0.

Here a denotes wealth, r the interest rate, w the wage rate and L is the labor

endowment that is inelastically supplied to the labor market.

The Euler equation resulting from household’s optimization is given by

Ct+1

Ct
= β(1 + rt+1). (2)

3.2. Production of final output

A final output good is produced competitively out of a unit interval of

intermediate inputs according to the following Cobb-Douglas technology

Y = exp

(∫ 1

0

log [q(i)y(i)]di

)
. (3)

Here y(i) denotes the quantity and q(i) the quality of product i. This structure

yields demand for each product i as

y(i) =
Y P

p(i)
, (4)
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where we have the aggregate price index

P = exp

(∫ 1

0

log [p(i)/q(i)] di

)
, (5)

which we will in the following normalize to one in each period.

3.3. Production and market structure for intermediate inputs

There are J firms indexed by j. In the following we assume that J is “large” such

that firms take the aggregate price index in the economy as given. Each firm j

has the knowledge to produce quality q(i, j) ≥ 0 in a specific market i ∈ [0, 1].

There are two sources of heterogeneity across firms: (i) heterogeneity in the

firm-market specific quality q(i, j) which evolves endogenously as a result of

innovation in the quality dimension; (ii) heterogeneity in a permanent firm-

specific level of process efficiency.

We first describe the heterogeneity in the process efficiency. There is a firm

specific level of process efficiency denoted by ϕ(j). A firm with process

efficiency ϕ(j) can produce in any line i with the following simple linear

technology

y(i, j) = ϕ(j)l(i, j), (6)

where l(i, j) denotes labor used by firm j to produce in line i and y(i, j) denotes

the output of this firm in this line. We assume that the heterogeneity in process

efficiency is persistent over time reflecting, e.g., differences in organizational

capital that is hard to replicate. This heterogeneity in process efficiency will

lead in our model to persistent differences in revenue TFP and labor income

shares across firms.

Note that the linear technology in (6) applies irrespective of the specific

quality firm j produces in line i. In addition to the heterogeneity in process

efficiency, firms differ in the quality at which they can produce in a line i. We

will below explain how the distribution of quality of the different lines across
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the firms changes endogenously due to innovations. But for the static firm

problem here we just assume that in a period t each firm j can produce at

some line-specific quality q(i, j). Labor is fully mobile such that the wage rate

equalizes across firms. Hence, the marginal cost of firm j per output unit of

line i is given by w/ϕ(j), or the marginal cost per quality-adjusted unit of line i,

q(i, j)y(i, j) is equal to w
q(i,j)ϕ(j)

.

3.4. Pricing

In each market all the firms engage in Bertrand competition. This means that

only the firm with the highest quality-adjusted productivity q(i, j) ·ϕ(j) is active

in a given market i and sets the price such that the firm with the second highest

quality-adjusted productivity finds it not profitable to be active. In the following

we denote the index of the leading firm in line i by j(i) and the second-best

firm by j′(i). Hence, the quality-adjusted productivity of the “leader” is given by

q(i, j(i)) · ϕ(j(i)) and the same quality-adjusted productivity of the second-best

firm in line i is given by q(i, j′(i)) · ϕ(j′(i)). The price setting behavior of this

leader is constrained by the second-best firm and the leader will set its quality-

adjusted price equal to the quality-adjusted marginal cost of the second-best

firm. Formally we then have

p(i, j(i), j′(i))

q(i, j(i))
=

w

q(i, j′(i)) · ϕ(j′(i))
. (7)

Note that the price charged in line i depends on the process efficiency of both

the leader and the follower as well as the quality difference between the two. We

define the markup in line i, µ(i), as the ratio between the price of a unit divided

by the marginal cost of the producer. The markup is then given by

µ(i, j(i), j′(i)) ≡ p(i, j(i), j′(i))

w/ϕ(j(i))
=

q(i, j(i)) · ϕ(j(i))

q(i, j′(i)) · ϕ(j′(i))
. (8)
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The markup of a product increases in the quality gap q(i,j(i))
q(i,j′(i))

as well as in the

process efficiency gap ϕ(j(i))
ϕ(j′(i))

between the leader and the second-best firm. In

particular, all else equal, product level markup is increasing with the process

efficiency of the leading firm ϕ(j(i)) and decreasing in the process efficiency of

the second-best firm ϕ(j′(i)). Within a firm the markup differs across product

lines but a firm with a higher process efficiency will charge on average a higher

markup.

Given the markup µ(i) the operating profits the leader makes in line i follows

directly. Combining the pricing with the demand (4), using the definition of the

numéraire gives for the operating profits in a period

π(i) = Y

(
1− 1

µ(i)

)
. (9)

3.5. Innovation and productivity growth

The quality distribution evolves endogenously as a result of innovation. Any

firm j can engage in R&D activity to acquire a patent to produce in a new line at

higher quality . More specifically, by investing xt(j)ψcYt units of final output in

period t in R&D xt(j) product lines are randomly drawn from the lines in which

firm j is currently not actively producing. In these randomly drawn lines the

highest existing quality is multiplied by a factor γ > 1 and the innovating firm j

obtains a perpetual patent to produce at this higher quality level from the next

period t+ 1 onward.

The initial distribution of quality levels in the different lines across firms is

exogenously given. In each line the firm with the highest quality will face

competition by a firm with lower quality by a factor γ.

We assume that a period is short enough such that no two innovations arrive

in the same line in a given period. If we denote the innovation rate of firm j in
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period t by xt(j) the aggregate rate of creative destruction is given by

zt+1 =
J∑
j=1

xt(j), (10)

i.e., for any given line an innovation arrives in period t+ 1 with probability zt+1.

This endogenous quality improvement due to creative destruction is the origin

of long-run growth in this model.

3.6. Markups with binary process efficiency levels

For simplicity we assume in the following two types of firms. A fraction φ of all

firms are of high process efficiency type ϕH whereas the remaining fraction

1 − φ of all firms is of low process efficiency type ϕL. We denote the

productivity differential by ∆ ≡ ϕH/ϕL > 1. So in total there are φJ high

productivity producer and (1 − φ)J low productivity producers. In this

baseline model we further assume γ > ∆ such that the firm with the highest

quality is always the active leader irrespective of whether she is of high or low

process efficiency.

Then, with the two process efficiency levels (high or low) there are four

potential cases of markups and profits:

1. A high productivity leader ϕ(j(i)) = ϕH facing a high productivity second-

best firm ϕ(j′(i)) = ϕH in line i. In this case we have

µ(i) = γ, (11)

and

π(i) = Y

(
1− 1

γ

)
≡ πHH . (12)

2. A high productivity leader ϕ(j(i)) = ϕH facing a low productivity second-
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best firm ϕ(j′(i)) = ϕL in line i. In this case we have

µ(i) = ∆γ, (13)

and

π(i) = Y

(
1− 1

∆γ

)
≡ πHL. (14)

3. A low productivity leader ϕ(j(i)) = ϕL facing a high productivity second-

best firm ϕ(j′(i)) = ϕH in line i. In this case we have

µ(i) =
γ

∆
, (15)

and
π(i) = Y

(
1− ∆

γ

)
≡ πLH . (16)

4. A low productivity leader ϕ(j(i)) = ϕL facing a low productivity second-

best firm ϕ(j′(i)) = ϕL in line i. In this case we have

µ(i) = γ, (17)

and
π(i) = Y

(
1− 1

γ

)
≡ πLL. (18)

3.7. Boundary of the firm

Given the constant cost of acquiring a line through innovation and the fact

that firms with a high process efficiency make higher expected operating

profits in an additional line, high productivity firm have ceteris paribus a

higher incentive to undertake R&D activity. To prevent the high productivity

firms from taking over all lines and to have a well defined boundary of the firm,

we assume that firms have to pay an additional per-period overhead cost

which is a convex function of the number of lines in which they own the

highest quality patent (and will operate in equilibrium). More specifically,
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suppose the number of lines firm j owns the highest quality patent is denoted

by n(j). We assume a quadratic per-period overhead cost in terms of final

output in this number of lines n(j), namely

1

2
ψon(j)2Y, (19)

with ψo > 0. The convexity of the overhead cost in the number of product lines

n(j), gives rise to a natural boundary of the firm. High productivity firms will

typically operate more lines than low productivity firms, but no firm (type) will

operate all lines.

It may be worthwhile to briefly compare our model to Klette and Kortum

(2004) which serves as a benchmark in this literature. Here we assume a linear

cost of innovating on a new line and convex overhead cost. Consequently, the

(expected) marginal value of an additional line in a firm is decreasing in the

number of lines, n(j), and this diminishing marginal value defines a natural

boundary of the firm. By contrast, Klette and Kortum (2004) assumes a convex

cost of acquiring extra product lines through creative destruction, and a

non-diminishing value of additional lines. Our modelling approach allows us

to do comparative statics with respect to the scalar ψo which affecting the

boundary of firms without altering the technology to undertake innovations.

In our main application we argue that ICT improvements lower ψo

permanently (for all firms) and we then study its effect on concentration, labor

share and growth during the transition as well as in the new steady state.

Another difference with Klette and Kortum (2004), is that we assume here that

firms operate on a continuum of lines, so that the law of large numbers

applies. One consequence is that there is no firm exit in our baseline model.4

4In a model extension we consider (gross) entry and exit too.
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3.8. Labor income shares

This simple version of the model abstracts from physical capital and labor is

the only factor in variable production. Furthermore we assumed both R&D

expenditure and overhead costs are denominated in final output. These last

two assumptions are made to avoid a mechanical effect of the firm size

distribution (and overhead cost) and the overall level of R&D activity on the

labor income share. Hence in this framework the aggregate labor income share

is simply determined by the distribution of markups across lines.

Because of the Cobb-Douglas technology in final output production, the

revenue from each product is equal to Y . Then the total variable cost in a line i

is equal to

wl(i) =
Y

µ(i)
.

Integrating both sides of the above equation over all i yields

wL = Y

∫ 1

0

1

µ(i)
di.

Dividing the above two equations by each other we then get the cost (or

employment) share of product line i as

l(i)

L
=

1

µ(i)

1∫ 1

0
1
µ(ι)

dι
. (20)

The relative cost per line, l(i)/L, is inversely proportional to the markup factor

per line. This comes from revenue being equalized across lines due to the Cobb-

Douglas technology in final production.

Finally, the aggregate labor income share is given by

1− α ≡ wL

Y
=

1∫ 1

0
µ(i)l(i)/L di

=

∫ 1

0

µ(i)−1 di. (21)

This is identical to the inverse of the average cost-weighted markup factor.
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There is no physical capital in this model and the profit share and the labor

income share add up to one. However, the aggregate labor share depends

non-trivially upon the full distribution of markups across lines. This

distribution is determined by the type of the leader and second-best firm

across lines.

What about the labor income share at the firm level? Consider firm j with

n(j) lines that faces in a fraction h(j) of these lines a high type second-best firm

and in the remaining fraction 1−h(j) a low productivity second-best firm. Note

that the firm’s labor income share in a line i is simply given by 1
µ(i)

. If firm j is

itself of high type, its overall labor income share is given by

1− α(j) = h(j)
1

γ
+ (1− h(j))

1

γ∆
. (22)

In contrast, if firm j is low type its overall labor income share is given by

1− α(j) = h(j)
∆

γ
+ (1− h(j))

1

γ
. (23)

Faced by the same share of high type competitors h(j), firms with a higher

process efficiency have a lower labor income share (as they can on average

charge a higher markup). Hence the model will generate persistent differences

in the labor income share across firms5. However, since the composition of

competitors h(j) is endogenous the model is flexible enough to also generate

changes over time in the labor income share within firms.

3.9. Dynamic firm problem

There are two individual state variables in the firm problem: the number of

lines a firm j operates, n(j), and the fraction of high productivity second-best

firms firm j faces in these lines h(j). Each firm then chooses in how many new

lines to innovate xt to maximize the net present value of future profits. Let us

5See Hsieh and Klenow (2009) and David and Venkateswaran (forthcoming) for evidence on
persistent difference in revenue per worker.
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denote by ΠH and ΠL the period profits of a firm after overhead relative to total

output, Y , of a high and low type firm operating n(j) and facing competition of

high second-best firms in a fraction of h(j) of them. Formally, we have

ΠH(n(j), h(j)) = n(j)− n(j)h(j)

γ
− n(j) (1− h(j))

γ∆
− 1

2
ψon(j)2,

and

ΠL(n(j), h(j)) = n(j)− n(j)h(j)∆

γ
− n(j) (1− h(j))

γ
− 1

2
ψon(j)2.

Note since these are profits divided by output Yt these profit shares in GDP are

time invariant. The problem of a firm of type j = H,L can be written as

V0 = max
{xt,nt+1}∞t=0

∞∑
t=0

Yt
[
Πj(nt, ht)− xtψc

] t∏
s=0

(
1

1 + rs

)
(24)

subject to

nt+1 = nt(1− zt+1) + xt, (25)

ht+1nt+1 = htnt(1− zt+1) + Stxt, (26)

and a given initial n0 and h0. The constraint (25) states that the number of

product lines of a firm tomorrow is equal to the newly added lines x plus the

number of lines today times one minus the rate of creative destruction in the

economy, z. The second constraint (26) states that the number of lines in

which the firm faces a high type second-best firm is equal to the number of

such lines today times 1 − z plus the number of newly added lines times the

average fraction of lines operated by high productivity type firms St. When

optimizing the firm takes the path of output Yt, the interest rate rt, the rate of

creative destruction zt+1, and the aggregate fraction of lines operated by high

productivity firms St as given.
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3.10. Market clearing and resource constraints

We close the model with the following market clearing conditions. First, final

output will be used for consumption, C, total overhead cost, O, and total R&D

expenditure, Z, or formally

Y = C +O + Z, (27)

where

O =
J∑
j=1

1

2
ψon(j)2Y, (28)

and

Z =
J∑
j=1

x(j)ψcY. (29)

Labor is only used as a variable input by the producer of different intermediate

inputs. Labor market clearing implies

L =
J∑
j=1

∫ 1

0

lt(j, i) di,

where lt(j, i) denotes labor used by firm j that operates i. Furthermore, asset

market clearing requires
J∑
j=1

Vt(j) = at. (30)

In addition, we have the equations defining the aggregate share of lines

operated by high types as6

St =

φJ∑
j=1

nt(j), (31)

an accounting equation that states that all lines are operated by a firm

1 =
J∑
j=1

nt(j), (32)

6Here we assume that the high productivity type firms are indexed by j = 1, 2, . . . , φJ .
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and a final equation that relates output to the distribution of process efficiency,

quality levels and markups

Yt = Qt

ϕL∆St exp
[
−
∫ 1

0
log (µt(i)) di

]
∫ 1

0
(µt(i))

−1 di
L, (33)

where Qt = exp
[∫ 1

0
log (qt(i, j)) di

]
denotes the “average” quality level. An

equilibrium in this economy is then a path of allocation and prices that jointly

solves the household problem, the firms’ problems and is consistent with the

market clearing and accounting equations stated above.

Since the output level is a function of the full distribution of markups

across product lines the equilibrium path is in general a function of the entire

initial distribution of product lines n(j) and competition h(j) across all firms.

One approach to simplify this is to assume that all firms of the same type start

our with the same level of n(j) and h(j). Since the law of large number applies

the firms of the same type will be identical along the entire equilibrium path

and just two firm problems—one for a high type and one for a low type—need

to be solved. The aggregate state vector can then be summarized by the three

variables S, and the share of high second-best firms in lines operated by the

two types hL and hH .

In the following we however do not analyze the transitional path but rather

focus on the steady state. We will show below that this steady state can be fully

characterized in this economy and takes very tractable functional forms. We

then discuss how a permanent drop in ψo (triggered by improvements in ICT)

affects market concentration, labor income shares (within firms as well as on

the aggregate), and productivity growth in the long run.

3.11. Steady state definition

In the following we focus on the stationary equilibrium this economy will

asymptotically converge to. We define this steady state equilibrium in the
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following way:

Definition 1 A steady state is an equilibrium path along which the interest rate

is constant and equal to r? and a constant fraction of the lines , S?, is provided by

high productivity producers.

In a steady state the number of products must be equalized across all firms of

the same type and must be constant over time. The number of products

however will differ between firms of different types. So all high productivity

type firms have n(j)? = n?H and all low type firms have n(j)? = n?L. For a

constant number of lines within firm, the R&D activity of each firm must be

proportional to its number of products, i.e., x(j)? = n(j)?z?. Since all firms

draw new lines from a stationary distribution, the fraction of high productivity

type second-best firms faced is equalized across firms and we have

h(j)? = S?, ∀j. (34)

Since the markup distribution is stationary in steady state output Yt is

proportional to the average quality Qt (see equation (33)). Consequently we

have
Yt+1

Yt
=
Qt+1

Qt

= γz
? ≡ g?. (35)

Finally since total overhead, O, total R&D expenditure, Z, all grow at the same

gross rate g? also consumption has to grow at this rate g? (see (27)). Then, the

Euler equation determines the steady state interest rate as

r? =
g?

β
− 1. (36)

Next, we formally characterize this steady state and analyze its solution.
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3.12. Steady state characterization

Let us denote by v the value of a firm V relative to total output Y . In steady

state (with h(j)? = S?) the number of products per firm becomes the only state

variable and we can write v(n). All high productivity then solve

vH(n) = max
n′
{ΠH(n, S?)− (n′ − n(1− z?))ψc + βvH(n′)}.

Similarly, all low productivity firms solve

vL(n) = max
n′
{ΠL(n, S?)− (n′ − n(1− z?))ψc + βvL(n′)}.

The two accounting equations (30) and (31) become in steady state

S? = n?HφJ (37)

and

n?HφJ + n?L(1− φ)J = 1. (38)

Finally in steady state we must have

n?H = fH(n?H) (39)

and

n?L = fL(n?L) (40)

where fH(·) and fL(·) are the policy functions of the high and low types. These

equations fully characterize the steady state.

Since the πH and πL are quadratic functions of n this is a very simple

dynamic programming problem for which the policy functions become linear

and the value function can be characterized in closed form. We state the

solution of the dynamic programming problems in the next proposition.
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Proposition 1 The steady state is a (n?H , n
?
L, S

?, z?) combination that fulfills

φJn?H = S? and (1− φ)Jn?L + φJn?H = 1, (41)

as well as the following research arbitrage equations for high and low

productivity firms respectively:

ψc =
1− S?/γ − (1− S?)/(γ∆)− ψon?H

1/β − 1 + z?
; (42)

ψc =
1− S?∆/γ − (1− S?)/γ − ψon?L

1/β − 1 + z?
. (43)

Proof. The first-order condition of the firm problem of the high type is simply

ψc = β
∂vH(n′)

∂n′
. (44)

Now, using the envelope theorem we get

∂vH(n)

∂n
= 1− S?/γ − (1− S?)/(γ∆)− ψon+ (1− z?)ψc (45)

Updating this equation, evaluating it at n = n′ = n?H and combining it with (44)

then immediately yields the research arbitrage equation of the high type. The

research arbitrage equation of the low type is derived in an analog way.

The intuition of the two research arbitrage equations is straightforward:

The optimality condition states that the marginal cost of innovating in a line, ψ

should be equal to the marginal (expected) value of having an additional line.

This marginal value consists in the case of the high type of the marginal profit

1 − S?/γ − (1 − S?)/(γ∆) minus the marginal overhead cost ψon divided by the

denominator 1/β − 1 + z? because there is time discounting and because there

is a probability z? of loosing the additional line again in each future period.

Equations (41)–(43) are four equations in the four unknowns (n?H , n
?
L, S

?, z?)
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and can be solved explicitly. All the other endogenous variables then follow

immediately. We have the following steady state results:

Proposition 2 In steady state (i) the share of lines operated by high productivity

firms is equal to

S? = φ+
(∆− 1)φ+ 1

(Ξ− 1)(∆− 1)
, (46)

where Ξ ≡ ψ0

J
∆γ

(∆−1)2φ(1−φ)
.

(ii) High productivity firms operate more lines than low productivity types,

i.e.,

n?H > n?L. (47)

(iii) The labor income share of a high type firm is given by

1− α?H = S?
1

γ
+ (1− S?) 1

γ∆
(48)

which is strictly larger than the labor income share of a low type firm is given by

1− α?L = S?
∆

γ
+ (1− S?) 1

γ
. (49)

Proof. The solution for S? follows immediately from the system (41)–(43). For

the difference in the number of products we get

n?H − n?L =
(S? − φ)

Jφ(1− φ)
> 0.

The labor income shares follow from (22), (23) and (34).

In this tractable model one can explicitly solve for S?. In steady state S? can

be viewed as a summary statistic of market concentration. One result that is

worthwhile to note is that all the endogenous steady state variables only depend

on the ratio ψo

J
and not on the individual level of ψo or J .

High process efficiency firms can (on average) charge higher markups.
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Consequently their incentive to undertake R&D is higher and they run into a

steeper area of the convex overhead cost, i.e., operate more line than low

process efficiency firms. A corollary of this is that is that high productivity

firms have are larger in sales than low productivity firms (S? > φ). They are

also larger in employment although the employment difference is smaller than

the sales difference because high productivity firms charge higher markups

and hence have lower labor share.

3.13. Steady state effects as ψo decreases

In this section we do a simple comparative static exercise: Suppose

improvements in ICT decrease ψo permanently to a lower level. How does the

new steady state compare to the old one? We are particularly interested in the

changes in the following endogenous variables: (i) market concentration, S?,

(ii) the labor income share at the aggregate level as well as within firm, (iii) and

the long-run growth rate.

The next proposition states the comparative static effect with respect to

concentration.

Proposition 3 Concentration S? increases monotonically as ψo decreases.

Proof. The comparative static effect follows directly from the expression (46).

The intuition that an fall in ψo increases S? is the following: With a lower ψo

a larger size gap n?H − n?L is needed to yield the same difference in the marginal

overhead cost. Consequently the high process efficiency firms will operate

more lines whereas the low productivity firms shrink in size as ψo decreases

(and market concentration goes up). This is an endogenous response in our

model since the decrease in ψo is the same for all firms.

In the next proposition we turn to the labor income share.

Proposition 4 As ψo decreases (i) the labor income share within firms increases,
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(ii) the reallocation of market shares goes in the opposite direction, (iii) as a

consequence the aggregate labor income share may increase or decrease.

The theory makes very sharp predictions about the labor income shares at the

aggregate and micro level. As S? decreases due to the drop in ψo all firms are

more likely to face a high process efficiency firm as a second-best competitor in

a given line. As a consequence within firm the labor income share increases (see

(48) and (49)) as within firms the markup charged decreases. However, there is

sales reallocation across firms that goes the opposite direction. As S? decreases

the high productive firms with a lower labor income share expand as the low

productivity firms contract. This across firm effect pushes the aggregate labor

income share again down. As emphasized in Section 2. these within and across

firm effects that go in opposite directions are a very salient feature of the micro

data.

In this simple model it is easy to show that the across firm effect dominates

and the aggregate labor income share falls asψo decreases if and only ifS? > 1/2.

Finally, let us analyze the comparative static effects on the long-run growth

rate in the next proposition.

Proposition 5 There are also two counteracting forces on the long-run growth

rate and g? can either fall or increase as ψo drops.

A decrease in ψo has a direct positive effect on the incentive to innovate: as the

overhead cost decreases the marginal value of operating an additional line

increases. However, there is a general equilibrium effect of the increasing S?

that goes in the opposite direction. With a higher S? the expected markup a

firm can charge in an additional line goes down and this decreases the

incentive to undertake R&D expenditure. Which of the two effects dominates

depends on the precise parameters. In Section 4. we show that the model

indeed predicts a productivity slowdown under a first simple calibration. Our

theory then predicts that this productivity slowdown should be accompanied

by decreasing rate of creative destruction and consequently less churning in
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the labor market.

We illustrated that our tractable theory is flexible enough to speak to our

motivating facts. As shown, qualitatively our theory can generate a productivity

slowdown, a rising concentration, and systematic changes in the labor income

shares within firms and across firms as the outcome of increasing boundary of

the firm (drop in ψo) presumably triggered by ICT improvements. The next step

is to gauge the quantitative size of these effects in a simple calibration. This we

will undertake in Section 4.. In this calibration we show that even this simple

theory has some quantitative bite.

However, before turning to the calibration we briefly discuss our theory’s

prediction along the transition (and how it will generate a burst in productivity

growth along the transition) and discuss various potential generalizations and

extensions of our theoretical framework.

3.14. Burst in growth during transition

So far we did a steady state comparison. In the data we saw that the

productivity slowdown after the mid 2000 was preceded by a burst in

productivity growth. It is indeed easy to show that as ψo falls our simple theory

will also generate a burst in productivity growth along the transition (followed

by a potential productivity slowdown). The reason for this burst in growth

along the transition is twofold: (i) The general equilibrium force that decreases

the incentive to in the new steady state innovate due to stiffer competition as

St increased only realizes over time. Hence on impact—as ψo decreases—the

incentive to do R&D increases unambiguously for all firms and productivity

growth will increase initially. (ii) In a static sense the new steady state with a

higher S? is more efficient compared to the old one because the high

productivity firms operate a larger fraction of the lines. This static efficiency

gain must be realized along the transition leading yet again to high growth

along the transition.
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3.15. Theoretical extensions

The baseline model we laid out here is kept very parsimonious to show the

minimum ingredients need to speak to the empirical facts in Section 2..

However, this tractable model can be augmented and generalized in various

ways in order to make the theory more quantitative and without changing the

key mechanism at work. Here we elaborate on some potential extensions.

The binary process efficiency is imposed to keep the structure as simple as

possible. It is straightforward to generalize it for instance to a continuous

distribution with and upper and lower bound. Then in general the whole

(stationary) distribution will matter for the steady state and a simple sufficient

statistic like S? will not exist anymore.

One could also allow for some transition matrix between the process

efficiency levels. It is not important that this variable is here assumed to be

permanent. What is however important is that there is some persistence in the

ϕ(j) differences.

Another generalization we have analyzed is to relax the assumption γ > ∆.

With γ < ∆ high productivity firms are less likely to be replaced by creative

destruction since they remain the leader even if a low productivity type

innovated upon them in the quality space. This then leads to a more dispersed

markup distribution even with just two type of process efficiency. For instance

with γ2 > ∆, high productivity firms can have a markup factor in a given line of

either γ, ∆γ, or ∆/γ whereas the low productivity type firms can have a

markup of γ or γ2/∆.

The quadratic functional form of the overhead function gives rise to this

simple linear-quadratic dynamic programming problem with a closed form

solution. This property is maintained by adding an additional linear effect of

n(j) on overhead cost. But more generally, the overhead function could easily

be generalized to any convex function.

Some generalizations are like having a CES final output production

function instead of the Cobb-Douglas or having general CRRA preferences are
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also straightforward. With a CES and a elasticity of substitution σ larger than

one it may happen that the markup of the high productivity type firm facing a

low type second-best firm is no longer constraint by the fringe and the firm

just sets the optimal markup σ
σ−1

. Then the labor share within high

productivity firms will decrease less as ψo decreases.

Since all firms operate an interval of lines of measure n(j) firms will not

loose all lines at once and consequently there is no firm exit. We however also

characterized a version of the model where there are additional “small” firms

that operate only one line. Then, as the rate of creative destruction decreases

with the productivity slowdown also gross firm exit and entry rates decrease.

We also derived a version of our model where firms can do endogenous

variety expansion. Then, as the span of control increases more varieties are

created. As a consequence the R&D expenditure are spread over a larger

number of product lines which reinforces the productivity slowdown of our

baseline theory.

The baseline model here abstracts from physical capital. It is however

straightforward to include physical capital by assuming a Cobb-Douglas

production function for the variable output. The model would then predict

that the physical capital share declines together with the labor income share

(and the profit share goes up).

Finally, we analyze a version of our model in which we allow mergers and

acquisitions. This theory predicts increased M&A activity during the transition.

4. Calibration

We calibrate the steady state model to assess the quantitative importance of

the overhead cost mechanism. We compare two steady state economies that

differ only by the value of the overhead cost parameter ψo. We define the initial

steady state as 1948–1995 and new steady state as 2006–2018. We calibrate the

two steady states to match eight moments in the data: 1) percent decline in
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aggregate labor share; 2) within firm labor share change relative to the labor

share in the initial steady state; 3) top 10% concentration in over 1987–1992; 4)

top 10% concentration over 2007–2012; 5) percentage change in top 10%

concentration; 6) productivity growth rate over 1948–1995; 7) real interest rate

in the initial steady state; and 9) R&D share of output in the initial steady state.

We match the initial steady state growth rate exactly but give equal weights to

all other moments. We compare the change in productivity growth rate in two

steady state with the decline in the data, which is not targeted.

Table 3 displays the calibrated parameters. First, the concentration level is

sensitive to the share of high productivity firms φ. All else equal, if φ is close to

1, the top 10% share is close to 10%. Lower φ with a sufficiently high ∆ help to

match the top 10% concentration in the data. We find that about 14% of the

firms have high productivity. They enjoy an oversized market share because

they are more than twice as efficient at the low productivity firms. Next, the

quality step γ is set to match the growth rate in the baseline steady state given

the rate of creative destruction, which is a function of other parameters. We

calibrate it to close to 3. Given the growth rate of the economy, the real interest

rate increases with the discount factor β. We calibrate β to 0.97. ψo is a

normalization in the model. So we normalize the baseline value to 1. Holding

other parameters fixed, a larger change in ψo generates larger change in labor

share and concentration. We find that the model asks for 5% decline in the

overhead costs parameter. Finally, we calibrate ψc using the R&D share.



34

Table 3: Baseline Parameter Values

Definition Parameter Value

1. share of H-type firms φ 0.137

2. productivity gap ∆ 2.202

3. quality step γ 2.935

4. discount factor β 0.971

5. initial overhead cost ψo 1

6. new, lower overhead cost ψ′o 0.954

7. R&D cost ψc 5.816

Table 4 shows that we match the targets very well. Under these calibrated

parameters, aggregate productivity growth declines from 1.8% to 1.4%, which

is 60% of the actual decline. In Table 4, we also compare the aggregate labor

share in the model with the data. Note that the labor share in the model is

quite a bit lower than the measured labor share. This means that while we

closely match the percentage decline in labor share, we under fit the

percentage point decline in labor share. One way to see this is that our model

generates one and half percentage points decline in labor share from rising

aggregate markup. This leaves room for non-markup explanations such as

technology and measurement for the decline in labor share.
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Table 4: Baseline calibration

Targeted Target Model

1. % change in labor share -4.4 -4.2

2. within change/baseline labor share 0.075 0.077

3. top 10% concentration 1987–1992 0.675 0.675

4. top 10% concentration 2007–2012 0.728 0.728

5. change in top 10% concentration 7.9 7.8

6. productivity growth 1948–1995 0.018 0.018

7. baseline real interest rate 0.050 0.049

8. baseline R&D/PY 0.100 0.098

Untargeted Data Model

9. productivity growth 2006–2017 0.011 0.014

Share of growth decline explained 60%

10. aggregate labor share 0.541 0.348

Source: 1 and 10: BLS Employee only compensation share of value

added, 2–5: Autor et al. (2017), 6 and 9: BLS MFP series

To clarify the mechanism in our model, Table 5 displays values for selected

endogenous variables in the initial and new steady state. The decline in

overhead costs encourages productive firms to expand, reducing the size of

low productivity firms (lower n?L) and increasing the size of high productivity

firms (higher n?H). Since the number of firms of each type stays constant, this

translates into a higher fraction of products produced by the high productivity

firms (higher S?). With the rise in S?, within firm labor share rises because

firms are more likely to produce a product where the next best producer is a

high productivity producer. The rise in within firm labor share means firms

have lower markups. Similarly, the expect markup from innovating is also

lower as firms are more likely to innovate on a product produced by a high

productivity producer. As a result, firms reduce their R&D expenditures (lower
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Z/Y ), leading to a lower rate of creative destruction in the equilibrium (lower

z?) and hence lower growth.

Table 5: Initial vs. new steady state

Initial New

1. creative destruction rate (z?) 0.017 0.013

2. share of H-type products (S?) 0.928 0.999

3. products per H-type firm (n?H) 1 1.078

4. products per L-type firm (n?L) 0.012 0.000

5. labor share of H-type firms 0.327 0.341

6. labor share of L-type firms 0.721 0.750

7. aggregate labor share 0.356 0.341

8. R&D/PY 0.098 0.073

9. total overhead/PY 0.185 0.205

10. rents/PY 0.362 0.381

Aggregate labor share declines in the new steady state. Since output is the

sum of labor compensation, R&D investments, overhead costs and rents, we

can decompose the decline in aggregate labor share into three parts: a change

in R&D share, a change in overhead cost share and a change in rents share. In

the new steady state, R&D investment is lower because there is less creative

destruction. This pushes up the aggregate labor share. However, overhead costs

rise because firms are bigger and rents share increases as more production is

carried out by high markup firms. These forces dominates the decline in R&D

share, resulting in the decline of aggregate labor share. The rise in overhead

cost is consistent with the hypothesis proposed by Autor, Dorn, Katz, Patterson

and Van Reenen (2017). It is similar in magnitude to the rise in the rents share.

Despite the rise in aggregate rents share, innovation declines because the rise

in the aggregate is due to reallocation and not an increase in firm-level markup.

Finally, recall that job reallocation across firms and establishments as well
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as entry and exit rates are trending down in the data, as shown in Figure 6 and

7. How might our model speak to this? Job reallocation across firms occurs

when a firm’s employment level rises (gross job creation) or falls (gross job

destruction). In the data, this reallocation is partially due to firm entry and

exit, which our baseline model does not have. But a significant component of

job reallocation in the data is across surviving firms. In our model, firms add

and subtract products from their portfolio due to creative destruction by

themselves and their competitors. For simplicity our firms have a continuum

of products, so this should ebb and flow nets out in steady state. But it is a

short leap to a model in which firms have a finite number of products so that

their employment levels rise and fall. See Garcia-Macia et al. (2018) for just

such an analysis. Our model may speak more directly to job reallocation across

establishments, if one makes the strong assumption that each plant is

associated with given product line produced by the firm. Then plant entry and

exit in the data can be compared to the rate of creative destruction in our

model. As our model features falling long run growth, it implies falling long

run job reallocation associated with product turnover.
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Figure 6: Falling job reallocation rate 1977–2016

0

5

10

15

20

25

30

35

40

1977 1982 1987 1992 1997 2002 2007 2012



39

Figure 7: Entry and exit rates of establishments

Source: BDS. Average entry and exit rates at the establishment level in U.S. nonfarm business

sector.
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5. Conclusion

We provide a new theoretical framework that can potentially account for a

significant portion of the U.S. growth experience over the past 30 years: (i) a

decline in the labor income share (driven by resource reallocation across firms

as opposed to a declining labor income share within firms), (ii) a productivity

slowdown (after a burst in productivity growth), (iii) rising concentration at the

national level; and (iv) falling job reallocation rates. We argue that a significant

part of these phenomena can be explained by ICT improvements in the

mid-1990s to mid-2000s which increased the optimal boundary of (especially)

the most efficient firms. In our theory, these firms enjoy higher markups; when

they expand their reach into more markets, they raise average markups and

lower the aggregate labor share. They expand by innovating on more product

lines, bringing a temporary surge of growth. Within-firm markups eventually

fall for both high and low productivity firms, as they are more likely to face

high productivity competitors. This force ultimately drags down innovation,

growth, and job reallocation.

We compared the steady states before and after a fall in the overhead cost

for managing multiple product lines. In the next revision we plan to analyze

the transition from one steady state to another, to quantify the magnitude and

duration of the temporary gains in productivity growth. In the U.S. data, a

10-year period of rapid growth from 1996 to 2005 raised aggregate productivity

about 10% above the pre-1996 trend. We may try to discipline the decline in

overhead costs using the drop in ICT prices and the greater propensity of large

firms to invest in ICT. We can also evaluate the welfare effects of falling

overhead costs using the equivalent permanent change in consumption.

Another natural next step is to explore the cross-industry predictions of our

theory and see if they hold up in the data. In particular, we might look at

whether more intensively IT-using industries experienced bigger increases in

concentration (paired with declining labor share, and a more pronounced
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boom-bust cycle of productivity growth. ICT can be used for more than just

overhead, so we will try to gauge the overhead component of ICT by the

difference in ICT investment rates of large versus small firms within industries.

Lastly, we are keen on exploring tax and subsidy policies in our quantitative

framework. The decentralized equilibrium is suboptimal in due to markup

dispersion across products as well as knowledge spillovers across firms (quality

innovations build on previous innovations by other firms). It is possible that

falling overhead costs reduce welfare, and that a welfare-improving policy

response might be to (counterintuitively!) constrain the expansion of the most

efficient firms. Conversely, we may find that the temporary surge in

productivity more than justifies the lower long run growth prospects.
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