
Basic Concepts and some current Directions in Ultracold Gases

Wilhelm Zwerger∗
Physik-Department, Technische Universität München, D-85748 Garching, Germany

These are notes on a series of lectures on many-body phenomena in ultracold gases at the Collège de France
in the Fall of 2021. Their main focus are Bose systems, for a review of strongly interacting Fermi gases see
the Varenna Lectures 2014, accesssible via arXiv:1608.00457. As an introductory comment, I quote from the
preface of the two volume book on ’Statistical Field Theory’ by C. Itzykson and J.-M. Drouffe who remark:

’ A book might give the illusion, especially to students, that some knowledge has become definitive and that
the authors understand every part of it. This is a completely false view. No one can really fully master even his
own subject, and this is luckily a source of progress.’
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FIG. 1: Schematic setup of out-coupling two atom beams from a trapped BEC via RF-transitions into an untrapped hyperfine state mF = 0.
The visibility of the resulting interference fringes as a function of separation is shown on the right. Below the BEC transition temperature
of Tc ' 400 nK, the visibility approaches a constant for separations exceeding about ten average interparticle distances, thus providing direct
evidence for the presence of off-diagonal long range order. The Figures are taken from Bloch et al. [2].

I. SUPERFLUIDITY IN GASES AND LIQUIDS

Off-diagonal long range order and Widom particle insertion A precise definition of Bose-Einstein condensation (BEC) in an
interacting system has been given by Penrose [1]. It is based on the concept of off-diagonal long range order (ODLRO) which
states that the off-diagonal elements

lim
|x−x′ |→∞

ρ1(x,x′) = lim
|x−x′ |→∞

〈ψ̂†(x)ψ̂(x′)〉 = n0 , 0 (1)

of the one-particle density operator ρ̂1 approach a finite constant at arbitrary large separation. The limit defines a condensate
density n0 which is the square of the order parameter for BEC in the interacting system. Physically, the condition (1) reflects
the presence of long range phase coherence: states in which one particle is removed either at x or at a distant position x′ have
a finite overlap for arbitrary large separation. Experimentally, this property has first been observed in the context of ultracold
gases by Bloch et al. [2]. As shown in Fig. 1, the visibility in the interference from two beams outcoupled at separate points of
a trapped BEC decreases to zero as a function of separation above the critical temperature while it stays finite below the transition.

In the following, we want to ask what are necessary and sufficient conditions in the ground state many-body wave function
for the existence of ODLRO. Specifically, we consider a generic non-relativistic Hamiltonian with pure two-body interactions.
The associated first quantized Hamiltonian

ĤN = −
~2

2m

N∑
i=1

∇2
i +

∑
1≤i< j≤N

V(xi − x j) (2)

gives rise to a proper thermodynamics with an extensive free energy and a positive compressibility provided the interaction obeys∑
1≤i< j≤N

V(xi − x j) > −B · N . (3)

Here, B is a positive constant independent of the specific state. As shown by Fisher [3], a sufficient condition for the validity
of Eq. (3) is that the two-body potential V(r) ≥ −ε has a finite lower bound, decays faster than 1/r3 at large distances and
increases more rapidly than 1/r3 for separations smaller than a short range scale σ. More specifically, we consider interactions
with an asymptotic van der Waals tail V(r→∞) = −C6/r6. Apart from σ, they are characterized by the van der Waals length
`vdW = (mC6/~

2)1/4/2 as a second length scale which is determined solely by the asymptotic part of the interaction. A standard
example is the Lennard-Jones potential V(r) = 4ε [(σ/r)12 − (σ/r)6] where the short distance scale σ and the depth ε are
connected with the strength of the van der Waals tail via C6 = 4ε σ6. Independent of the precise form of V(r), the equilibrium
free energy F(N) = f N + . . . for the class of potentials obeying (3) scales linearly with the particle number. At zero temperature,
the generic ground state even in the limit of vanishing pressure is a solid, where both the particle statistics and zero point
fluctuations play only a minor role. A measure for their strength is provided by the parameter

ΛdB =
~

σ
√

mε
−−−→
vdW

1
2

(
σ

`vdW

)2

(4)

introduced by De Boer [4], which is the square root of the ratio between the zero point energy on the scale σ and the depth ε of
the attractive part of the potential. From numerical studies, Nosanow et al. [5] found that for Bosons the crystalline solid ground
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FIG. 2: The Figure on the left shows the phase diagram of 4He, whose ground state is a superfluid liquid below a critical pressure pc ' 25 bar.
On the right, a qualitative phase diagram is shown for a Bose system in the regime ΛdB > Λc

dB, where the ground state at low pressure is a
superfluid gas. The continuous transition from the superfluid to the normal gas asymptotically exhibits a cubic dependence p(T ) ' g/λ6

T ∼ g T 3.

state realized for small values of ΛdB melts into a liquid at a non-universal critical value ΛdB ' 0.37 via a first order quantum
phase transition. Both the solid and the liquid phase have a finite density n̄ at vanishing pressure and a negative ground state
energy u(n̄) per particle. Specifically, for 4He, where ΛdB ' 0.42, precise results for the dimensionless density n̄σ3 ' 0.364
or the energy per particle u(n̄) ' −0.7 ε ' −kB · 7 K are available by numerical methods [6, 7]. Upon further increasing the
strength of the zero point fluctuations, the liquid eventually unbinds into a gas through a continuous quantum phase transition
at Λc

dB ' 0.69. This transition was first studied numerically by Miller et al. [8] and will be discussed in more detail below.
The phase diagram at finite temperature beyond Λc

dB, which has neither a triple nor a critical point, is sketched in Fig. 2. As
a true equilibrium configuration it is realized only for spin polarized hydrogen, where ΛdB ' 0.74 [9]. A gaseous superfluid
near vanishing pressure and temperature is also present in ultracold Alkali gases, even though their de Boer parameter is much
less than one. This is a result of the fact that in the regime of very low densities n`3

vdW � 1, the short distance length σ can
effectively be taken to zero and the liquid or solid equilibrium phases are not reached because states with negative energy are
inaccessible kinematically with just two-body collisions. As a result, the Hamiltonian can be truncated to one involving only
states in the continuum. For positive two-body scattering length a, a gaseous state then forms a stable equilibrium configuration.
In the following, we will show that the ground state of a Bose system always exhibits BEC or the related phenomenon of
superfluidity provided it is a homogeneous fluid, i.e. either a liquid or a gas. For solids with broken translation invariance,
superfluidity may still be present, however generically this requires a finite defect density in their ground state.

It was observed by Feynman [10] that the many-body ground state wave function ψ(x1,x2 . . .xN) of a Bose system with
a permutation symmetric and real Hamiltonian of the form (2) has no nodes. In fact, this is a special case of a more general
theorem which states that the lowest energy in an unconstrained minimization of 〈ψ|Ĥ|ψ〉 is realized for a positive and symmetric
wave function (’minimizers are bosonic’) 1. The theorem relies on the observation that |ψ| gives the same energy as ψ itself and
that in a decomposition ψ = ψs + ψr into a permutation symmetric part ψs and a remainder, the cross terms in 〈ψ|Ĥ|ψ〉 vanish
(for a rigorous proof see Lieb and Seiringer [12], chapter 3.2.4). In order to deal with Bose fluids with strong interactions as in
4He, Feynman and later Penrose and Onsager [13] suggested to express the symmetric and positive many-body wave function

ψ(x1,x2 . . .xN) =
[
pcl(x1,x2 . . .xN)

]1/2
=

1
√

QN
exp {−ṼN(x1,x2 . . .xN)/2} (?) (5)

in terms of the square root of a N-body probability density of a classical fluid at some finite effective temperature. The normali-
zation is provided by the classical configuration integral QN =

∫
d1 . . . dN exp {−ṼN(1 . . .N)}. In principle, such a representation

is always possible by defining the dimensionless effective potential ṼN(1 . . .N) of the classical reference system such that the
square of (5) is obeyed as an identity. This is used e.g. in Laughlin’s plasma analogy for incompressible states in the lowest
Landau level, connecting the square of Ansatz wavefunctions to a 2d Coulomb gas with logarithmic interactions [14]. In the
present context, however, the idea is useful only if ṼN is similar to the underlying microscopic interaction in the quantum many-
body problem. As will be shown below, this is actually impossible for any compressible Bose fluid. An assumption which is
often made in addition is that the classical reference system can be described by a sum ṼN(1 . . .N) =

∑
i< j 3̃(ri j) involving a

1 The theorem also implies that the two-electron ground state of a spin-independent Hamiltonian is always a singlet, see problem 2 in Ref. [11] p. 689 .
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FIG. 3: Widom particle insertion: Two particles at x respectively x′ are added to a classical fluid of N − 1 particles at positions x2 . . .xN ,
represented by full discs. The strength of the interaction of the added particles with those of the fluid is half of that within the fluid itself.

translation and rotation invariant two-body interaction 3̃(r). In this case, the many-body wave function

ψJastrow(x1,x2 . . .xN) =
1
√

QN
exp

−∑
i< j

3̃(ri j)/2

 (6)

is a product of N(N − 1)/2 identical two-body wave functions, as introduced by Bijl [15] and Jastrow [16]. For the following
considerations, this form is not necessary, however. Indeed, quite generally, the representation (5) implies that the one-particle
density matrix of the quantum system

ρ1(x,x′) =
N

QN

∫
d2 . . . dN exp

{
−

[
ṼN(x, 2 . . .N) + ṼN(x′, 2 . . .N)

]
/2

}
(7)

can be expressed in terms of a Boltzmann weight of a classical N-particle system where one of the particles is either at a position
x or at x′. As indicated schematically in Fig. 3, the exponent 2

1
2

[
ṼN(x, 2 . . .N) + ṼN(x′, 2 . . .N)

]
= ṼN−1(2 . . .N) + ∆2W̃1/2(x,x′) (8)

may be separated into a contribution ṼN−1(2 . . .N) which accounts for the full interaction energy of an N − 1-particle system
plus an additional term ∆2W̃1/2(x,x′) which describes the change in energy associated with adding two particles at positions x
and x′ that do not interact among themselves. The subscript 1/2 indicates that they interact with the N − 1 particles at positions
x2, . . .xN with only half the strength of the potential in the N − 1-particle system. In a similar manner, the configuration integral
for N particles

QN = QN−1

∫
d1 〈exp {−∆1W̃(x1)}〉N−1 (9)

can be expressed in terms of an expectation value of the dimensionless interaction energy ∆1W̃(x1) associated with adding a
single particle at position x1. Here, the average 〈. . .〉N−1 is defined by an integration over the positions x2, . . .xN of an N − 1 -
particle system with Boltzmann weight exp {−ṼN−1(2 . . .N)} and a normalization through the associated configuration integral
QN−1. For a homogeneous system, 〈exp {−∆1W̃(x1)}〉N−1 does not depend on x1, which can be choosen as the reference point
for the remaining coordinates x2, . . .xN . The integral

∫
d1 then just gives a factor V . Moreover, using standard thermodynamic

relations, the ratio QN/QN−1 = V · exp {−µ̃ex} can be expressed in terms the excess chemical potential µ̃ex = F̃N − F̃N−1 − µ̃id of
the fluid in units of the thermal energy. In the theory of classical fluids, these relations go back to Widom [17] and are called the
Widom particle insertion method. In fact, the extraction of µ̃ex in this manner is an example of an equality due to Jarzynski [18],
which relates the excess chemical potential in equilibrium to the exponential average of the work ∆1W̃(0) needed to add a single
particle at fixed total volume V . Using the decomposition in Eq. (8), the one-particle density matrix

ρ1(x,x′) = n
〈exp {−∆2W̃1/2(x,x′)}〉N−1

〈exp {−∆1W̃(0)}〉N−1
−−−−−−−−→
|x−x′ |→∞

n
〈exp {−∆1W̃1/2(0)}〉2

〈exp {−∆1W̃(0)}〉
= n0 , 0 (10)

of a homogeneous Bose fluid ground state can be expressed as the ratio of two expectation values in a N − 1-particle state. For
large separation |x − x′|, this approaches a finite constant quite generally because inserting two particles at widely separated

2 Note that both ∆2W̃1/2(x,x′) and ∆1W̃(x1) in Eq. (9) depend implicitely also on the coordinates x2, . . .xN but this dependence is suppressed.
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positions in a classical fluid with short range interactions is equivalent to two independent single particle additions. A particularly
simple situation arises by assuming that the classical reference system is a fluid of hard spheres with diameter σ. In this case,
∆1W̃1/2(x)|HS ≡ ∆1W̃(x) because half of the interaction strength is the same as the full interaction. For the hard sphere fluid, the
ratio which determines the condensate fraction in (10) is thus equal to exp {−µ̃ex}. An analytical expression for the associated
excess chemical potential, which only depends on the dimensionless filling fraction η, is obtained within the Carnahan-Starling
form of the equation of state of a classical hard sphere fluid which gives 3

µ̃ex|HS = η
8 − 9η + 3η2

(1 − η)3 with η = N3σ/V =
π

6
nσ3 . (11)

As shown by Penrose and Onsager [13], this approach can be used to provide an estimate for the condensate fraction in 4He.
Taking the known value σ ' 2.5Å of the short distance scale below which the 4He - 4He interaction becomes strongly repulsive
as an effective hard sphere diameter, the density of liquid 4He is about 0.28 times that of close packing, which corresponds to
an effective dimensionless filling fraction ηeff(4He) ' 0.2. Based on Eq. (11) for the associated excess chemical potential, this
leads to a condensate fraction n0/n = exp−µ̃ex = 0.078. The assumption that the many-body ground state wave function of
a Bose fluid has a representation in the form (5) of an effective classical reference system thus leads to two important conclusions:

(a) Any translation invariant ground state of an interacting Bose system is necessarily a superfluid exhibiting ODLRO, because
two-particle insertion at widely separated points in a classical fluid with short range interactions factorizes.

(b) Explicit results for the condensate fraction of strongly correlated Bose fluids may be obtained from a generalization of the
Widom particle insertion method in classical fluids via Eq. (10). In particular, using the known value µ̃ex for the excess chemical
potential of a gas of hard spheres, the prediction of a zero temperature condensate fraction n0/n ' 0.08 in liquid 4He by Penrose
and Onsager is close to the value obtained via path integral Monte Carlo methods [6].

Both conclusions are correct, however their derivation based on the mapping (5) is moot. A simple reason for this becomes
evident from the fact that path integral Monte Carlo calculations of the hard sphere Bose fluid by Grüter et al. [20] show that its
ground state is a non-superfluid crystal beyond η ' 0.12. The hard sphere system is thus no longer a fluid at 4He densities. A
more fundamental problem with Feynman’s Ansatz connecting the many-body wave function to the square root of the distribution
function of particle positions in a classical fluid is revealed by considering the limit of a dilute gas. The thermodynamic properties
of the classical reference fluid may then be obtained from a virial expansion. For the specific case of a hard sphere system, using
(11) to leading order in η � 1, this results in n0/n = 1 − 8η + . . .. The deviation of the condensate fraction from the ideal Bose
gas limit is thus found to be linear in the density n. This contradicts the classic Bogoliubov result [21]

n0 = n −
8n
3

(
na3/π

)1/2
+ . . . = n −

√
2

12π2 ξ3 + . . . (12)

where the correction to n0/n due to interactions scales with the square root of the density, a prediction that was verified ex-
perimentally by Lopes et al. [22]. In the limit of a dilute gas, the healing length ξ = (8πna)−1/2 only depends on the density
and the scattering length a > 0 as a single parameter characterizing the interaction. The physical origin of the discrepancy
between Bogoliubov theory and a naive virial expansion is hidden in the fact that the interactions in the classical reference fluid
underlying the representation (5) can not be of short range. Indeed, for any classical compressible fluid, the static structure
factor Scl(q → 0) = (∂n/∂µ̃)/n is finite in the limit of vanishing wave vector. By contrast, a compressible quantum fluid at zero
temperature has a static structure factor

S (q→ 0) = |q| ξ/
√

2 + . . . → g(2)(r→∞) = 1 −


ξ

π2
√

2 nr4 in d = 3
ξ

2π
√

2 n2r3 in d = 2
(13)

which vanishes in a non-analytic manner. For a fluid of Bosons, the associated characteristic length ξ is fixed by the sound
velocity cs via ξ = ~/(

√
2 mcs), a relation which in fact holds for arbitrary strength of the interactions. This is a consequence

of the fact that the Feynman-Bijl single mode result Eq = εq/S (q) → ~csq for the excitation energy becomes exact in the limit
of small wave vectors [23], as will be discussed in more detail in Lecture III. Due to Scl(q = 0) , 0, the Ansatz (5) does not
describe correctly the long wavelength physics and therefore fails to reproduce the Bogoliubov result in the dilute limit. The

3 See chapter 3.9 in the book by Hansen and McDonald [19]. Note that the expression (11) is applicable only in the fluid phase for η < 0.49 beyond which the
equilibrium state of the classical hard sphere system is a crystal with an fcc-lattice structure, reaching close packing at ηcp = π

√
2/6 ' 0.74.
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excellent agreement of the prediction n0/n ' 0.08 for the condensate fraction of 4He with precise ab initio results which is
obtained by using this mapping must therefore be considered as fortuitous. Formally, the behavior S (q → 0) → |q| ξ/

√
2 can

be enforced in a finite temperature classical fluid by adding long range repulsive two-body interactions 3̃(r) → 1/(
√

2π2nξ r2)
(or 3̃(r) → 1/(

√
2πn2ξ r) in two dimensions), as pointed out by Reatto and Chester [24]. Apart from the required knowledge

of the effective healing length ξ or the associated sound velocity cs, however, this interaction is not only density dependent
but decays to zero so slowly that the condition (3) for the existence of a proper thermodynamic limit is violated. Whether the
expression (10) for the condensate fraction in strongly interacting Bose fluids can be extended to cover a situation where the
short distance scale σ can be taken to zero while the two-body scattering length a is of the order of the mean interparticle
spacing or even infinite, is an open problem. It is of current interest in view of recent measurements of dimensionless ratios
which characterize the unitary Bose gas, whose condensate fraction is estimated to be n0/n ' 0.2 [25].

Bogoliubov theory as an internal Josephson effect in momentum space At this point, following in part Lectures by Nozières
[26], it is instructive to add a few remarks regarding the Bogoliubov approach which are not discussed in standard textbooks. The
approach relies on replacing the annihilation operator b̂0 → z for vanishing momentum by a complex number z (or z̄ for b̂†0) and
neglecting contributions to the interaction part of the second quantized form of the Hamiltonian (2) which contain only operators
with finite momentum (for a discussion of why a replacement of operators by a c-number still gives the correct thermodynamics
see Lieb et al. [27]) As a result, the Hamiltonian is reduced to a quadratic one

ĤBog = EH +
∑
q,0

(
εq + n0V(q)

)
b̂†qb̂q +

1
2V

∑
q,0

V(q)
(
z̄2 b̂qb̂−q + z2 b̂†−qb̂†q

)
→ EBog +

∑
q,0

Eqα̂
†
qα̂q (14)

which may be diagonalized by introducing a set of Bosonic quasiparticles. Here, n0 = |z|2/V is the condensate density and
V(q) is the Fourier transform of the two-particle interaction, which is assumed to be positive. Its value g(0) = V(q = 0) > 0 at
vanishing momentum determines the Hartree energy EH = N · g(0)n/2. The Hamiltonian (14) is a bosonic version of the reduced
BCS-Hamiltonian for Fermions. Provided that the phase of the complex number z can be choosen to vanish, the associated gap
function ∆q ≡ n0 V(q) is real and positive. As will be shown below, this is always possible, however a choice for the phase of z
also fixes the phase associated with pairs (q,−q) of particles in the depletion. Following the notation of standard textbooks [28],
the operators α̂†q which create the Bosonic quasiparticles with momentum q are connected with the corresponding operators b̂†q
of the underlying Bosons by

α̂†q = uqb̂†q + 3qb̂−q ↔ b̂†q = uqα̂
†
q − 3qα̂−q with u2

q − 3
2
q = 1 . (15)

The amplitudes uq = cosh θq and 3q = sinh θq are conveniently parametrized by a real rotation angle θq, depending only on the
magnitude q= |q| of the wavevector. The ground state of the Hamiltonian (14) is defined by the condition α̂q|ΨBog〉 ≡ 0 of being
the vacuum state for quasiparticles at all q , 0. It may be written in the form

|ΨBog〉 = |z, {λq}〉 = e−|z|
2/2

∏
q,0

(
1 − |λq|

2)1/2 exp
(
z b̂†0 +

∑
q,0

λqb̂†qb̂†−q
)
|0〉 (16)

of a product of a coherent state for the condensate with one involving pairs (q,−q) with vanishing total momentum for the
depletion. Indeed, choosing λq = −3q/uq, the state (16) has a vanishing number of quasiparticles because[

b̂q, exp (λqb̂†qb̂†−q)
]

= λqb̂†−q exp (λqb̂†qb̂†−q) → α̂q |ΨBog〉 = (uqλq + 3q) b̂†−q|ΨBog〉 ≡ 0 if uqλq + 3q = 0 .

Note that the condition α̂q|ΨBog〉 ≡ 0 only involves finite momenta q , 0. The precise form choosen for the condensate
wavefunction is thus left open. Taking this to be a simple coherent state |z〉 is just a convenient choice. For a given total
number N of Bosons, which is fixed only on average 4, the associated parameter z → zλ is eliminated as an independent
variable through the constraint N0 = |z|2 = N −

∑
q,0〈b̂

†
qb̂q〉. The problem is thus reduced to determining the variables λq.

Now, in order to understand the underlying physics and the generality of Bogoliubov’s approach, it is instructive to determine
the expectation value of the Bogoliubov Hamiltonian in the normalized state (16), using a parametrization of the - in general
complex - variables λq = tanh θq exp iϕq in terms of a real parameter θq and a phase ϕq, The necessary expectation values are
〈b̂†qb̂q〉 = sinh2 θq for the average occupation number of Bosons with finite momentum and a nonzero ’anomalous’ expectation

4 For a strictly number conserving formulation of Bogoliubov theory see Girardeau [29] and the review by Leggett [30]. Note also that in a quantum optics
context, Eq. (16) describes a two-mode squeezed state, see e.g. Walls and Milburn [31]. This analogy is discussed by Haque and Ruckenstein [32].
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value 〈b̂qb̂−q〉 = sinh θq cosh θq exp iϕq which depends on the phase of λq. Defining a phase ϕc for pairs of particles in the
condensate by z2 = N0 exp iϕc, the expectation value of the Bogoliubov Hamiltonian in the state (16) has the form

〈zλ, {λq}|ĤBog|zλ, {λq}〉 = EH +
∑
q,0

[
ξq sinh2 θq + ∆q sinh θq cosh θq · cos (ϕc − ϕq)

]
. (17)

Here, ξq = εq + ∆q is the single-particle energy within a Hartree-Fock approximation. It approaches a constant ∆0 = n0g(0)

as q→ 0 and thus would lead to a finite excitation gap. This is at variance with the expected gapless nature of the excitations
associated with the breaking of the global continuous symmetry b̂q → b̂q exp (iϕ) which is still present in (14). To see how
the actual gapless excitations Eq → ~csq + . . . arise within the Bogoliubov approach, it is necessary to include the phase
dependent contribution to the energy (17). Apparently, this term is minimized by choosing a fixed relative and momentum
independent phase ∆ϕ = ϕc − ϕq = π. In an interacting BEC, therefore, there is an effective internal π-Josephson junction in
momentum space between pairs of particles in the condensate and those with opposite momentum in the depletion (note that
pairs are necessary because the ground state must have zero momentum). The associated phase dependent coupling energy
EJ cos ∆ϕ = −EJ = −

∑
q,0 ∆q sinh θq cosh θq is negative despite the fact that the underlying interaction is purely repulsive.

This is analogous to what happens in the effective π-Josephson junction at the interface between a d-wave and an s-wave
superconductor, where tunneling occurs between gaps which are positive on the s-wave and negative on the d-wave side, a setup,
which has been used to determine the non-trivial nature of pairing in high-temperature superconductors by Wollman et al. [33].
On a formal level, the relative phase ∆ϕ = π between the condensate and the depletion just accounts for the minus sign which
appears in λq = −3q/uq. The underlying physics, however, has a number of important and not widely appreciated consequences:

(a) The internal Josephson coupling between pairs of particles in the condensate and those in the depletion with opposite
momentum is both necessary and sufficient for the generic behavior (13) of the static structure factor of a compressible Bose
fluid and thus eventually for the gapless nature of the excitation spectrum. It explains, moreover, the fact that the ground state is
fully superfluid despite a condensate density which might be below ten percent as in 4He.

To see this, consider the static structure factor S (q) = 〈ρ̂†qρ̂q〉 which involves the normalized density fluctuation operator
ρ̂†q =

∑
k b̂†k+qb̂k/

√
N. Within the Bogoliubov approach, this can be calculated exactly to zeroth order in the small parameter

(na3)1/2 by restricting ρ̂†q ' b̂†q + b̂−q to those contributions which involve b̂0 → z, which is conveniently choosen to be real. As
a result, one obtains

SBog(q) = 〈ΨBog|ρ̂
†
qρ̂q|ΨBog〉 =

1 + 2 tanh θq cosϕq + tanh2 θq

1 − tanh2 θq

∣∣∣∣∣∣
ϕq=π

= exp−2θq −−−−−−→
∆q=const

(1 + 2/q2ξ2)−1/2 . (18)

Here, in the final form of the expression, we have used that fixing ∆ϕ = π at its optimum value, a minimization of the energy (17)
with respect to the remaining variables θq leads to tanh 2θq = ∆q/ξq. This determines the momentum dependence of the static
structure factor SBog(q) = exp−2θq = (1 + 2∆q/εq)−1/2. In particular, defining the sound velocity via ∆0 = n0g(0) → mc2

s and
an associated characteristic length ξ via ξ = ~/(

√
2 mcs), its behavior at small momentum is identical with the one given in

Eq. (13). The Bogoliubov approach thus provides a proper description of the pair distribution function at long distances of
any compressible Bose fluid. Evidently, it is precisely the minus sign cosϕq = −1 associated with the internal Josephson ef-
fect which guarantees that the leading contributions at small q in the numerator of the static structure factor (18) precisely cancel.

In order to understand why a BEC is fully superfluid at zero temperature despite the fact that the fraction f0 of particles
in the condensate may be much less than one, one needs to show that the superfluid fraction fs = Ns/N is equal to one
at T = 0. Here, as discussed further below, Ns is defined in such a way that Ns · ~

2Q2/2m is the increase in the total
energy of a state in which the Bose fluid is set into motion with a finite momentum Q. Now, as a result of the Josephson
coupling between the condensate and the depletion through an extensive energy EJ , this momentum is carried not only by the
particles in the condensate but the complete momentum distribution is translated by Q, giving rise to a mass current density
ns · ~Q with ns = n. The particles in the depletion are rigidly dragged along, with pairs now at q + Q,−q + Q. As a result,
the system is a perfect superfluid at zero temperature irrespective of the value of the condensate fraction f0 as long as this is finite.

(b) The well defined relative phase between the condensate and the depletion is the origin of anomalously large fluctuations in
the respective particle numbers N̂0 or N̂′ = Σq,0n̂q which are enhanced by a factor L/ξ or L/λT at finite temperature compared
to the situation in the absence of the coherent coupling (here L is the system size and λT = ~

√
2π/mkBT the thermal wavelength).

Focussing on the zero temperature limit, the fluctuations of the number of particles in the condensate within Bogoliubov

Var N̂0 = Var N̂′ = 2 Σq,0〈n̂q〉(1 + 〈n̂q〉) = 2 Σq,0u2
q3

2
q = V/(8π

√
2 ξ3) , (19)
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have been determined by Giorgini et al. [34]. Here, the prefactor two is a direct consequence of pairing in states (q,−q).
At first sight, the linear scaling with the volume is the expected behavior for the fluctuations of an extensive variable in
thermodynamics. This argument is misleading, however, because at zero temperature the fluctuations of the number of particles
enclosed in a volume V are basically a surface effect, obeying an area law Var N̂ ' (V/ξ3)2/3 ln (V/ξ3) which is modified by a
logarithmic factor [34]. A behavior of this type is generic for a compressible system in contact with a reservoir, where exchange
of particles occurs in an incoherent fashion. By contrast, in the presence of a coherent coupling between system and reservoir,
the number fluctuations are enhanced by a factor ∼ V1/3 and are thus of an extensive nature even at zero temperature. The large
enhancement of number fluctuations is therefore a consequence of the internal Josephson effect connecting the condensate and
the depletion. It also shows up at finite temperature, where Var N̂0(T ) ' (L/λT )4 ∼ V4/3 is again a factor L/λT ∼ V1/3 larger than
what is expected for a standard extensive variable in thermodynamics [34]. This result is in fact not confined to a Bogoliubov
approximation but is a generic feature of BEC’s with an arbitrary strength of the interaction [35]. More generally, anomalously
large fluctuations of the order parameter appear for all phases with a broken continuous symmetry [36].

(c) With a proper renormalization of the parameters, in particular the replacement ∆0 = n0g(0) → mc2
s of the bare gap parameter

by the square of the exact velocity of sound, Bogoliubov theory provides an asympotically exact description of the low-energy
physics of Bose fluids with an arbitrary strength of the interactions.

To appreciate this point, it should be noted first that even for dilute BEC’s the parameter g(0) =V(q=0) = 4π~2 a(0)/m contains
the scattering length associated with the two-body interaction V(x) only at the Born approximation level a(0). It is standard
practice to replace this by the exact value a, using e.g. a pseudopotential Hamiltonian as introduced by Huang and Yang [37]. A
more general approach which starts with a bare microscopic action and allows to properly account for the low energy constants
associated with the two- and three-body and in principle even higher order interactions is provided by the method of effective
potentials, as will be used in the context of the gas-liquid transition in Eq. (29) below. In this more modern formulation, the
well known LHY-correction EBog = N · gn/2 (1 + 128

√
na3/15π + . . .) [38] to the mean-field ground state energy appears

as the properly regularized one-loop contribution (1/2)
∑

q Eq to the Coleman-Weinberg potential which arises from the zero
point energy of the Bogoliubov excitations. Concerning the replacement ∆0 → mc2

s within the Bogoliubov formalism, it is
straightforward to see that it accounts properly for the correct linear behavior Eq = (ξ2

q − ∆2
q)1/2 → ~csq of the excitation

spectrum at low energy as well as the singular nature of the ground state momentum distribution nq = sinh2 θq → (mcs/2~q)
which - up to a renormalization factor n0/n - has been shown to be an exact result by Gavoret and Nozières [39].

As a final point in this context, we mention a fundamental issue associated with many-body wave functions in general. In fact,
their detailed form becomes meaningless in practice for particle numbers beyond N ' 103, a problem which has been called the
van Vleck catastrophy by Kohn [40]. To understand the origin of this problem, it is instructive to consider the overlap between
two many-body wave functions for different interaction strengths specified e.g. by adjacent values a and a′ of the scattering
length. Quite generally, the magnitude of this overlap appears only at second order in the deviation δa = a′ − a but decreases
exponentially with the number of particles. The sensitivity of a many-body wavefunction to a small change δa in some parameter
may thus be characterized by an intensive fidelity susceptibility χF which is defined by |〈Ψ(a)|Ψ(a′)〉| = exp

(
− 1

2 NχF(δa)2). By
dimensional analysis, the fidelity susceptibility χF = 1/`2

F defines a characteristic scale `F for the parameter a. As a result,
knowledge of the many-body wave function with an accuracy close to one requires to know the microscopic parameter a with an
accuracy |δa| � `F/

√
N which is obviously impossible for large particle numbers. This is one way of expressing the exponential

wall encountered in determining many-body wave functions, emphasized by Kohn [40]. The exactly known Bogoliubov wave
function (16) serves as a concrete illustration of these ideas. Up to second order in δa, the overlap of two such states is given by

|〈zλ, {λq}|z′λ, {λ
′
q}〉| = exp

(
−

1
2

NχF(δa)2
)

with χF =
(
∂a

√
f0
)2

+
1
n

∫
q

(∂aλq)2

(1 − |λq|
2)2 . (20)

The first term in the fidelity susceptibility arises from the overlap of the coherent states for the condensate. Using the leading
order Bogoliubov result (12) for the depletion, it is given by χ(0)

F = 1/(2π2ξ2) ' na. The characteristic scale which determines
how an uncertainty in the scattering length affects the accuracy of the many-body state thus appears to be the healing length ξ.
Surprisingly, this conclusion is changed fundamentally by including the second contribution to χF in Eq. (20) which arises from
the overlap of the product of two-mode squeezed states. Using that both in the regime qξ � 1, where λq → −1 +

√
2qξ and for

qξ � 1, where λq → −1/(2q2ξ2), the derivative ∂aλq with respect to the scattering length can be easily determined, it turns out
that in the relevant limit (na3)1/2 � 1, the fidelity susceptibility χF ' (n/a)1/2 is dominated by the second contribution, which
diverges for vanishing scattering length. This divergence is a signature of a quantum phase transition from a gaseous to a liquid
ground state of Bose fluids at a = 0 which will be discussed in more detail below. More generally, as shown by Wang et al. [41],
the fidelity susceptibility can be calculated efficiently via Quantum Monte Carlo methods in cases where no explicit results for
the many-body wave function are available. In particular, it serves as an indicator of putative quantum phase transitions without
an a priori knowledge of the order involved.



10

R

ω

A176 WALTE R KOH N

the ground-state Wannier function with spin up or
down, and 0 ( ) is a superposition of such states. Evi-
dently the spatial wave function corresponding to 4 "'
will be large whenever

-2L -L I

2L r, ~R„&;&+m;L, (5.6)

FIG. 5. Wave function of well-localized particles on a ring.
where R„&,& is one of the lattice vectors which we may
restrict to the interval

strated: If 4 (0) is eigenfunction of H(0), with eigen-
value E, then it is well known that the function with

(5.7)

(k)—e—iszsig) (0) (5.1) P X„=O;
1

(5.8)
is an eigenfunction of H(k) with the same eigenvalue
E . On a "ring" this argument in general breaks down
because, e.g.,
4 (xr+L, yr, sr, , k)

=e 'sz4 (xr,yr, sr, , k) (5.2)
and therefore violates the ring boundary condition.
Nevertheless we say in Sec. 2 that for a particle local-
ized near the origin we could de6ne

4 (x,y,s; k) =' e '"&& &4 (x,y,s; 0), (5.3)

which is single valued and gives rise to an eigenvalue
E (k) which, apart from terms vanishing exponentially
with L,, is independent of k. The essential feature in the
demonstration, of this fact was that in going around
the ring the wave function became exponentially small.
The discontinuity in the phase factor occurred in the
region where the function was exponentially small and
thus introduced a negligible error in the energy. A plot
of 4,(x,y,s;0) as function of x has the following
general appearance (Fig. 5). Note the essential char-
acteristic that it consists of a sequence of practically
disconnected parts. "
We show that a similar disconnectedness exists also

for our many-particle system and is responsible for its
insulating properties.
The essential features may be seen from an examina-

tion of the zeroth-order wave function. Denote one of
the eigenfunctions of (O,jsIHIO, jr), e.g., (3.21), by
(O,jr I&r). Then the full eigenstate of H is given by

the set & (i) exhaust all &; m, is an integer; and L is a
vector of length I in the x direction.
We may write the periodic Wannier functions in the

form

w (r—R„)=' P w„(r R„—mL),— (5.&))

where w„ is the Wannier function for the infinite in-
terval. Then the wave function C (') can be broken up
correspondingly into an infinite sum

4„"&=' Q 4.&')(mr, ms, m»&), (5.10)

I= [ws(rr —R~——mrL) . . w&&(r~—R»r—m»&L)]'

where C & )(mr, ) is obtained from 4„"'(0,0, ) by
shifting the locations of the Wannier functions from
Rr, Rs, ~ ~ ~ to Rt+mrL, Rs+msL, etc. We now show
that each 4 &')(mr, ms, m~) is spatially localized in
the 3—S dimensional space and has negligible over-
lap with all other 4 "& (mr', ms', m)i'), for which
Pm, WPm .
The localization is evident. Thus%' "'(0,0, ~ 0) has

an electron localized near each lattice point in the
volume A)&L where A is the cross sectional area of our
ring, so that this function extends only slightly beyond
the boundaries of a hypervolume of dimension (AL)~.
To estimate the overlap, we consider the integral

where

(5.4)
&([w&&(rt—Rr'—mr'L) ws(r~ Rri' m—sr'L)]-

&(dr, . drN. (5.11)
(5.5)

etc. The states 0'0,; all have one electron on each site in

"At this point we make contact with an important recent paper
by C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). Yang considers
the behavior of density mutrices in going around the ring and notes
that for normal (i.e., nonsuperfluid) systems, they are similarly
localized. From this point of view there is no basic distinction
between a normal metal and an insulator. In the present work,
where we consider the behavior of the meme functions in going
around the ring, this distinction becomes apparent.

where
g —Q)r (5.12)

Q—= w&&4 (r)&&tr.

We have chosen an integral with nonnegative integrand,
so that accidental cancellations cannot occur.
The R„' are some permutation of the R„; they arise

from the antisymmetrization of the wave function. For
mr —— m~' ——0 and R =R; (maximum overlap) I has
the value

FIG. 4: A rotating Bose fluid in a ring geometry with non-perfect walls. The right Figure shows a schematic localized many-body wave
function Φα(x) on a ring with circumference L as a function of one of the coordinates. The Figure is taken from Ref. [42].

Topological nature of many-body wave functions of superfluids As a consequence of the van Vleck catastrophy, the criterion
for superfluidity cannot depend on the precise form of the many-body wave function but only on some long distance or topo-
logical properties. This point was first elucidated by Kohn [42] in the context of a quite general characterization of insulating
ground states of interacting Fermi systems. Kohn’s basic idea was to consider the many-body problem in a ring geometry and
in the presence of a finite magnetic flux. For electrons with charge −e, this is a standard Aharanov-Bohm type setup which had
been analyzed earlier by Byers and Yang [43] in their quite general proof of flux quantization in superconducting rings. In the
case of neutral particles, an effective flux arises in a situation where the many-body system is enclosed between two concentric
cylinders with nearly equal radii R, co-rotating with an angular frequency ω = ωez. As indicated in Fig. 4, the walls are assumed
to violate perfect cylindrical symmetry to allow for the transfer of angular momentum to the fluid. In the rotating frame, the
problem is stationary, however the non-inertial frame gives rise to an effective gauge potential A(x) = mω ∧ x which appears
in the kinetic energy part

∑
j(p̂ j −A(x j))2/2m of the Hamiltonian. Formally, the gauge potential can be eliminated by a gauge

transformation ψ(θ) (x1 . . .xN) = exp [−i(mRω/~)
∑

j x j]ψ (x1 . . .xN) to a new many-body wave function ψ(θ) which obeys the
Schrödinger equation in the absence of A. This function, however, is no longer single-valued. Instead, it changes by a phase
factor if any one of the particles is taken around the ring according to

ψ(θ) (x1,x2, . . .xi + L, . . .xN) = e−iθ ψ(θ) (x1,x2, . . .xi, . . .xN) ∀ i = 1 . . .N (21)

with θ = 2πmR2ω/~. Here, L = 2πR is the circumference and xi + L means that the i-th coordinate is taken around the ring once,
with transverse coordinates and possible other degrees of freedom like spin in the case of Fermions held fixed. The twist (21)
in the boundary condition leads to a spectrum of eigenvalues Eα(θ) which will in general depend on θ, giving rise to a phase
dependent equilibrium free energy F(θ) in the stationary, rotating system. As realized by Byers and Yang [43], F(θ) is an even
and periodic function F(θ+ 2π) = F(θ), irrespective of the strength of the interactions provided these are time reversal invariant.
It can therefore be expanded in a Fourier series

∆F(θ) = F(θ) − F(θ = 0) =

∞∑
l=1

Fl [1 − cos (l θ)] → Lrot
z (θ) = −

∂F(θ)
∂ω

−−−→
ω→0

−

(LmR
~

)2 ∞∑
l=1

l2Fl · ω = −(ns/n) L(0)
z (22)

whose derivative with respect to ω determines the kinematic angular momentum Lrot
z in the rotating frame. The superfluid

fraction ns/n in this setup is now defined by expressing Lrot
z = −(ns/n) L(0)

z in terms of the characteristic angular momentum
L(0)

z = Icl ω in a situation where a fluid is fully carried along by the walls at angular frequency ω, with Icl = NmR2 the associated
moment of inertia. Physically, a finite and negative angular momentum Lrot

z = −(ns/n) L(0)
z in the rotating frame implies that a

fraction ns/n of the superfluid stays at rest in the lab frame for small angular frequencies ω � ~/mR2. As a result, the apparent
moment of inertia is smaller than that of classical rigid body rotation. The property of a non-classical rotational inertia (NCRI)
has been introduced as a definition of superfluidity in a paper by Leggett [44] where he discussed the possibility of a finite
ns even in a solid, an issue that will be investigated in more detail below. In the context of cold gases, the prediction that a
superfluid does not rotate with its walls for small rotation frequencies has been demonstrated in experiments at the ENS [45, 46]:
a trapped BEC in the presence of a small, non-symmetric perturbation remains at zero angular momentum below a finite critical
rotation frequency. A direct signature for the existence of NCRI is provided by the so-called scissors mode in BEC’s with
anisotropic confinement ωx , ωy in the plane perpendicular to the rotation. For superfluid flow, their effective moment of inertia
ISF = δ2 Icl is smaller than the classical rigid body value Icl = Nm 〈X2 + Y2〉 by a factor δ2 < 1 which depends on the deformation
parameter δ = 〈X2 − Y2〉/〈X2 + Y2〉. As predicted by Guéry-Odelin and Stringari [47], the fact that angular momentum in an
anisotropic trap is not conserved gives rise to an oscillation of the gas after a sudden rotation of the trap around the new equilib-
rium position with frequency ωscis = (ω2

x +ω2
y)1/2 which is absent in the normal phase, in perfect agreement with experiment [48].
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Eq. (22) shows that a finite superfluid fraction requires the existence of a rigidity parameter γ with dimension energy per length
such that the second moment

∑
l l2Fl ' γ · A⊥/L of the Fourier amplitudes scales linearly with the cross section area A⊥ and

has a slow power law decay ∼ 1/L with the circumference of the ring. In the limit A⊥, L → ∞, this gives rise to a superfluid
density ns = γm/~2 which is independent of the sample dimension. To define the underlying rigidity in a more general form
and, moreover, to describe states of a superfluid with finite currents, it is useful to introduce a slowly varying local phase ϕ(x) on
scales much larger than the interparticle spacing which is connected with the total phase difference between two arbitrary points
by θ =

∫
ds∇ϕ(x). The free energy increase due to a finite value of ∇ϕ(x) can then be expressed in a local form

∆F[ϕ(x)] =
γ

2

∫
x

(∇ϕ(x))2 with γ =
~2ns

m
=

L2

V
∂2∆F(θ)
∂θ2

∣∣∣∣∣∣
θ=0

−−−→
ring

L
A⊥

∞∑
l=1

l2Fl (23)

which, however, hides the periodic dependence on θ stated in Eq. (22) 5. Physically, a non-vanishing phase gradient corresponds
to a finite superfluid velocity vs = (~/m)∇ϕ(x). The rigidity energy is thus just the kinetic energy of superfluid flow which
may be present even in an equilibrium configuration (see the Appendix for a more detailed discussion). In the particular
case of a uniform twist ∇ϕ(x) = Q, Eq. (23) shows that the total number Ns of particles in the superfluid is defined by the
increase Ns · ~

2Q2/2m in free energy if the whole fluid acquires a finite momentum Q, as was used above in the context of
the internal Josephson effect in the Bogoliubov approach. It is important to note that the definition (23) for superfluidity is
based only on equilibrium properties and it also applies to finite systems. Obviously, however, it is quite different from the
definition of BEC via the concept of ODLRO, as stated in Eq. (1). Yet, it turns out, that the two phenomena are intimately
connected. In fact, superfluidity in the sense defined in Eq. (23) is the more general phenomenon. On a qualitative level,
the connection between a finite value of the superfluid stiffness γ and the presence of ODLRO may be understood by using
the representation ψ̂(x) '

√
ñ0 exp iϕ̂(x) of the Bose field operator in terms of a finite bare condensate density ñ0 and the

phase operator ϕ̂(x). The asymptotic decay of ρ(1)(x,x′) = ñ0 exp [−δϕ2(x,x′)/2] is then determined by the mean square
fluctuations δϕ2(x,x′) = 〈

(
ϕ̂(x) − ϕ̂(x′)

)2
〉 of the phase difference between points separated by |x − x′|. Using the effective

Hamiltonian (23) together with the assumption of a finite compressibility it is possible to show (see e.g. the Appendix in
Ref. [49]) that the phase fluctuations remain finite in the limit of infinite separation in three dimensions. As a result, γ , 0
implies ODLRO with a condensate density n0 = ñ0 exp [−δϕ2(∞)/2]. In two dimensions, this result only holds at T = 0, while
δϕ2(x,x′) → 2η ln |x − x′| diverges logarithmically at finite temperatures below the BKT-transition, where η(TBKT) = 1/4.
This leads to an algebraic decay ρ(1)(x,x′) ∼ |x − x′|−η, consistent with the Mermin-Wagner-Hohenberg theorem, which states
that no long range order is possible in two dimensions if T , 0 in the case of a continuous symmetry. A similar behavior, due to
quantum rather than thermal phase fluctuations, applies in one dimension at zero temperature.

In the following, it will be shown that the definition of superfluidity based on Eqs. (22) and (23) allows to characterize
superfluids in terms of a topological property of the many-body wave function which implies, in particular, that ground states
of Bosons are always superfluid provided they have a uniform density. The argument relies on the geometry introduced above,
where the many-particle configuration space is an N-torus TN = S 1 ⊗ · · · ⊗ S 1 with respect to motion around the ring. The
dependence of the energy levels Eα(θ) and the associated free energy F(θ) of the many-body system in the rotating frame or of
the charged system in the presence of a finite magnetic flux is determined by the change in energy induced by the twist in Eq. (21)
associated with closed paths in configuration space. To single out the dependence on the variable θ, it is useful to consider the
representation of the partition function of the many-body system in terms of a Feynman propagator over closed paths {x j}→ {x j}

in imaginary time β~. Since the configuration space is multiply connected, this propagator is a sum over the different elements
of the first homotopy group π1(TN) = ZN of the N-torus which are labelled by the set of N integer winding numbers m j ∈ Z.
Physically they correspond to taking any of the j = 1 . . .N particles around the ring m j times. As shown by Pollock and Ceperley
[50], the change in free energy due to the twist in the boundary condition is determined by the characteristic function

exp (−β∆F(θ)) =
∑
{m j∈Z}

e−iMθ p(m1 . . .mN ; β) with M =
∑

j

m j (24)

of the winding number probability distribution p(m1 . . .mN ; β) in the absence of the twist. Considering in particular the
limit where the temperature approaches zero, the question of whether the ground state energy in the rotating frame exhibits a
non-trivial dependence on the twist θ is determined by the connectedness properties of the ground state wave function. In the
ground breaking papers on this subject by Kohn [42] and Leggett [44, 51], two limiting cases were considered:

5 The periodicity in the variable θ is important e.g. for understanding the exactness of flux-quantization in superconducting rings with a thickness much larger
than the London penetration depth. Using θ = 2πφ/φ0, this relies on the fact that the large energy associated with the Fourier coefficient Fl=2 ' γ A⊥/L forces
cos (2 · 2πφ/φ0) = 1 with negligible fluctuations. The magnetic flux φ is thus pinned at an integer number times the flux quantum φ0/2 in superconductivity.
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a) The wave function of the ground state is disconnected in the sense that on all closed paths with M , 0, there is at least
one region where the wave function is exponentially small. In the presence of rotation, the modified boundary condition (21)
can then be accomodated by adding the phase shift in precisely these regions. The resulting change in energy ∼ exp (−L/ξloc)
vanishes exponentially and thus the free energy F(θ) ' F(0) in the rotating frame becomes independent of the twist as L � ξloc.
This is the characterisation given by Kohn for insulators. Specifically, Kohn discussed electrons in a regular lattice with a set Rν

of sites whose number is commensurate with those of the electrons. As indicated schematically in Fig. 4, they were described
by exponentially localized Wannier functions 4(x −R) at the single-particle level, leading to a disconnected many-body state.

b) The wave function ψ0 (x1 . . .xN) of the ground state is connected in the sense that there exist closed paths with
non-vanishing total winding number M , 0 on which the magnitude |ψ0| is everywhere bounded below by a finite constant
independent of both N and L. In this case, the system is a superfluid with a reduced moment of inertia because the twist leads
to an energy increase ∼

∫
|ψ0|

2
min(∇ϕ)2 of order A⊥/L. For fluid ground states, the existence of closed paths of this type may be

viewed as a consequence of the positivity of the many-body ground state wave function. As pointed out by Leggett [51], ground
states of Bosons with a uniform density are therefore always superfluid 6. For non-uniform ground states like in a crystal,
the positivity requirement, however, is not sufficient to infer the existence of a finite superfluid density because the minimum
magnitude |ψ0|min ∼ exp (−L/ξloc) could be exponentially small as in insulators. In this situation, there is only an upper bound
on the superfluid fraction given in Eq. (38) below which will be discussed in detail in Lecture II.

An important point to note in this context is that the magnitude |M| of the relevant total winding numbers are of order one or
two and not of order N because the relevant Fourier components Fl in Eq. (22) are l = 1 or l = 2 for standard Bose superfluids or
superfluids of Fermion pairs, respectively. In physical terms, this requires that there are paths in the configuration space where
the many-body wave function stays finite upon taking one or maybe two particles around the ring while the coordinates of the
remaining N − 1 particles are held fixed. Obviously, this is the case in the presence of ODLRO as defined in Eq. (1), which thus
turns out to be a sufficient criterion for superfluidity. It is not a necessary one, however, and indeed as stated above, superfluidity
is the more general phenomenon rather than BEC and the equivalent existence of ODLRO.

In the case of charged systems, the dependence of the eigenvalues in the presence of a non-trivial boundary condition (21)
leads to a characterization of insulators or superconductors in terms of the so-called Drude weight [42]

Ds = π lim
ω→0

ω Imσ(ω) = π
nse2

m
=

e2

~2

πL2

V
∂2∆F(θ)
∂θ2

∣∣∣∣∣∣
θ=0
−−−−→
L→∞

{
∼ exp (−L/ξloc) insulator

Ds , 0 superconductor (25)

For superconductors, this implies a 1/ω-singularity of strength Ds/π in the imaginary part of the frequency dependent
conductivity which is precisely the content of the phenomenological first London equation (175). In the case of insulators, such
a contribution is absent and the odd function Imσ(ω) therefore vanishes linearly at low frequencies. However, this is also true
in metals with a finite amount of disorder. The relevant distinction between metals and insulators shows up in the behavior of
Reσ(ω) as ω→ 0: for any non-perfect metal, the real part of the conductivity has a finite value while Reσ(ω) ∼ ω2 lnd+1(ω̄/ω)
vanishes essentially quadratically in insulators. A discussion of how the empirical description of the different ground states in
terms of the complex conductivity σ(ω) is reflected at the level of the Drude weight has been given by Scalapino et al. [52].
According to Eq. (23), the Drude weight at T = 0 is obtained from the curvature of the many-body ground state. This requires
to follow the ground state adiabatically as a function of the twist θ. Now, it turns out that the characteristic magnitude θc of the
twist at which another many-body level crosses or drops below the ground state varies like θc ∼ 1/Ld−1. In dimension d > 1,
therefore, the order of limits θ → 0 and L → ∞ matters: taking the second derivative of E0(θ) with respect to θ first, and then
sending L → ∞ gives a Drude weight D. It differs from the Ds defined above, which involves the curvature of the envelope
of the Eα(θ) curves of individual many–body states ψα. Both D and Ds approach zero for an insulator and they are both finite
in a superconductor. In the case of a metal with no disorder, however, D is finite while Ds = 0 [52]. A different way to see
that there is no topological characterization of metallic or normal fluid states is revealed by the fact that the second moment∑

l l2Fl|normal ' (~2/mL) nξ2
t of the Fourier amplitudes in Eq.(22) still scales with 1/L. The linear increase with the transverse

area A⊥ in the superfluid phase, however, is replaced by the square of a characteristic length ξt which appears in the momentum
dependence χt(q) = ρ[1 − (qξt)2 . . .] of the transverse current response, associated with diamagnetism in the charged case. The
periodic dependence of Lrot

z on θ is still present and it describes the persistent currents in a normal metal ring predicted by
Büttiker, Imry and Landauer [53]. The observed magnitude of the associated Fourier coefficients Fl agrees well with a model of
non-interacting electrons [54], however the role of interactions in this context has remained controversial.

6 This conclusion no longer holds in the presence of a magnetic field, as shown for example by the incompressible Quantum Hall state of a half filled Landau
level in two dimensions described by the Laughlin wave function ΨL(z1, . . . zN ) =

∏
i< j(zi − z j)2 · exp−

∑
i |zi |

2/4, which has a uniform density n(z) = 1/4π.
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FIG. 6. Phase diagram of the LJ system in terms of the reduced units.

although it reduces with p, the lattice becomes unstable be-
fore it would take over as an equilibrium state. Although the
A15 (and also the bcc crystal) are favored by entropy, they are
stabilized by energy. The properties of the A15 as the mini-
mal area crystal unit cell may favor it for other potentials.27

Other lattices (see Table I) were also tested, but become sad-
dles of the free energy and are not stable. Thus, the IPL solid
phases consist of fcc, and (for p ≤ 7) there is a phase transi-
tion towards bcc.8 Numerical results,28 place the triple point,
where fcc, bcc, and liquid coexist at ≈6.25. Within DLT, it is
found, see Table V, that the triple point is p > 7, which is in
agreement with Ref. 10.

For large p, the IPL approaches the hard sphere limit. The
free energy obtained within DLT in this limit, the “phonon
hard sphere”16 model is not the same as the one for real hard
sphere crystals, since the specific heat, for example, differs by
3/2. Still, the entropy difference between the fcc and the hcp
crystal of the phonon hard sphere model has been computed
as

sf cc − shcp = 0.0014754 kB, (57)

which is quite close to the hard sphere result 0.001164.15

More importantly, this number is identical to the phonon en-
tropy 0.001475 obtained by Elser.16 Although the phonon
contribution should be expected to be model dependent. The
IPL system and the one considered by Elser16 should give the
same result, as the one by Elser16 only applies to the close-
packing limit. These results show that even in the most unfa-

TABLE V. Properties of the phase transition from solid(bcc) to solid(fcc).
The energy and free energy are per particle and in units of kBT. The entropy
is per particle and in units of kB.

bcc to fcc transition

p γ a
2 γ b

2 λ2 #s2 #u 2 #f2

6 2.78088 2.78519 167.28 0.13970 0.04657 −0.09313
6.25 2.56630 2.57087 141.76 0.14543 0.04717 −0.09821
7 2.11952 2.12494 95.20 0.16391 0.04917 −0.11474

TABLE VI. Molar volume at which the difference in energy between the
hcp and the fcc crystal is zero.

vcoex for (p,q) LJ

q/p 6 7 8 9 10

14 0.416 0.388 0.366 0.347 0.331
13 0.436 0.406 0.381 0.361 0.343
12 0.460 0.427 0.400 0.377 0.358
11 0.488 0.451 0.421 0.396 0.375
10 0.522 0.480 0.446 0.419
9 0.561 0.514 0.476
8 0.610 0.555
7 0.671

vorable situation (hard spheres), DLT can still deliver reliable
semi-quantitative results.

B. Role of anharmonic terms

Systems of IPL potentials provide excellent test-systems
for the study of anharmonicities as the potential is continuous
and smoothly converges to the hard sphere case, which is the
ultimate anharmonic theory. The LDT approximation is exact
in the limit of large γ p , but it should be expected that, for
a given accuracy, there is a γ r

p such that the thermodynamic
functions are accurate for all γp > γ r

p . As p increases and the
hard sphere limit is approached, γ r

p → ∞.
For 8 > p ≥ 6, the excess free energy calculated by DLT

is very accurate (4 digits at least) and extends to the solid to
liquid transition, as it is clear from the numerical results of
Ref. 9, see Table III. The liquid to bcc transition is found at
the same point using either simulations or DLT. There is a
minor discrepancy with the value of the fcc-bcc solid coexis-
tence line, but given that the excess free energies for fcc agree
within 5 decimal places, I believe that this issue cannot be re-
solved unless more precise numerical calculations, performed
without a cut-off (using Ewald sums or the like) can assess
the numerical uncertainties associated with the finite size or
the cut-off. Cut-off effects are quite significant, as clear from
this paper and, as demonstrated, for example, in studies of
Lennard-Jones system.29

Comparing with the coexistence tables for the solid-
liquid phase in Ref. 28, the values of γ and λ are in fairly
good agreement for p ≤ 8 and remain in semi-quantitative
agreement up to p = 13. Applying DLT to predict the fluid-
solid line is definitely beyond the expected range of applica-
bility, but it is reassuring that it still provides rather meaning-
ful results. Furthermore, approximate methods on how to cor-
rect for anharmonic contributions have been known for a long
time4, 21 and maybe worth being reconsidered again. Also,
thermodynamical integration methods as discussed below,
can exactly quantity the magnitude of anharmonic effects.

C. Outlook

I have shown that DLT is powerful approach with a wider
range of applicability than previously assumed, which, com-
bined with existing numerical techniques to compute crystal
free energies, may enable elucidation of phase diagrams that

 

FIG. 5: The Figure on the left shows the phase diagram of particles with a Lennard-Jones interaction in the classical limit of a vanishing
de Boer parameter ΛdB = 0 as determined by Travesset [55]. The dimensionless pressure and temperature are defined by P̂ = pσ3/ε and
T̂ = kBT/ε. The Figure on the right shows the dependence of the dimensionless temperature T̂ → t∗ of the critical and the triple point as a
function of the square η = Λ2

dB of the de Boer parameter. It is taken from Lectures given by P. Nozières at the Collège de France in 1983.

Quantum-unbinding at a zero temperature liquid-gas transition Following recent work [56, 57], we will discuss the liquid-
to-gas quantum unbinding transition in Bose fluids induced by an increasing strength of the zero point fluctuations. The existence
of such a transition is indicated in Fig. 5, where the dimensionless temperature of both the triple and the critical point are shown
as a function of the square of the de Boer parameter. The transition from a solid to a liquid ground state occurs when the triple
point vanishes. It is first order and the associated critical de Boer parameter Λ

c,solid
dB ' 0.37 for Bosons can only be determined

numerically by a genuine many-body calculation [5] 7. Remarkably, the transition from a liquid to a gaseous ground state at
Λc

dB ' 0.69 [8], where also the critical point for a system of Bosons disappears, is continuous. Moreover, its location is fixed
by a vanishing scattering length, i.e. by two-body physics. Indeed, as noted by Lieb [58], a necessary condition for a gaseous
ground state is that the two-body interaction V(x) in Eq. (2) has no bound state and a positive scattering length. In the following,
we will argue that for interactions considered here in connection with Eq. (3), this condition is also sufficient. Moreover, the
liquid and gaseous ground states are separated by a quantum tricritical point. Specifically, we follow an approach due to Sachdev
[59] and consider the transition out of the vacuum state into one with a finite particle density n as a function of the chemical
potential µ. In the case where the ground state is a gas, the associated effective field theory is the well known ψ4-theory for a
complex scalar field. In a formal manner, this can be derived by starting from the microscopic action of a Bose system with pure
two-body interactions as described by Eq. (2). The associated generating functional Z[J] =

∫
Dψ exp (−S [ψ]/~ +

∫
Jψ) for the

correlation functions of the complex scalar field ψ(τ,x) can be written as a functional integral with action

S [ψ] =

∫
τ

∫
x

{
ψ∗(τ,x)

(
~∂τ −

~2

2m
∇2 − µ

)
ψ(τ,x) +

1
2
|ψ(τ,x)|2

∫
x′

V(x − x′) |ψ(τ,x′)|2
}
. (26)

At the mean-field level, the effective potential for field configurations with no dependence on the time and spatial variables τ and
x, where |ψ|2 = n can be identified with the particle density, has the form V (0)

eff
= −µn + (g/2)n2. The coefficient g=4π~2 a/m > 0

is fixed by the two-body scattering length in vacuum. More precisely, as mentioned above in the context of point c) on the
exactness of the Bogoliubov approach at low energies, in the naive mean-field approach g → g(0) contains the scattering length
only in the Born approximation, which is ill-defined for potentials which increase more strongly than 1/r3 at short distances.
This problem is eliminated in the formulation based on an effective potential in Eq. (29) below. Provided that g > 0, the onset
transition from the vacuum to a superfluid gas to lowest order in the density is properly accounted for in terms of a mean-field
description. In particular, the density of bosons n(µ) = µ/g + . . . rises linearly for µ → 0+ while n(µ) ≡ 0 vanishes for negative
values of the chemical potential. Thus, µ = 0, g > 0 is a line of quantum critical points which separates the vacuum state from
a superfluid gas at finite density [59]. Despite the finite jump in the compressibility from κ̃ = ∂n/∂µ = 0 to κ̃ = 1/g > 0, the
vacuum to superfluid transition is a continuous one. Indeed, approaching the line µ = 0 from above, the correlation length is the
well known healing length ξ = ~/

√
2mµ = (8πna)−1/2 of a weakly interacting BEC which diverges as µ→ 0+. Moreover, using

the zero temperature Gibbs-Duhem relation µ = u + p/n which connects the chemical potential and the pressure to the energy u
per particle, both u(n)→gn/2 =

√
gp/2 and the density n(p)→

√
2p/g vanish in the zero pressure limit, as required for a gas.

7 In the case of Fermions Λ
c,solid
dB |F ' 0.42 is substantially larger because Fermions prefer to stay localized near a discrete set of lattice sites even for larger

values of the zero point motion. The ground state of 3He at zero pressure is a liquid since its de Boer parameter ΛdB ' 0.45 lies above this critical value.



14

FIG. 6: Qualitative dependence of the scattering length in units of the van der Waals length `vdW as a function of the de Boer parameter
defined in Eq. (4). The last two-body bound state disappears beyond the pole of the scattering length at Λ∗dB(N = 2) indicated by the dashed
vertical line. The scattering length reaches zero at a critical value Λc

dB ' 0.68, beyond which it stays positive. The value Λ∗dB(N = 3) for the
disappearance of three-body bound states is also indicated.

The range of de Boer parameters where a given microscopic interaction gives rise to a positive scattering length and thus a
gaseous ground state is determined by the solution of the two-body problem. In the regime ΛdB � 1, there is a large number
Nb ' 1/(πΛdB) � 1 of s-wave bound states. Upon reduction of the strength of the attractive interaction, their number decreases
and eventually reaches zero at a critical value of the de Boer parameter. In physical terms, this happens when the van der
Waals length `vdW = (mC6/~

2)1/4/2 has decreased to a value of the order of the short distance scale σ. For the specific case
of a Lennard-Jones potential, the limit beyond which the two-body Hamiltonian Ĥ2 no longer has a bound state is reached at
Λ∗dB(N = 2) = 0.423 . . . or `vdW = 1.09σ. At this point, the scattering length jumps form +∞ to −∞, as sketched in Fig. 6.
In fact, this is close to the situation present in 4He, where ΛdB ' 0.42 and the attractive part of the two-body interaction is just
barely sufficient to give rise to a bound state with a binding energy B2 ' kB · 1.7 mK. Upon further increasing the de Boer
parameter, the scattering length increases monotonically from −∞ towards zero, which is reached at some critical value Λc

dB.
Specifically, one finds Λc

dB = 0.679 . . . for a Lennard-Jones potential, corresponding to a van der Waals length `vdW|c ' 0.86σ.
Increasing ΛdB beyond its critical value, the scattering length stays positive. In particular, near Λc

dB, the scattering length

a(ΛdB) = aΛ `vdW

(
ΛdB − Λc

dB

)
+ . . . (27)

vanishes linearly with a positive numerical constant aΛ of order one. The regime g > 0 of a gaseous ground state is realized for
ΛdB > Λc

dB. As mentioned above, the same situation applies for ultracold gases despite ΛdB � 1 provided the scattering length
is positive and the many two-body bound states are inaccessible on relevant time scales.

For negative scattering lengths, the ground state of a uniform Bose fluid is obviously not a gas. As will be shown below, there
is a finite range of the Boer parameters below Λc

dB, where the ground state is a liquid which is stabilized by repulsive three-body
interactions. Its properties near the first-order transition to the vacuum state are determined by a solution of the three-body
problem. Now, as predicted by Efimov [60] in a nuclear physics context, identical bosons support three-body bound states in
a regime where the scattering length is negative and no two-body bound state exists. As indicated in Fig. 6, where the critical
value Λ∗dB(N = 3) ' 0.45 for the disappearance of the last three-body bound state is shown, this requires a minimum value of the
magnitude |a−(3)| of the associated two-body scattering length which is a−(3) = −9.6 `vdW for a Lennard-Jones interaction [61].
The three-body bound states predicted by Efimov were first observed in an ultracold gas of 133Cs by Kraemer et al. [62].
Surprisingly, the ratio |a−(3)|/`vdW ' 8 − 10 turned out to vary in an only narrow range for many different atoms [63]. An
explanation for this so called van der Waals universality has been given independently by Wang et al. [64] and by Schmidt et al.
[65]. Wang et al. consider direct two-body interactions with different single channel potentials at short distance but identical
van der Waals tails. The solution of the associated three-body problem then shows that the ratio (a−(3)/`vdW)|Nb�1 = −9.45
approaches a universal value in the limit of a large number Nb � 1 of bound states [64]. In practice, a change in the scattering
length relies on the use of Feshbach resonances. As shown by Schmidt et al. [65] within a standard two-channel model, a nearly
universal value of the ratio a−(3)/`vdW ' −9 then appears only in the open-channel dominated limit sres � 1 [66]. Moreover,
considerable deviations towards more negative numbers were predicted for Feshbach resonances with intermediate strength
sres ' 1. They have recently been observed in 39K by the JILA group, see Chapurin et al. [67] and Xie et al. [68].
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For the many-body problem at finite density, the endpoint at g = 0 of the line µ ≡ 0 turns out to be a quantum tricritical point
(see Fig. 7). It separates the continuous onset transition from the vacuum to a gaseous state in the regime g > 0 from a first-order
transition at µc < 0 between the vacuum and a finite density liquid for negative values of the scattering length. In order to
properly deal with the regime g < 0, it is necessary to include the quantum fluctuations of the field ψ(τ,x) to all orders. On a
formal level, this can be expressed in terms of an effective potential

Γ[ψ] =

∞∑
N=1

1
N!

∫
p1...qN

ΓN(p1 . . . pN q1 . . . qN)ψ∗(p1) . . . ψ∗(pN)ψ(q1) . . . ψ(qN) =

∫
τ,x

{
Veff[ψ] + ψ∗D̃ψ + . . .

}
(28)

which is defined via a Legendre transform Γ[ψ] = ln {Z[J]/Z[0]} −
∫

Jψ of the generating functional Z[J] associated with the
action (26) 8. In practice, the Legendre transform can only be performed if one is able to determine the expectation value of
the field for an arbitrary form of external source J(τ,x) and then invert this relation to determine J(τ,x) as a functional of the
associated configuration ψ(τ,x). The resulting exact vertex functions ΓN are essentially the amplitudes for scattering processes
with N incoming and N outgoing particles. Knowledge of the ΓN , including their dependence on the 2N momentum variables
p1 . . . qN which are constrained only by translation invariance in space and time p1 + . . .+ pN = q1 + · · ·+ qN , therefore requires
a complete solution of the N-body problem. This is clearly impossible. Fortunately, however, for the discussion of the behavior
near the quantum tricritical point, which is a zero density fixed point, we need only the leading non-vanishing terms in the
expansion of the effective potential

Veff[ψ] = −µ|ψ|2 +
g
2
|ψ|4 +

λ3

3
|ψ|6 + . . . (29)

associated with a time and space independent ’classical’ field ψ. Here, as mentioned above, the prefactor g = Γ2(0) = 4π~2a/m
of the quartic term is fixed by the exact value a of the two-body scattering length which may be defined through the asymptotic
behavior ψE=0(x1,x2) = 1 − a/r12 of the two-body wave function at zero energy. If g is positive, the transition out of the
vacuum state is completely fixed by the first two terms in Eq. (29), recovering the scenario for a gaseous ground state discussed
above. For negative g, in turn, one needs the next-to-leading contribution ∼ |ψ|6. Its prefactor λ3 = ~2D/2m arises from the
zero momentum limit Γ3(0) = ~2D/m of the vertex function which is associated with effective three-body interactions. The
corresponding parameter D has been called the three-body scattering hypervolume by Tan [70]. It has dimension (length)4 and
may be defined by the asymptotic behavior

ψE=0(x1,x2,x3)|a=0 = 1 −

√
3 D

2π3(r2
12 + r2

13 + r2
23)2

+ . . . (30)

of the three-body wave function at zero energy and vanishing scattering length [70]. Similar to the standard connection between
two-body bound states and poles of the scattering length, the occurence of three particle bound states is determined by poles of
the hypervolume D. Now, as indicated in Fig. 6, the last three-body bound state disappears at a finite negative scattering length
a−(3) ' −9 `vdW. Near Λc

dB, therefore, the vertex function Γ3 has no poles. Moreover, the associated hypervolume D(a=0) > 0 is
positive near the zero of the scattering length at Λc

dB according to a numerical solution of the three-body problem with a Lennard-
Jones interaction [71]. This implies a repulsive effective three-body force and an energy per particle u(n)|a=0 = (~2D/6m) · n2

which scales quadratically with density n [70]. At vanishing scattering length, therefore, the many-body Bose fluid is stabilized
by repulsive three-body interactions, a behavior quite different from that of the naively expected ideal Bose gas. In particular,
the finite density fluid at a = 0 is characterized by a non-trivial relation between pressure and chemical potential of the form

p(µ)|a=0 =

(
8m

9~2D

)1/2

· µ3/2 → µ(n)|a=0 =
~2D
2m
· n2 . (31)

As a result, the density n(µ) = ∂p/∂µ scales with the square root of the chemical potential rather than the linear behavior
found for positive scattering lengths. This is a consequence of the non-standard critical exponent β = 1/4 associated with the
appearance of a finite order parameter |ψ|(µ) ∼ µ β right at the quantum tricritical point which separates the gaseous from the
liquid ground state in the zero density limit.

8 For an introduction to the formalism see e.g. the book by Zee [69]. Due to Galilei invariance, derivatives only appear in the covariant form D̃ = ~∂τ−~
2∇2/2m.
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FIG. 7: Zero temperature phase diagram as a function of the chemical potential µ and the deviation g ∼ ΛdB − Λc
dB of the de Boer parameter

from its critical value. The gaseous ground state in the regime g > 0 arises from the vacuum at µ < 0 via a continuous transition. For g < 0, the
ground state is a liquid. It is separated from the vacuum by a first-order transition at µc < 0. The point µ = g = 0 is a quantum tricritical point.
The finite temperature phase diagram for ΛdB < Λc

dB on the right is adapted from Son et al. [57]. Beyond a tricritical point at T ∗ ' ~2n̄2/3/m,
the transition from a superfluid liquid to a non-superfluid gas changes from first order to a continuous one.

In the regime g < 0, the symmetry broken phase with a finite density n(µ) = |ψ̄|2 , 0 appears already beyond a negative value

µc = −3g2/(16λ3) = −6π2 ~2a2/(mD) (32)

of the chemical potential, which vanishes with the square of the distance from the quantum tricritical point as indicated in Fig. 7.
By the Gibbs-Duhem relation, the critical chemical potential µc = u(p = 0) coincides with the energy per particle since the
pressure vanishes along the line separating the vacuum from the finite density liquid. Right on the line µ = µc, the density jumps
from zero in the vacuum state µ < µc to a finite value

n̄ = n(µc) = 3|g|/(4λ3) = 6π |a|/D → n̄σ3 = 6π |a|σ3/D −−→
LJ

1.32 (Λc
dB − ΛdB) + . . . . (33)

The dimensionless product n̄σ3 therefore approaches zero linearly with the deviation from the quantum tricritical point. The
numerical prefactor in the final expression is specific for a Lennard-Jones interaction, where the factor aΛ = 3.828 in Eq (27)
and the three-body hypervolume D(a=0)= (86±2) `4

vdW near the last zero crossing of the scattering length have been determined
by Mestrom et al. [71]. Despite the considerable deviation Λc

dB − ΛdB ' 0.26 of the de Boer parameter of 4He from the critical
value for a liquid-gas transition, a naive application of Eq (33) predicts a dimensionless density n̄σ3 ' 0.34 for 4He at zero
pressure which is close to the observed value. This agreement is again a fortuitous coincidence, however, because two 4He
atoms form a weakly bound dimer and thus the relation (27) does not apply. A system rather close to the quantum tricritical
point, still on the liquid side, would be 2He. Its de Boer parameter is expected to be ΛdB '

√
2 · 0.42 = 0.59 due to the factor

two in mass. Unfortunately, this extremely dilute superfluid liquid does not exist in nature because the di-proton is not bound 9.
The evolution of the finite temperature phase diagram in the regime of de Boer parameters between Λdb ' 0.37 and Λc

dB,
where the ground state at vanishing pressure is a liquid, has been discussed by Son et al [57]. Surprisingly, this diagram is
of the familiar form observed in 4He (see Fig. 2) only in a finite range of ΛdB above 0.37. For values that correspond to the
hypothetical 2He fluid and up to Λc

dB, in turn, the critical endpoint of the λ -line on the liquid-gas boundary has disappeared.
Instead, as shown in Fig. 7, there is a tricritical point along the coexistence line between a superfluid liquid and the normal
gas above which the transition changes from being first order to a continuous one. Its temperature T ∗ ' ~2n̄2/3/m is set by
the finite density n̄ of the liquid ground state at zero pressure given in Eq (33) which also determines the jump in density
below T ∗ by the simple relation ∆n = [1 − (T/T ∗)3/2] n̄ [57]. Since n̄ → 0 in the limit of vanishing scattering length, the tri-
critical point shifts to zero temperature and then coincides with the quantum tricritical point µ = g = 0 shown in Fig. 7 on the left.

Regarding a possible realization of a liquid state in ultracold Bose gases near vanishing scattering length which is stabilized by
repulsive three-body interactions, it is necessary to account for the finite imginary part of the three-body scattering hypervolume
that is present at generic zero crossings of a in the standard regime where the de Boer parameter ΛdB is much less than one. As
will be discussed in Lecture III, this leads to a corresponding loss rate Γ3 = −~ Im(D) n2/m [72]. Experimentally, these losses

9 For a discussion of the thermodynamics and life time of stars if a di-proton bound state would exist, see L. A. Barnes, arXiv:1512.06090 [astro-ph.SR].
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have been studied by Shotan et al. [73], who measured the recombination length Lm defined by Im D ' L4
m near a zero crossing

of the scattering length at B ' 850 G in 7Li. Remarkably, the observed value Lm ' 4 `vdW is close to that quoted above for
the fourth root D1/4 ' 3.1 `vdW of the purely real three-body scattering hypervolume near the zero crossing of the scattering
length at Λc

dB, where no two-body bound state exists. Now, according to Eq. (33), the density of a liquid state stabilized by
three-body repulsion is of order n̄`3

vdW ' |a|/`vdW for typical values Re D ' (`vdW)4. In practice, such high densities are not
accessible with ultracold gases. However, as suggested by Petrov [74], a dilute liquid phase of bosons at negative scattering
length which is stabilized by repulsive three-body interactions might be realized in a situation where two internal states | ↑〉
and | ↓〉 are coupled by an rf-field. By varying the effective Rabi coupling, the scattering length in the symmetric configuration
(| ↑〉 + | ↓〉)/

√
2 can be tuned to zero. The associated three-body scattering hypervolume D(a = 0) ' a4

↑↑
/ξ is large and positive

provided ξ = (a↑↓ + a↑↑)/(a↑↓ − a↑↑) � 1. In particular, it is a factor 1/ξ � 1 larger than the characteristic magnitude Im D ' a4
↑↑

of its imaginary part, as determined by the standard scaling of the three-body loss rate. Neglecting losses, the resulting effective
potential (29) gives rise to a dilute Bose liquid in the regime where a < 0. Its dimensionless density n̄a3

↑↑
' ξ |a|/a↑↑ vanishes

linearly with the scattering length as in Eq. (33) and - moreover - is small enough to be accessible with dilute ultracold gases. The
state is a three-body interaction analog of self-bound droplets in two - component Bose gases which are stabilized by the Lee-
Huang-Yang contribution to the interaction energy. They were predicted by Petrov [75] and have been realized experimentally
by Cabrera et al. [76]. In fact, liquid-like droplets of Bosons have been observed earlier by Ferrier-Barbut et al. [77] in dipolar
gases, where the mean-field instability due to the attractive part of the dipolar interaction is eliminated by the repulsive LHY -
correction e(n)|LHY ∼ gn2 (na3)1/2 to the ground state energy density. This stabilizes droplets at densities of order 1014 cm−3 [77].

Self-bound droplets and N-body bound states near vanishing scattering length In the regime ΛdB < Λc
dB of negative scatter-

ing lengths, the ground state at vanishing pressure is a superfluid liquid. By the Gibbs-Duhem relation, the energy per particle
u(p = 0) = µc < 0 is negative. A given number N of particles thus has an extensive binding energy BN = |u(p = 0)|N. Moreover,
since the liquid has a finite density n̄ at zero pressure, the radius of an N-cluster scales like RN ' (N/n̄)1/3. In the limit where
the scattering length approaches zero, both u(p = 0) and n̄ vanish. The zero pressure liquid thus evaporates into a gas precisely
at the quantum tricritical point µ = g = 0. This is true, however, only in the thermodynamic limit. For finite particle numbers,
the binding energy BN is reduced because particles on the surface are less bound than those in the bulk. For the specific case
of a Lennard-Jones interaction, this has been studied numerically for small clusters by Meierovich et al. [78] and by Sevryuk
et al. [79]. In particular, it has been found that, at finite N, quantum unbinding appears at values Λ∗dB(N) < Λc

dB = 0.679... of
the de Boer parameter which are considerably lower than what is expected in the thermodynamic limit. This observation can be
understood by including a finite, positive surface energy fs per particle in the liquid phase, which also accounts for the essentially
flat radial density distributions found numerically near Λc

dB [79]. The surface energy is defined by the subleading term in the
expansion

E0(N) = u N + fs N2/3 + . . . (34)

of the N-body ground state energy for N � 1. Taking into account the surface contribution, the condition E0(N + 1) = E0(N) for
the unbinding of an N-cluster, which is equivalent to a vanishing single particle addition energy µ(N) = E0(N + 1) − E0(N) = 0,
can be written in the form

−3 u
2 fs

[
Λ∗dB(N)

]
= N−1/3 . (35)

The finite size scaling of the deviation Λc
dB − Λ∗dB(N) for N � 1 is thus determined by the dependence of the bulk energy u and

the surface energy fs per particle on the de Boer parameter. Now, Eq. (32) shows that the energy per particle u(p = 0) = µc
on the zero pressure line separating the vacuum from the finite density liquid vanishes quadratically with the distance from
the quantum tricritical point. To determine how the surface energy fs per particle vanishes near Λc

dB, we use the result for the
underlying surface tension 10

σ̄ =
λ3n̄3

6 κ0
'
~2 a2

m D3/2 ∼ (Λc
dB − ΛdB)2 (36)

derived by Bulgac [81] on the basis of the exact domain wall solution n(z) = n̄/
(
1 + exp(2κ0z)

)
for the liquid-to-vacuum bound-

ary with an effective potential of the form (29) right at the critical value (32) of the chemical potential. The associated healing

10 We use a bar in the surface tension σ̄ to distinguish it from the short distance length scale σ. Note also that the exponent νu = νt/φt = 1 for the divergence
of the correlation length 1/κ0 along the first-order transition line µ = µc is a subsidiary tricritical exponent in the notation of Griffiths [80]. The relevant
crossover exponent φt = 1/2 is determined by the quadratic behavior (32) of the chemical potential near the quantum tricritical point.
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length 1/κ0 = ~/
√

2m|µc| '
√

D/|a| diverges linearly with the distance from the quantum tricritical point, implying that the
surface tension vanishes quadratically. This is consistent with a scaling relation due to Widom [82] which connects the exponent
of the surface tension σ̄ ∼ 1/ξd−1 with that of the correlation length. More precisely, the scaling argument by Widom states
that σ̄ ' kBTc/ξ

d−1 vanishes like the characteristic energy kBTc at a finite temperature phase transition divided by the surface
area ξd−1 of a domain with size ξ. For the phase transition at the quantum tricritical point studied here, the role of kBTc is
apparently played by ~2/(m

√
D). Combining the results (33) for the average interparticle spacing n̄−1/3 and Eq. (36) for the

surface tension shows that the surface energy fs ' 4π n̄−2/3 · σ̄ ∼ |ΛdB −Λc
dB|

4/3 vanishes with a non-trivial exponent 4/3 near the
quantum tricritical point. Based on Eq. (35), the threshold values Λ∗dB(N) of the de Boer parameter beyond which N-body bound
states disappear therefore approach the critical value Λc

dB of the bulk liquid-gas transition according to Λc
dB − Λ∗dB(N) ∼ N−1/2.

Moreover, in view of Eq. (27), this leads immediately to a power law behavior

− a−(N � 1) '
(√

D/N
)1/2

or N∗(a) '
√

D/a2 (37)

of the associated scattering lengths a−(N) or the critical number N∗(a) where self-bound droplets of N∗(a) Bosons unbind
at a given negative scattering length a. It has the remarkable feature that the three-body scattering hypervolume D(a = 0) at
vanishing scattering length sets the scale for the unbinding of N-body bound states in the asymptotic limit N � 1. This is a con-
sequence of the fact that D appears in the leading term ∼ D |ψ|6 in Eq. (29) which stabilizes the superfluid at both vanishing and
small negative scattering lengths, while higher order contributions are negligible near the quantum tricritical point, where n̄→ 0.

The result (37) provides a solution to a long standing problem on how to connect well known results in few-body physics
to the many-body limit N � 1. As mentioned above, the existence of three-body bound states for identical Bosons had been
predicted in the early seventies by Efimov [60]. Many-body bound states exist also for larger particle numbers. This has
been studied in detail for N = 4, where theory predicts an infinite sequence of two tetramer states per Efimov trimer [83–86].
Experimentally, the lowest tetramer state has been observed by Ferlaino et al. [87] at a−(4) ' 0.47 a−(3) and even signatures of
a five-body bound state have been inferred from a characteristic feature in the recombination rate of Cesium near a scattering
length a−(5) ' 0.64 a−(4) [88]. More generally, the energetically lowest N-body bound states, which are the true ground
states of the N-particle system in the regime Λ∗dB(N = 2) ≤ ΛdB < Λc

dB, detach from the continuum at a sequence a−(N) < 0
of scattering lengths which apparently approaches zero in a monotonic manner. This has been investigated by von Stecher
via numerical solutions of the Schrödinger equation up to N = 13 [89]. In particular, it turns out that the consecutive ratios
a−(4)/a−(3) ' 0.44 , a−(5)/a−(4) ' 0.64 and a−(6)/a−(5) ' 0.73 are not very sensitive to the detailed form of the two-body
interactions [90]. An obvious question is then whether the sequence of N-body bound states continues up to N =∞ and - if so
- what is the asymptotic scaling of the scattering lengths a−(N) where they first appear, starting from a = 0−. The finite size
scaling theory for self-bound liquid droplets near the quantum tricritical point developed above provides an explicit answer to
this in the limit N � 1. In particular, it shows that the effective binding energy of N-clusters of identical Bosons vanishes at
a sequence of negative scattering lengths a−(N) which approach zero in an algebraic fashion as described by Eq. (37). The
existence of an infinite sequence of N-body bound states with an accumulation point at a = 0 is consistent with a theorem
due to Seiringer [91], which states that some N-body bound state must exist for arbitrary small negative scattering lengths.
It is also consistent with an earlier theorem by Amado and Greenwood [92] which shows that the number of N-body bound
states is finite for any N ≥ 4 precisely at the position a−(N − 1) where a zero-energy N − 1-body bound state appears. An
experimental verification of the prediction (37) is an open challenge and requires to determine the size dependence in the
unbinding of self-bound droplets near the limit a → 0− of their stability. Remarkably, a related problem appears in nuclear
physics where the binding energy of nuclei with an equal and even number of protons and neutrons depends on the strength
of the effective interaction between two alpha particles. Similar to a change of the de Boer parameter discussed above, this
interaction may be tuned to a quantum tricritical point which separates a nuclear liquid and an unbound gas of alpha particles [93].
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FIG. 8: The Figure on the left shows the triangular vortex lattice in rotating Fermi gases near unitarity observed by Zwierlein et al. [94]. The
right Figure displays the phase diagram within a BCS-description of a Fermi gas with weak attractive interactions in the presence of a finite
difference 2h = µ�−µ� of the chemical potential between the two spin-components. It exhibits a Lifshitz-point (LP) below which the superfluid
exhibits a periodic modulation of the FFLO-type beyond a Clogston-Chandrasekhar field hc (in blue) due to pairs with finite momentum [95].

II. SUPERFLUID LIQUID CRYSTALS AND SUPERSOLIDS

Spatially modulated superfluids and the Leggett-bound In the following, we discuss the question whether superfluidity can
still persist in a regime where the ground state is a solid, for instance above the critical pressure pc where the superfluid liquid or
gaseous phases shown in Fig. 2 crystallize or, more generally, in the presence of some periodic modulation of the density. This
question was first adressed by Penrose and Onsager [13], who argued that superfluidity cannot be present in a solid because
mobile defects in the form of either vacancies or interstitials that might be delocalized over the whole sample would always be
frozen out at zero temperature. Indeed, as will be discussed below, in a commensurate solid, with each unit cell containing an
integer number of particles, superfluidity is impossible. In order to understand under which circumstances superfluidity may
coexist with broken translation invariance, we start by defining supersolids in a rather wide sense by

A supersolid is a system where off-diagonal long range order (i.e. ρ1(x,x′) → n0 , 0 for |x − x′| → ∞), appears together
with an interaction-induced periodic modulation of the density (〈n̂(x)〉 = ρ1(x,x) = n̄ +

∑
G,0 nG exp (iGx) with nG , 0).

This definition includes a number of phases that have been known for quite some time in ultracold gases, among which
the triangular array of vortices observed both in rotating BEC’s [96] and in Fermi gases near infinite scattering length [94]
shown in Fig. 8 is certainly the most familiar one. Now, the periodic order in the density of the vortex lattice reflects that of
the underlying superfluid. Thus, there is only a single order parameter and both ODLRO and the associated lattice structure
disappear simultaneously at the superfluid transition temperature. A vortex lattice should therefore more properly be called
a spatially modulated superfluid. Quite generally, such phases are characterized by the fact that they exhibit BEC where the
eigenfunction φ0(x) associated with the extensive eigenvalue λ(1)

0 = N0 of the one-particle density operator exhibits a regular
lattice structure. Provided that the periodic order in φ0(x) is generated by interactions and not imposed externally, as in the case
of ultracold atoms in an optical lattice, these phases are superfluid analogs of liquid crystals. Generically, they are separated
from a spatially uniform superfluid by a Lifshitz point [97]. An example is shown in Fig. 8, where the phase diagram of a
two-component Fermi gas with a finite Zeeman-field 2h = µ� − µ� which does not affect the orbital motion is displayed in
dimensionless units within a BCS - description. The homogeneous superfluid is separated from the normal gas by a continuous
transition at a critical temperature which reaches the universal BCS limit Tc/∆0 = (1.76)−1 = 0.57 at zero field h = 0. At
zero temperature, the homogeneous and spin-balanced superfluid disappears at a Clogston-Chandrasekhar field hc = ∆0/

√
2.

Even beyond hc, however, superfluidity still persists in a range hc < h < 0.754 ∆0
11, where pairs are formed with finite

momentum q0 = kF� − kF�. The non-vanishing spin-density s = n� − n� , 0 in this regime may give rise to a complex order
parameter φ0(x) ∼ exp iq0x in a Fulde-Ferrell state [99] or the generically more favorable Larkin-Ovchinnikov phase where
φ0(x) ∼ cos q0x is real [100].

11 The corresponding phase diagram for the unitary Fermi gas has been determined by Frank et al. [95]. The critical temperature Tc/∆0 ' 0.34 at h = 0 and
the fields hc/∆0 ' 0.9 where a finite imbalance sets in, or hFFLO/∆0 ' 1.05 where the FFLO-phase disappears at T = 0, have different values. In particular,
their magnitude is determined by a much larger gap ∆0 ' 0.46 TF . More importantly, however, the Lifshitz point no longer coincides with the tricritical point
below which the transition to the homogeneous superfluid is first order. It is shifted to much lower temperatures, beyond the regime that has been explored in
experiments so far, which have determined the phase diagram of Fermi superfluids with finite imbalance down to and slightly below the tricritical point [98].
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According to the rather broad definition above, spatially modulated superfluids like the vortex lattice, where the density
modulation is due to interactions and not externally imposed, are indeed supersolids. However, they must be distinguished
carefully from a genuine supersolid that has been searched for in solid 4He, where crystalline order and superfluidity might
be present simultaneously as two independent order parameters. In contrast to the case of spatially modulated superfluids, the
regular lattice is then still there even after superfluidity in the crystalline phase is lost. A subtle issue that will be discussed
further in the section on hydrodynamic modes of a superfluid smectic phase below is whether spatially modulated superfluids
and genuine supersolids may be distinguished according to the number of Goldstone modes. Since gauge and translation
invariance as two continuous symmetries are spontaneously broken by the very definition of supersolids above, a separate set
of Goldstone modes are expected. For spatially modulated superfluids with a single order parameter, they would disappear
simultaneously above the superfluid transition. By contrast, for genuine supersolids those connected with the broken translation
invariance would still be present in the normal phase. Now, it turns that this simple scenario is only valid provided that:

(a) the generators of translations and gauge transformations are independent

(b) the modulation of the superfluid order parameter is accompanied by a corresponding one in the particle density.

As discussed by Watanabe and Murayama [101], condition (a) is violated in a vortex lattice, whose two-component
deformation field u(x, y) is not an independent variable but is rigidly coupled to the superfluid velocity vs by u = ẑ ∧ vs/(2Ω).
Here ẑ is the unit vector perpendicular to the (x, y)-plane and Ω the rotation frequency. Physically, the rigid coupling between
the deformation field and the superfluid velocity arises from the fact that the equilibrium vortex positions are precisely those at
which the superfluid velocity due to all other vortices precisely cancel. The Tkachenko modes with their quadratic dispersion
ω =

√
~/mΩ csq2/4 are therefore the single, so-called type B Goldstone mode in a vortex lattice despite the fact that both gauge

and translational invariance are broken 12.

As a hermitean operator, the one-particle density operator ρ̂1 has a complete set |φα〉 of eigenstates which are the so-called
natural orbitals. The very definition (1) of ODLRO shows that long range phase coherence may be present in a crystalline
configuration only if the natural orbital φ0(x) = 〈x|φ0〉 associated with the dominant extensive eigenvalue is extended over the
whole crystal. As will be discussed in the following section, a trivial example for this is provided by a weakly interacting BEC
in an optical lattice, where φ0(x) coincides with the one-particle eigenstate for crystal momentum q = 0 which is delocalized
by Bloch’s theorem. Now, an important result derived by Leggett [44] is that independent of how the periodic modulation of the
density arises, for any ground state which breaks both translation and gauge invariance there is an upper bound on the magnitude
of the superfluid fraction fs. In particular, the bound implies that in the presence of a non-vanishing modulation of the density,
there must be a finite normal fraction fn even in the ground state. Specifically, based on the topological criterion for superfluidity
discussed in Lecture I, Leggett has shown that the superfluid fraction

fs ≤

[
n̄
d

∫ d

0

dx
n1(x)

]−1

where n1(x) =

∫
unitcell

dỹ dz̃ 〈n̂(x)〉 → fs ≤

m/mB ∼ exp−2
√

V0/Er optical lattice

(1 − δ2)3/2/(1 + δ2/2)→ 1 − 2δ2 superfluid smectic
(38)

is bounded above by an expression where the inverse of the density n1(x) is integrated over a unit cell of the lattice. Here, n1(x)
is the average of the microscopic density 〈n̂(x)〉 over the transverse directions of the unit cell, using dimensionless coordinates
ỹ = y/dy and z̃ = z/dz. Moreover, without loss of generality, the x-direction has been singled out, with d the associated length
of the unit cell. Apparently, the bound becomes increasingly tight for a large contrast with respect to the spatially averaged
density n̄ = N/V but is always finite unless the density vanishes identically in some region. For a crystal, where the particles are
concentrated close to a discrete set {R} of lattice sites with a rather small density at interstitial positions, the upper bound on fs
is much smaller than one. In the limit of a fluid with uniform density, in turn, Eq. (38) reduces to the trivial identity fs ≤ 1. Two
important points should be noted: First, the bound (38) does not provide a sufficient criterion for superfluidity in a state with
broken translation invariance: a finite value of the bound is still compatible with no superfluidity at all. As will be discussed
below, this happens e.g. for the Mott-insulator state (40) of the Bose-Hubbard model. A second point is that the bound (38)
makes no assumption about the physical origin of the density modulation, which may be induced by interactions or externally
imposed, nor about the question of commensurability, i.e. whether the average number of particles within a unit cell happens to
be an integer or not. From the analysis of superfluid ground states in the Bose-Hubbard-model in the next section it will become
clear, however, that the latter issue plays a crucial role for the existence of supersolids.

12 For a detailed discussion of the counting of Goldstone modes in a non-relativistic context see the review by Watanabe [102].
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An explicit evaluation of the bound (38) requires detailed knowledge of the microscopic ground state density, which is hardly
available in practice. The two cases where an explicit result has been given above refer to a gas of non-interacting Bosons in
an optical lattice, where the density 〈n̂(x)〉(0)

SF = N |ψq=0(x)|2 is given by the square of the one-particle Bloch state with crystal
momentum q = 0. Indeed, in the limit of small repulsive interactions, the natural orbital φ0(x) → ψq=0(x) associated with the
dominant eigenvalue of ρ̂1 approaches the lowest one-particle eigenstate in the lattice 13. As pointed out by Leggett [51], in this
case the bound is equal to the ratio between the bare and the band mass mB. In a deep optical lattice with V0 � Er, the latter
becomes exponentially small of order m/mB = π2J/Er ∼ exp−2

√
V0/Er. In the limit of weak interactions, the ground state of the

Bose-Hubbard model thus has a condensate fraction f0 → 1 which approaches one, while the superfluid fraction is exponentially
small. A second example where an explicit result for the Leggett bound can be given is a BEC with a uni-directional, weak
density wave. As will be discussed below, this example is of relevance for dipolar gases, which exhibit a superfluid phase
with a finite density modulation along the weakly confined direction of a cigar-shaped trap if the dipolar and the short range
scattering length become comparable. If one assumes that even in this strong coupling regime the one-particle density operator
ρ̂1 =

∑
α λ

(1)
α |φα〉〈φα| is dominated by a single extensive eigenvalue λ(1)

0 ' N, the eigenfunction φ0(x) ∼ 1+δ cos (q0x)+ . . . in the
supersolid phase near the transition involves a small admixture |δ| � 1 which breaks translation symmetry along the x-direction.
The resulting ground state density

n(x) = 〈x|ρ̂1|x〉 →
n̄

(1 + δ2/2)
[
1 + δ cos (q0x)

]2 (39)

then has a rather simple form for which the Leggett bound can be evaluated easily. For |δ| ≥ 1, the density (39) vanishes
quadratically at either one (for |δ| = 1) or two different points within the unit cell, which leads to a divergent integral in
the denominator of Eq. (38). This is revealed in the expression for the Leggett bound of the superfluid smectic in Eq. (38)
which is ill-defined for |δ| > 1. We emphasize that the use of the Leggett bound to extract a finite normal fluid density from
a Gross-Pitaevskii Ansatz for the supersolid ground state requires to take into account excitations beyond a Gross-Pitaevskii
description, which in itself does not have a proper notion of a normal fluid fraction. Indeed, the bound (38) relies on a trial
Ansatz ψ(θ) = exp [i

∑
j ϕ(x j)]ψ0(x1 . . .xN) for the many-body wave function where the twist in the boundary condition (21) is

accounted for by a phase ϕ(x) whose detailed form is determined by minimizing the increase ~2/(2m)
∫
x

(∇ϕ)2 n(x) in energy
(here, n(x) = N

∫
d2 . . . dN |ψ0(x,x2 . . .xN)|2 is the exact ground state density). This is achieved by concentrating the imposed

overall phase change θ = ϕ(0) − ϕ(L) in regions of small density. In addition, note that a Gross-Pitaevskii Ansatz is restricted
to the phase where off-diagonal long range order coexists with broken translation invariance but it is obviously not adequate for
describing the full phase diagram of a genuine supersolid, where the periodic density is still present after superfluidity is lost.

In order to see that Eq. (38) gives a finite upper bound for the superfluid fraction even in states which definitely exhibit no
superfluidity, consider the simple Ansatz for the ground state of a commensurate crystal

ψ(0)
solid(x1,x2 . . .xN) =

1
√

N!

∑
P[xi]

4(x1 −R1)4(x2 −R2) . . .4(xN −RN) i.e. |ψ(0)
solid〉 =

∏
R

b̂†
R
|0〉 (40)

in which each of the NL = N lattice sites {R} is occupied with a single particle with probability one. Similar to the Wannier
states of the lowest band in an optical lattice, the functions 4(x −R) are assumed to be centered around R and they form an
orthonormal basis according to

∫
x
4∗(x−R)4(x−R′) = δR,R′ . To account for the indistinguishability of the particles, there is

a sum P[xi] over all N! permutations of the coordinates {xi}, a point which is often ignored in the discussion of regular solids.
As mentioned in Lecture I, however, statistics matters even in a solid: the critical de Boer parameter Λ

c,solid
dB for melting into a

liquid ground state due to zero-point motion is larger for Fermions than for Bosons. In practice, symmetrization only plays a
role if there is an appreciable overlap between the one-particle wave functions 4(x − R) at different sites R , R′ such that
particles are able to exchange their places in the lattice. The one-particle density matrix associated with the simple quantum
solid described by Eq. (40) is equal to

ρ(0)
1, solid(x,x′) =

∑
R

4
∗(x −R)4(x′ −R) → 〈n̂(x)〉(0)

solid =
∑
R

|4(x −R)|2 . (41)

It vanishes exponentially with the separation |x − x′| provided the products 4∗(x − R)4(x − R′) decay accordingly with
distance |R − R′|. The fact that ρ(0)

1, solid shows no long range phase coherence even though 4(x − R) may have appreciable
amplitude at sites other than R is not surprising: indeed this state is a product of local Fock states and it describes the trivial

13 Note that this identification does not work for weakly interacting BEC’s in a harmonic trap, where the fact that µ � ~ω gives rise to an inverted parabolic
rather than a Gaussian density profile.
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limit of a Mott-insulator at vanishing hopping in the Bose-Hubbard model discussed below. Nevertheless, the Leggett bound
for the associated density 〈n̂(x)〉(0)

solid is finite. While a quantitative result depends on the detailed form of the Wannier functions,
the expression (38) shows that the upper bound on fs essentially measures the ratio between the minimum and the maximum
value of |4(x − R)|2 within the unit cell centered around R. In fact, a simple estimate for the bound can be given by noting
that the density of the trivial quantum solid (40) differs from the density 〈n̂(x)〉(0)

SF = |
∑

R 4(x − R)|2 of a weakly interacting
superfluid at the same value of n̄ only by small corrections arising from the overlap of Wannier states at neighboring or more
distant sites (see also Eq. (45) below). Since the superfluid fraction associated with the density 〈n̂(x)〉(0)

SF is just the ratio
m/mB between the bare and the band mass, this shows that ( fs)

(0)
solid < m/mB. In practice, this is tiny for a crystal with well

localized functions 4(x − R), yet it is always finite despite the fact that the true superfluid fraction of the state (40) is zero.
Now, as will be discussed in the following section, a straightforward way in which the commensurate Mott-insulator (40)
may be converted into a supersolid is when the number of particles is either less or larger than those of the lattice sites. With
a finite concentration of vacancies e.g. there is a

(
NL
N

)
- fold degeneracy due to the different possibilities of distributing N

atoms on NL sites. In the presence of a finite density of delocalized defects, the ground state of Bosons even with a strong
periodic modulation of the density turns out to be a supersolid. This generic scenario for a supersolid state has originally been
suggested by Andreev and Lifshitz [103], who predicted a new hydrodynamic mode associated with wave like propagation
of defects. It was also formulated as a conjecture by Chester [104]. Note that the value for the superfluid fraction obtained
from the Leggett bound is hardly affected by the presence of defects. In fact, the density distribution is not sensitive to the
occurence or not of off-diagonal long range order, which involves the phase rather than the magnitude of the many-body wave
function. A proof that delocalized defects are indeed necessary for a supersolid has been given by Prokof’ev and Svistunov [105].

In the brief discussion above of Goldstone modes in supersolids, a nontrivial issue is whether a periodic modulation of the
order parameter is also reflected in the particle density. This question already arises for the Abrikosov vortex lattice in type II
superconductors as the first example of a spatially modulated superfluid but it is hardly raised in this context. Indeed, it turns
out that for superfluids in the BCS limit, the modulation of the particle density associated with a corresponding one in the order
parameter is completely negligible for a neutral Fermi gas and thus even more so in the presence of the Coulomb interaction in
real superconductors 14. A quantitative estimate of the coupling between the order parameter and the density can be given for
neutral systems in the vicinity of the superfluid transition, where the change δn in particle density is related to the finite order
parameter |ψ|2 by a linear relation δn = ακ̃ |ψ|2 to lowest order. Here, κ̃ = ∂n/∂µ is the compressibility and α is the coupling
constant between density and the order parameter, which is generically of the form −α δn|ψ|2 [57]. For weak-coupling BEC’s,
where a modulation of the superfluid order parameter is fully reflected in the particle density, one has ακ̃ ≡ 1. More generally,
the coupling between density and the superfluid order parameter follows by noting that for uniform fields the Lagrange density
L → −p coincides with the negative of the pressure p(µ,T ) in equilibrium [107]. Since the derivative ∂p/∂n |S = mc2

1 of
the pressure with respect to the density determines the velocity c1 of first sound, this allows to infer the parameter α from the
change of c2

1 due to the appearance of a finite order parameter |ψ|2. Formally, this follows from first order perturbation theory in
ρs = m |ψ|2 → 0 in Eq. (63) below for the special case of a homogeneous superfluid, where the layer compression modulus B
vanishes. The dimensionless parameter ακ̃ may thus be expressed in terms of the ratio S/Cp between entropy and specific heat
Cp = T∂T S |p together with the thermal expansion coefficient αp = (1/V) ∂T V |p, both taken at the superfluid transition, by

α =
∂

∂ |ψ|2

(
∂p
∂n

∣∣∣∣∣∣
T

)
→ α κ̃ =

(
Tαp S/Cp

)2
. (42)

In the BCS-limit, where the superfluid transition is effectively an instability of a Fermi gas at Tc � TF , one finds that
ακ̃ ' (Tc/TF)4 is exponentially small. The fact that the superfluid order parameter has a negligible coupling to the particle
density in this limit is well known. Specifically, it has been shown by Leggett [108] that even in the presence of strong Fermi
liquid corrections in the normal state, the compressibility of a neutral Fermi liquid is unchanged by a transition to superfluidity
to leading, linear order in Tc/TF . For the strongly interacting unitary Fermi gas, scale invariance implies that the product
Tαp = 3 LP/2 coincides with the Landau-Placzek ratio LP = (Cp/CV )− 1 up to a universal factor. The experimental data for the
thermodynamic parameters which enter Eq. (42) may then be extracted from the measurements by Ku et al. [109], giving rise
to a dimensionless coupling constant ακ̃ around 0.05. This small number is consistent with the fact that an appreciable density
contrast in the vortex lattice of Fig. 8 near unitarity and on the BCS-side has only been achieved by ramping the magnetic field
towards the BEC-side of the Feshbach resonance before the vortex lattice is released from the trap [94].

14 The situation is much less clear in high-temperature superconductors, where a pair-density wave seems to coexist with density order already in the anomalous
normal state, see e.g. Ref. [106].
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Defects and the Andreev-Lifshitz scenario for supersolids in the Bose-Hubbard-model Even though it does not realize
a supersolid in a proper sense because the periodicity is imposed externally by the optical lattice, the Bose-Hubbard model
(BHM) provides an instructive toy model to understand the coexistence of superfluidity and a periodic modulation of the density.
In particular, it allows to understand the role of defects and commensurability emphasized in the groundbreaking work on
supersolids by Andreev and Lifshitz [103]. The underlying Hamiltonian

Ĥ − µN̂ =
∑
q

ε(q) b̂†q b̂q +
U
2

∑
R

n̂R(n̂R − 1) +
∑
R

(εR − µ)n̂R (43)

for lattice Bosons with on-site repulsive interactions U > 0 was originally introduced by Fisher et al. [110] as a model for the
study of the interplay between interactions and disorder described by random on-site energies εR with zero mean and finite
variance. Its relevance for ultracold atoms in optical lattices was recognized by Jaksch et al. [111]. In this context, the last
term with a variable on-site energy εR → Vtrap(R) describes the effect of the smooth trapping potential which acts like a
spatially varying chemical potential. In the following, we consider a homogeneous situation with no disorder, where only two
different ground states are possible: a superfluid (SF) and a Mott-insulating (MI) state. In fact, as will be discussed below, the
homogeneous ground state for a fixed total number of particles is always a superfluid unless this number N = 〈n̂〉 · NL happens
to be precisely an integer 〈n̂〉 = 1, 2 . . . times the number NL of lattice sites, i.e. the ’solid’ is commensurate. In this special
case, a quantum phase transition between a SF and a MI appears at fixed density. It is driven by the competition between the
on-site repulsion U and the kinetic energy due to motion in the lowest band of the optical lattice with dispersion ε(q). The
band minimum is assumed to be located at zero energy, thus defining a band mass mB by ε(q) = ~2q2/(2mB) + . . .. In order to
eliminate the singular structure that a phase transition only appears at precisely commensurate filling, it is convenient to use a
grand canonical description, where the particle density is regulated by a chemical potential µ. Mott-insulating states, which are
incompressible by definition with κ̃ = ∂n/∂µ ≡ 0, then cover a finite width ∆µ , 0 over which the density is pinned to an integer
〈n̂〉 = 1, 2 . . .. They can be reached from the compressible superfluid via a density-driven transition at a fixed ratio U/B of the
on-site repulsion and the total bandwidth B. The phase diagram at zero temperature is shown in Fig. 9 for the specific case of
a three-dimensional cubic lattice, where the bandwidth is connected with the nearest neighbor tunneling matrix element J by
B = 12J. The associated critical value (U/B)c = 2.445 for the SF-MI transition at the tip of the Mott lobe with density 〈n̂〉 = 1
has been determined rather precisely by Quantum Monte Carlo [112]. In the realization of the BHM with ultracold atoms, the
ratio U/J can be changed easily by varying the dimensionless depth V0/Er of the optical lattice. In particular, for deep lattices
V0 � Er, the nearest neighbor tunneling matrix element J ∼ exp−2

√
V0/Er vanishes exponentially. The ratio between the

repulsive interaction and the kinetic energy then determines the critical value of the dimensionless lattice depth V0/Er by

U
J

∣∣∣∣
V0�Er

=
πa
√

2d
exp

(
2
√

V0/Er

)
→ (V0/Er)c =

1
4

ln2
( √2d
πa
· (U/J)c

)
. (44)

With the experimental parameters d = 426 nm and a = 5.7 nm for the lattice constant and the scattering length, respectively, the
precise result for (U/J)c predicts a critical value (V0/Er)c = 11.9 for the SF-MI transition with 〈n̂〉 = 1. This agrees quite well
with the lattice depth V0 = 12− 13Er where the transition has been observed by Greiner et al. [113], based on the disappearance
of sharp peaks at reciprocal lattice vectors k = G in the time-of-flight images. They provide a direct measure of the momentum
distribution of the original many-body state by mapping a given momentum to a point x = ~k t/m in the absorption image after
a ballistic expansion time t. For an idealized homogeneous situation, the momentum distribution

〈n̂(k)〉 = 〈ψ̂†(k)ψ̂(k)〉 = NL |4̃(k)|2
∑
R

eik·R 〈b̂†
R

b̂0〉 while 〈n̂(x)〉 = 〈ψ̂†(x)ψ̂(x)〉 =
∑
R

ρ(0)
1, solid(x,x′ = x+R) 〈b̂†

R
b̂0〉 (45)

is proportional to the Fourier transform of the one-particle density matrix 〈b̂†
R

b̂0〉 on the lattice. In the superfluid, the presence
of long range phase coherence 〈b̂†

R
b̂0〉 → f0 , 0, gives rise to pronounced peaks 〈n̂(k)〉 ∼ f0 N2

L at reciprocal lattice vectors,
where exp iG·R = 1. A quite different behavior is found for the density 〈n̂(x)〉, where the factor exp ik·R is effectively
replaced by the one-particle density matrix of the trivial MI state introduced in Eq. (41). Due to the exponential decay of ρ(0)

1, solid
with separation R, the density on a microscopic scale is hardly affected by the presence or not of ODLRO. In a harmonic
trap, however, superfluid and Mott-insulating phases may be distinguished in the wedding cake structure of the density n̄(X)
spatially averaged over the size of a unit cell. Indeed, since the local chemical potential µ(X) = µ(0) − mω2X2/2 decreases
monotonically towards zero at the edge of the atomic cloud, the incompressible nature of Mott-insulators gives rise to rings of
constant density n̄(X) separated by compressible superfluids, as observed in single-site resolution images [114, 115], see Fig. 9.

As stated above and evident from the phase diagram of Fig. 9, the ground state of the BHM remains a superfluid down to
arbitrary small hopping amplitudes B , 0 unless the number of particles is precisely an integer 〈n̂〉 = n0 = 1, 2 . . . times the
number of lattice sites. The underlying physics behind this initially surprising observation is that the ground state of Bose
crystals with a finite density of defects is always a supersolid, as first pointed out by Andreev and Lifshitz [103]. In order to
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FIG. 2. Single-site imaging of the shell structure in a Mott
insulator. (A – D) The images show podd on each site de-
termined by averaging 20 analyzed fluorescence images. The
lattice depth is 22Er and the transverse confinement is 45Hz.
As the atom number is increased from (A) to (D), the num-
ber of shells in the insulator increases from one to four. The
value of podd for odd (even) numbered shells is close to one
(zero). The atom numbers, determined by in-situ imaging of
clouds expanded in the plane, are (A), 120±10, (B), 460±20,
(C), 870 ± 40 and (D), 1350 ± 70. (E–F) Long wavelength
disorder can be corrected by projecting an appropriate com-
pensation light pattern onto the atoms, resulting in nearly
circular shells. (E) shows podd (average of 20 analyzed im-
ages) and (F) is a single shot raw image (arbitrary units).

disorder by projecting a light pattern generated using a
digital micromirror device through the objective[16], re-
sulting in a nearly circular shell structure.

In a second series of experiments, we use on-site num-
ber statistics to probe the adiabaticity timescale for the
transition, focusing on the local dynamics responsible for
narrowing the number distribution. We start by increas-
ing the lattice depth adiabatically to 11Er, still in the
superfluid regime, using the same ramp described previ-
ously. Next the depth is ramped linearly to 16Er where,
for an adiabatic ramp, a Mott insulator should form. The
ramp time is varied from 0.2ms to 20ms, and podd is mea-
sured in the first and second shells as before (Fig. 3); we
find that the data fits well to exponential curves that
asymptote to the value of podd obtained in the adiabatic
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FIG. 3. Dynamics of on-site number statistics for a fast ramp
from the superfluid regime to the Mott regime. podd at the
end of the ramp vs. ramp time is shown in the n = 1 (squares)
and n = 2 (circles) shells, averaged over 19 datasets with
statistical errorbars. Red lines are exponential fits. Inset:
the two-part ramp used in this experiment. The first part is
a fixed adiabatic exponential ramp (t = 81ms) and the second
is a linear ramp starting at 11Er and ending at 16Er. The
duration of the second ramp is varied in the experiment.

case. The fitted time constant in the first (second) shell
is 3.5 ± 0.5ms (3.9 ± 1.3ms).

Compared to the critical value of the tunneling time
h/Jc = 68ms for the first shell, the observed dynamics are
counter-intuitively fast. This can be understood using a
simple picture of two atoms in a double well. In this sys-
tem, as the tunneling is varied, the minimal gap between
the ground state and the first excited state is U , which
sets the adiabaticity timescale. It is an open question
whether this argument can be generalized to a lattice. In
an infinite system, the appearance of Goldstone modes
in the superfluid regime leads to a vanishing gap at the
transition point, but the density of states is low for en-
ergies much less than U [29]. In fact, the 1/e timescale
observed experimentally is comparable to h/Uc = 4.1ms,
where Uc is the critical interaction energy for an n = 1
insulator.

Although the local number statistics change on a fast
timescale of h/U , entropy redistribution in the inhomoge-
neous potential should occur on a much slower timescale
of h/J . Because superfluid and normal domains have a
larger specific heat capacity than Mott domains, in an in-
homogeneous system, entropy is expelled from the Mott
domains and accumulates in the transition regions after
crossing the phase transition if the system is in ther-
mal equilibrium [30]. It was found, however, that in
bulk Mott regions the insulating behavior makes entropy
transport difficult, and global thermalization is slow on
experimental timescales [31]. In our system, optical po-
tential corrugations produce sizable potential gradients

FIG. 9: Zero temperature phase diagram of the Bose-Hubbard model. The average density 〈n̂〉 varies continuously with the chemical potential
in the superfluid, while it is pinned to integer values 〈n̂〉 = 1, 2 . . . in the different Mott-insulators. In the SF, the lines of integer density end
at the tip of the Mott-lobes and they form a set of zero measure. For incommensurate densities 〈n̂〉 , 1, 2 . . . superfluidity persists down
to arbitrary small bandwidth B due to the Andreev-Lifshitz mechanism of delocalized defects. The Figure on the right shows a single-site
resolution image of the Mott-insulators with filling n0 = 2 (in the center) and n0 = 1 (in green) in a trap obtained by Bakr et al. [114].

understand the role which defects play for establishing superfluidity in a situation with a strong periodic modulation of the
density, consider the transition at a critical lower value µ−(n0) of the chemical potential from a compressible superfluid with
density 〈n̂〉 < n0 to the Mott-insulator with integer filling n0 in the limit of small but finite hopping B � U. Similar to the
discussion of the gas-liquid transition in Lecture I, it is convenient to start with the vacuum state |0〉 = |MI0〉 at negative chemical
potential, which may formally be viewed as a Mott-insulator with filling n0 = 0 because the density stays fixed at zero upon
increasing µ → 0−. Moreover, the compressible superfluid with filling 0 < 〈n̂〉 < 1 immediately above the vacuum state is a
supersolid due to a finite density n∆ = 〈n̂〉 of delocalized particles = interstitials on top of this trivial Mott-insulator. For a single
particle, the exact defect state is simply |ψdef〉 = b̂†q=0 |MI0〉. Due to the rather strong on-site repulsion U � B, the state with a
finite concentration n∆ = N∆/NL of the interstitials is, however, quite different from the superfluid in the limit U � B, where
|SF〉N∆

→ (b̂†q=0)N∆ |0〉. Effectively, the interstitials behave like hard core Bosons and reach the value of unit filling n∆ = 〈n̂〉 = 1
already at a small critical value µ−(n0 = 1) = µ(n∆ = 1) → B for B � U. Physically, this may be understood by noting that
hard core Bosons effectively behave like non-interacting Fermions 15 . Since the lowest band contains exactly NL single-particle
states, the configuration at filling n∆ = 1 is therefore equivalent to a Fermionic band insulator. A formal derivation of the fact
that the Mott-insulator state |MI1〉 with unit filling is reached already at µ−(n0 = 1) → B can be given by using the systematic
expansion around the limit of vanishing hopping by Freericks and Monien [116]. To lowest order, it is sufficient to consider
a state |ψhole〉 = b̂q=0 |MI1〉 = (1/

√
NL)

∑
R |1111 0R 11111〉 with a single delocalized hole on top of the Mott-insulator. The

associated hole creation energy ∆h = 〈Ĥ − µN̂〉hole − 〈Ĥ − µN̂〉MI = µ − B + . . . vanishes precisely at µ = µ−(n0 = 1)→ B.

Quite generally, a Mott-insulator is characterized by finite, positive values of both the particle addition energy ∆p = µ+ − µ
and the hole creation energy ∆h = µ − µ−. Their sum ∆µ = ∆p + ∆h = µ+ − µ− determines the Mott gap i.e. the range of µ where
the density remains pinned at the integer n0. In the regime B/U < (B/U)c, non-integer values of the filling 〈n̂〉 , 1, 2 . . . can
therefore only be realized by adding either vacancies or interstitials on top of the commensurate Mott-insulators. The resulting
superfluid ground state has a finite density n∆ = 〈n̂〉 − n0 of delocalized defects and is compressible, with a vanishing value of
both ∆h and ∆p. A similar scenario for supersolids arises in real Bose crystals, whose periodic density results from interactions
instead of being externally imposed as in the BHM. Again, the ground state of a commensurate crystal like 4He above the
critical pressure pc is a Mott-insulator. It may turn into a supersolid only if the gap ∆I for interstitials or ∆V for vacancies may
be tuned to vanish. For solid 4He, the numerical values ∆I ' 23 K and ∆V ' 13 K for these energies have been determined
numerically within a fully microscopic model by Boninsegni et al. [117]. They are quite large, thus excluding supersolid
behavior of the Andreev-Lifshitz type in 4He. In principle, it is also possible to have a supersolid whose average defect density
n∆ = 0 vanishes. As emphasized by Prokof’ev and Svistunov [105] however, this requires a fine-tuning of the interactions and
thus the probability for a commensurate supersolid is zero. An example of this exceptional situation within the Bose-Hubbard
model are the lines 〈n̂〉 ≡ n0 of integer density emanating from the tip of the Mott lobes into the superfluid phase, shown in Fig. 9.

15 This correspondence becomes exact for the Tonks-Girardeau gas in one dimension, see e.g. Ref. [49].
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Supersolid phases in dipolar gases and the roton instability In recent years, supersolid phases with an interaction-generated
density modulation along the axial direction of a cigar-shaped trap have been realized with dipolar gases [118–120]. In practice,
these are highly inhomogeneous systems with only a few times 104 atoms. The modulation of the density in the supersolid
phase, which has a typical length of the unit cell of around 0.3 µm, splits the BEC into a small number of coherently coupled
droplets. The supersolid phase is thus generically incommensurate, with many atoms per unit cell. In the following, we discuss
a simple model for dipolar gases in two dimensions [121] which are not confined in the (x, y)− plane and whose motion in the
z - direction, along which the dipoles are oriented, is restricted to the lowest single-particle eigenstate. The necessary condition
µ � ~ωz is always reached at low densities and it is compatible with the fact that typical values for the transverse confinement
lengths `z ' 0.5 µm are much larger than the dipolar length `d = md2/~2 of order `d ' 100 aB in present experiments. In
practice, the condition µ � ~ωz is not obeyed for dipolar gases in cigar-shaped traps, which are also far from uniform in the
plane perpendicular to the orientation of the dipoles. Nevertheless, a number of features like the absence of a homogeneous
superfluid with a well-defined roton minimum are common with those of the simplified model system studied in the following.
Due to `z � (`d, as), the two-body scattering problem requires a solution of the full three-dimensional Schrödinger equation in
the presence of both a short-range and the dipolar potential

V(x) = Vsr(x) +
d2

r3

(
1 −

3z2

r2

)
−

8πd2

3
δ(3)(x) . (46)

Here, the attractive delta function term is a dipolar contribution to the short-range interaction which – in contrast to the contri-
bution Vsr(x) – is known explicitely in analytical terms. It is specific to the case of magnetic point dipoles and is the analog
of the effective contact interaction Ĥ′ = ahfŜ · Î between the electron and the nuclear spin which gives rise to the hyperfine
splitting of s-states in Hydrogen or the Alkalis, see e.g. Ref. [122]. The contribution to the effective two-body interaction Vdd(q)
that results from projecting the dipolar part of the interaction (46) onto the lowest transverse oscillator level is [123, 124]

Vdd(q) = −gdd
2

√
π

2
(q`z) exp (q2`2

z /2) erfc(q`z/
√

2) . (47)

Here, following the notation in Ref. [49], we have introduced a coupling constant gdd
2 = (~2/m)g̃dd

2 with a dimensionless factor
g̃dd

2 =
√

8π`d/`z for dipolar interactions, which is much less than one in practice. The effective interaction Vdd(q) is always
negative and approaches the constant value −gdd

2 in the limit q`z � 1. In physical terms, this describes attractive head-to-tail
collisions between aligned dipoles with an effective 3D scattering length −`d. In the opposite limit q`z � 1, the projected dipolar
interaction Vdd(q) → −2πd2|q| vanishes with momentum in a non-analytic manner, reflecting the repulsive d2/r3- potential
at distances much larger than `z. The total momentum-dependent interaction Vtot(q) = g2 + Vdd(q), which arises from the
combination of a short-range part described by an associated scattering length as via g2 = (~2/m)

√
8πas/`z [49] and the magnetic

dipolar potential gives rise to a thermodynamically stable low-density gas provided that as > 0. Here, stability is understood in
the minimal sense that the density response function χ(q) which describes the change in energy

E[{δnq}] = E0 +
1
2

∫
q
χ−1(q) |δnq|

2 + . . . (48)

associated with small fluctuations δnq around a homogeneous fluid state is positive in the limit q→ 0, where χ(q)→ κ̃ = ∂n/∂µ.
At low densities, κ̃ → 1/g2 and thus stability is guaranteed by a positive value of the Fourier transform Vtot(q) of the total
interaction at q = 0. In the limit q`z � 1, the interaction approaches a constant proportional to the effective scattering length
aeff

s = as − `d for head-to-tail collisions. It becomes negative when the ratio εdd = `d/as between the dipolar and the short-range
scattering length is larger than one. The presence of attractively interacting dipoles in a weakly confined configuration with
`z � `d is the basic origin for the eventual instability of the homogeneous superfluid into phases with spatial order.

It has been noted in early work on dipolar gases by Santos et al. [125] and O’Dell et al. [126], that the negative Fourier
transform of the interaction in a finite range of momenta leads to a roton minimum in the excitation spectrum, superficially
similar to the one observed in superfluid 4He. Within a Bogoliubov approximation, the gas becomes dynamically unstable
towards a spatially ordered phase with a characteristic wave vector qc when the excitation energy EBog(q) = εq/S (q) vanishes
due to a diverging static structure factor SBog(qc) → ∞. This is the roton instability, which clearly does not occur in 4He, where
– at the critical pressure pc – the superfluid freezes into a commensurate solid with finite values of the interstitial and vacancy
energies by a first order SF-MI transition, Both the dominant peak Sc(q0) ' 1.4 in the static structure factor at q0σ ' 5 and
the roton minimum ∆rot are finite at the transition. A vanishing value of ∆rot is expected only when the superfluid no longer
exists even as a metastable phase, which is estimated to happen at pressures beyond 200 bar [127]. The first order nature of
the transition from liquid to solid 4He at the critical pressure pc is in fact a rather general feature of crystallization transitions,
as was shown by Landau [128] and, in extended form, by Brazovskii et al. [129]. An empirical criterion which determines the
point where the transition from a homogeneous fluid to a state with broken translation invariance occurs has been found by
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FIG. 10: Static strucure factor (left) and stability diagram of a weakly confined dipolar Bose gas within a Bogoliubov approximation. The
dominant peak S (q0) = 1.7 appears at q0`z ' 1.3. In the Figure on the right, the gas is unstable below the blue line. The orange line shows the
onset of the roton minimum, which essentially coincides with the Hansen-Verlet criterion marked in green. From Ref. [121].

Hansen and Verlet [130] for classical liquids. It states that freezing appears when the dominant first peak of the static structure
factor reaches a critical value Sc(q0) = 2.85. As discussed by Babadi et al. [131], a modified version of this criterion turns out
to determine the limit for the existence of a spatially homogeneous phase also for many quantum fluids at zero temperature.
Since configurations with a strongly inhomogeneous density are suppressed in quantum mechanics, the associated critical value
Sc(q0) is substantially lower than the classical Hansen-Verlet value. Surprisingly, it does not change much with particle statistics
or the specific form of the repulsive interactions. In the particular case of Bose fluids in 2D with dipolar interactions, the value
is Sc(q0) ' 1.7 [131] while an even smaller value Sc(q0) ' 1.4 applies to 4He at the critical pressure pc ' 25 bar [132].

Regarding the transition to the supersolid phase observed in dipolar gases, a fully microscopic description at the level available
for 4He [6] or the examples discussed in Ref. [131] does not exist at present 16. It has been realized in Ref. [121], however, that
an approach based on the Hansen-Verlet criterion for freezing of quantum fluids provides some insight even for the transition
to the supersolid phase of dipolar gases, which is driven by attractive rather than repulsive interactions and where the emergent
phase which breaks translation invariance is an incommensurate supersolid rather than a Mott-insulator. Consistent with the first
order nature of crystallization in general, the Hansen-Verlet criterion states that a transition to a phase with an inhomogeneous
density appears when the dominant peak in the static structure factor of the fluid has reached a critical value of order one. For the
specific case of purely repulsive dipolar interactions in 2D, the associated value is Sc(q0) ' 1.7. The relevance of this criterion
for weakly confined dipolar gases in the limit µ � ~ωz can be tested easily at the level of a Bogoliubov approximation by noting
that the associated static structure factor

SBog(q) =
[
1 + 2n0 Vtot(q)/εq

]−1/2
−−−−→
qlz�1

1 −
4
√

2πn0aeff
s

`zq2 + . . . (49)

is completely determined by the effective interaction and the condensate density n0. Based on the expression (47) for the
momentum dependent interaction, Fig. 10 shows the static structure factor for a dimensionless dipolar interaction strength
εdd = 2 at a density where n0`

2
z g̃dd

2 = 1. In this parameter regime, the excitation spectrum which – within Bogoliubov theory –
is given by the single-mode expression Eq = εq/S (q) for all momenta, is just about to develop a roton minimum. In addition,
we show the associated stability diagram. Here, the blue line marks the roton instability, where the excitation energy reaches
zero at finite momentum qc, determined by a divergent value of the static structure factor (49). Surprisingly, the orange line,
where the excitation spectrum Eq just starts to develop a roton minimum, essentially coincides with the Hansen-Verlet criterion
Sc(q0) ' 1.7 (green line) for a purely repulsive dipolar gas in 2D. This suggests that – in contrast to the case of 4He – dipolar
gases have no homogeneous superfluid phase with a well developed roton minimum: near the point where such a minimum
starts to appear, there is a first-order transition to a spatially modulated superfluid where a density wave coexists with long range
phase coherence. The roton instability predicted by the Bogoliubov approximation, where the static structure factor diverges at
some finite momentum qc, is thus preempted by the spatially ordered supersolid phase.

16 A common approach uses a Gross-Pitaevskii description with additional mean-field contributions due to the dipolar interaction and the fluctuation corrections
from an LHY-calculation of the 3D homogeneous system. In the regime of interest, where εdd > 1, these corrections develop a non-vanishing imaginary part,
which indicates that the configurations around which the expansion is performed are unstable, see e.g. the work by Weinberg and Wu [133] in a QFT context.
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resolved as a side peak. From a multi-Gauss fit to the
integrated density nðqyÞ, we extract F ; see Fig. 1(d) [33].
For q≲ l−1z , the zero-momentum peak and the Bragg-
excited one overlap andF cannot be precisely extracted. To
access S̃0ðq;ωÞ for all q, we use the momentum variance
hq2yi ¼

R
nðqyÞq2ydqy, which relates to the imparted energy

into the system. AsF , hq2yi gives access to S̃0ðq;ωÞ, but via
a more complex relation [5,22,23,33,36]. Figure 1(e)
exemplifies a resonance in hq2yi when varying ω at fixed
q. We extract its center frequency ωq via a Gaussian fit. By
varying q over the experimentally accessible range, we
probe the lowest-lying branch of the axial excitation
spectrum εðqÞ ¼ ℏωq [33].
Figure 2 shows the results of our Bragg measurements,

revealing how εðqÞ is modified when tuning from ϵdd < 1
to ϵdd > 1. For ϵdd < 1, εðqÞ shows a linear dependence
over the whole q range, characteristic of phonon modes,
Figs. 2(a) and 2(b). From a linear fit to εðqÞ, we estimate the
sound velocity c ¼ limq→0εðqÞ=q ¼ 1.01ð1Þ mm=s along
y. As we probe the system for increasing ϵdd > 1, we find
an overall reduction of the excitation energies and increas-
ing deviations of the spectra from the linear phonon
behavior, Figs. 2(c) and 2(d). When further increasing
ϵdd, the spectrum starts to flatten at large q, Figs. 2(e) and
2(f). Ultimately, at the highest ϵdd, we observe a local
minimum occurring at q ≈ qrot ¼ 1.27ð6Þl−1z , providing an

unambiguous signature of the existence of the roton mode,
Figs. 2(g) and 2(h). At intermediate momenta between the
phonon and roton regimes, a maxon [local maximum in
εðqÞ] is also identifiable. Because of optical constraints on
our Bragg setup, the maxon regime is not fully accessible;
see black region in Figs. 2(e) and 2(g). To compare our
measurements with theory, we perform calculations of
S̃0ðq;ωÞ, by calculating the Bogoliubov modes from the
Gross-Pitaevskii equation (GPE) linearized around equi-
librium at the final as [24,33,37]. Here we explicitly do not
include beyond-mean-field effects [33]; see later discus-
sion. Over the entire range of ϵdd, our theory describes
the experimental data, both qualitatively and quantitatively.
In the calculations of Fig. 2, we let as vary within the
prediction interval ($2a0) of our B-to-as conversion to best
match the measured spectrum.
To get a deeper insight into the roton softening, we

perform Bragg measurements at a fixed q ¼ qrot and extract
ωq, denoted ωrot, as a function of as for fixed N. As shown
in Fig. 3, ωrot exhibits a reduction that becomes increas-
ingly sharp for decreasing as. Below 52a0, we observe that
the system undergoes a roton instability, i.e., a spontaneous
population of the roton mode even without applying a
Bragg pulse; see also Ref. [21]. We find that the softening
of ωrot is well approximated by an as-power-law scaling.
By fitting the data to ωrotðasÞ ¼ Aðas − a%sÞp, we extract
the critical scattering length at which ωrot vanishes,
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FIG. 2. Excitation spectra from ϵdd < 1 to ϵdd > 1: (a), (c), (e), (g) Measured hq2yi for varying q (columns, delineated by white
tick marks) and ω at given as. Each column is fitted with a Gaussian function and renormalized by the fitted peak amplitude.
Black columns are inaccessible to measurements [33]. (b), (d), (f), (h) Extracted εðqÞ (white dots) from (a), (c), (e), (g), respectively.
Here and throughout the Letter, the error bars denote $ one standard deviation. The solid lines are guides to the eye, based on the
analytic formula from Ref. [24]. The color map shows the calculated S̃0ðq;ωÞ, normalized by the maximum of S̃0ðq;ωÞ at qlz ¼ 1.3
and as ¼ 82a0. For [(a), (b); (c), (d); (e), (f); (g), (h)], N ¼ ½4.6ð5Þ; 3.9ð4Þ; 3.3ð3Þ; 2.5ð3Þ' × 104 and as ¼ ðasexp; aths Þ ¼
½ð80.0; 82.0Þ; ð60.5; 62.5Þ; ð55.3; 54.5Þ; ð52.5; 51.6Þ'a0, respectively.
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FIG. 11: Bragg scattering spectra of a dipolar gas of 166Er in a cigar-shaped trap for different values εdd = `d/as of the ratio between the dipolar
and the short range scattering length. The upper panel (a-g) shows the variance 〈q2

y〉 of the momentum along the weakly confined direction
which results from the transfer of atoms to finite momenta by the Bragg pulse at the resonance condition ~ω = Eq. With increasing values of
εdd the excitation spectrum in panels (b-h) extracted from 〈q2

y〉 develops a roton minimum near q`z ' 1.3. The Figure is taken from Ref. [134].

Now, of course, the Bogoliubov approximation, where the spectrum of excitations is exhausted by a set of non-interacting
quasiparticles at all momenta, is not quantitatively reliable in a regime `d ' as where the homogeneous fluid is unstable towards
the formation of a density wave, despite the fact that the diluteness parameter na3

s is tiny. Nevertheless, it seems to capture the
qualitative behavior up to the point where the supersolid phase appears. This applies, in particular, to the generic form of the
static structure factor near the transition shown in Fig. 10, which approaches its asymptotic limit from above in the relevant
regime where aeff

s is negative, see Ref. [121] for a further discussion. Moreover, the prediction that the homogeneous superfluid
does not exhibit a pronounced roton minimum is consistent with experiments performed with dipolar gases in a cigar-shaped
trap, even though the expression (47) for the momentum-dependent interaction does not apply quantitatively there. The
evolution of the excitation spectrum as a function of the dimensionless strength εdd of the dipolar interactions has been extracted
from Bragg scattering data by Petter et al. [134]. As shown in Fig. 11, the spectrum develops only a rather shallow minimum
near q`z ' 1.27 for the largest values εdd ' 1.3 displayed, which are close to the critical strength ε(c)

dd for the transition to a
supersolid phase with a finite density modulation along the axial direction 17. The validity and significance of the Hansen-Verlet
criterion in this context has been probed in recent measurements of the static structure factor by Hertkorn et al. [135]. By
averaging over many in-situ images of the atomic density, the finite-temperature static structure factor S (q,T ) = 〈|δnq|

2〉(T )/N
is inferred from the shot-to-shot density fluctuations δnq. At the relevant temperature T ' 20 nK of the experiment, the peak
value near the transition is around S (q0,T ) ' 260 [135]. To compare with the Hansen-Verlet criterion, an estimate of the
critical peak height at zero temperature may be obtained within the Bogoliubov approximation, where the structure factor
SBog(q,T ) = SBog(q) coth (βEq/2) is related to its zero temperature value by a simple thermal factor coth (βEq/2) ' 2kBT/Eq,
which is estimated to be in the range 50 − 100 near q0. The extrapolated critical peak height Sc(q0) ' 2.6 − 5.2 at zero
temperature is considerably larger than the value Sc(q0) = 1.7 [131] which determines the location of the SF-MI transition at
high densitites

√
n `d |c ' 20 due to purely repulsive dipolar interactions in 2D [131, 136]. Given that a number of assumptions

enter into the extrapolation of the experimental data to zero temperature, the estimated range Sc(q0) ' 2.6 − 5.2 is, however,
still compatible with the general concept that an inhomogeneous phase appears beyond a finite critical value Sc(q0) of order
one. In particular, the precise value for Sc(q0) in the quantum version of the Hansen-Verlet criterion is expected to deviate
from Sc(q0) = 1.7 since the instability to the supersolid phase studied here is caused by the attractive part of the dipolar
interaction. Clearly, a quantitative prediction for Sc(q0) or the critical coupling ε(c)

dd requires a proper microscopic theory of the
transition from the homogeneous superfluid to the supersolid phase. In this context, two major questions are open even at a
qualitative level: First of all, one needs to show that the transition to the state with broken translation invariance is indeed of
first order as e.g. in the case of the vortex lattice in type-II superconductors [137]. Second, it is open whether the supersolids
observed in dipolar gases are genuine supersolids rather than spatially modulated superfluids. Recent experiments by Sohmen
et al. [138] provide support for the first option since the periodic order in the density is still present above the superfluid transition.

17 The value ε(c)
dd is of course not universal but it is expected to be near the value ε(c)

dd ' 1.37 observed in similar experiments discussed in Fig. 12 below.
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Goldstone and hydrodynamic modes of a superfluid smectic In the following, we will discuss the low energy modes of
a supersolid within a simple model where the density order appears along a single direction only [139]. This phase may be
considered as a superfluid analog of a classic smectic-A liquid crystal. It is an incommensurate solid whose density fluctuations
contain two distinct contributions associated with the divergence of the displacement field and the density of defects. Within a
hydrodynamic description of the supersolid phase, originally developed by Andreev and Lifshitz [103], defect diffusion as one
of the hydrodynamic modes of normal, compressible solids turns turns into a propagating defect density mode. Compared with
the translation invariant superfluid, the associated Goldstone mode may be viewed as a generalization of second sound for the
propagation of entropy, which now remains well defined down to zero temperature.

In order to elucidate the similarities and differences between standard liquid crystals and the superfluid version of the smectic
phase, we start with the case where no superfluidity is present. Specifically, we consider a two-dimensional situation where the
smectic order shows up as a periodic modulation

neq(x) = n̄ +

∞∑
l=1

nl cos (lq0x) ≈ n̄ + n1 cos (q0x) + . . . (50)

of the density along the x-direction with a fundamental reciprocal lattice vector q0, analogous to the form assumed in Eq. (39)
with n1/n̄ ' 2δ to linear order in δ. For non-vanishing Fourier components nl , 0 in Eq. (50), translation invariance along x is
broken. The associated new hydrodynamic variable is a scalar field u(x, y) that is called the layer phase [97]. It is defined by
considering deviations from the equilibrium density (50) of the form

n(x, y) = n̄ +

∞∑
l=1

nl cos
(
l q0[x − u(x, y)]

)
. (51)

Within a hydrodynamic description, there are four conserved quantities, which are particle number, the two-dimensional
momentum as well as energy. Combined with the single symmetry-breaking variable u, there must be five hydrodynamic
modes [140]. Only one of them is a Goldstone mode, which counts twice in a hydrodynamic count because it is necessarily
a propagating mode. As found by Martin et al. [140], the Goldstone mode of a smectic-A liquid crystal is a transverse sound
mode with a frequency ωt(q) '

√
B/ρq2 qxqy ∼ sinψ cosψ that depends on the angle ψ between the wave vector q and the

direction of density order. Here, ρ is the equilibrium mass density and B the layer compression modulus. It is defined by the
elastic contribution fel = B (u′)2/2 + . . . to the free energy density associated with small longitudinal distortions u′ = ∂xu of
the smectic order [97]. The second propagating mode is a bulk sound mode ω = ±clq whose velocity cl(ψ) has only a weak
dependence on the angle ψ. In particular, for longitudinal propagation, its velocity c2

l (ψ = 0) = (K + B)/ρ is determined by
the sum of the isentropic bulk modulus K = ρ ∂p/∂ρ

∣∣∣
s,u′ and the layer compression modulus B [140]. The last remaining

mode in addition to the Goldstone mode and the sound mode describes heat diffusion. Now, a special situation arises for a
wave vector q which is directed either along or perpendicular to the x-direction. Here, due to the peculiar angular dependence
ct(ψ) ∼ sinψ cosψ of the transverse sound velocity, the Goldstone mode is absent. By mode counting, there must then be three
diffusive modes in addition to the propagating bulk sound mode. The first one is the heat diffusion mode that is present at
arbitrary values of the angle ψ. The second one is a transverse momentum diffusion mode with frequency ω = −iν q2, where ν
is a kinematic viscosity [97]. The third mode with frequency ω = −iDp q2 is special to smectic-A liquid crystals and is called
the permeation mode [97]. It describes a diffusive process in which particles are exchanged between adjacent layers without
changing the average periodic structure. The associated diffusion constant Dp = ζB is determined by the layer compression
modulus B and a dissipative coefficient ζ. The permeation mode may be viewed as an analog of defect diffusion, a process that
gives rise to an independent hydrodynamic mode in any crystal [140]. As will be shown below, it is precisely the permeation
mode in combination with the heat diffusion mode that turns into the Goldstone mode of the superfluid smectic phase, where
exchange between the layers occurs in a reversible manner by non-dissipative, propagating mass currents.

For a description of the hydrodynamics of a superfluid smectic phase, the presence of superfluidity needs to be accounted for
on a thermodynamic level by expressing the differential of the entropy density s

Tds = dε − (µ/m)dρ − vndg − h d(∇u) − js dvs (52)

as a function of the conserved variables energy density ε, mass density ρ, and momentum density g, together with the gradient
∇u of the layer phase and the superfluid velocity vs which characterize the two broken symmetries. In the superfluid smectic,
both are U(1) symmetries and may therefore be derived from compact angular variables. One of them is the standard phase
ϕ(x) of the complex order parameter whose gradient determines the superfluid velocity vs = (~/m)∇ϕ. Regarding smectic order,
Eq. (51) shows that q0u(x) and q0u(x) + 2π give rise to identical distortions. Density fluctuations in the smectic are therefore
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described by an angle ϕsm(x) = q0u(x) which coincides with the layer phase up to a trivial factor 18. The role which is analogous
to the superfluid current density js associated with vs is played by the thermodynamic field

h =
∂ fel

∂(∇u)

∣∣∣∣∣
T,A,N,3n,3s

= B u′ex − K1∂
3
y u ey + . . . (53)

conjugate to the gradient ∇u of the layer phase. It determines the elastic free energy of the smectic. Here and in the following,
we use the notation u′ = ∂xu for the derivative of the layer phase in the direction of the periodic modulation. Note that for
longitudinal modes, only the layer compression modulus B plays a role. A second Gaussian-curvature type elasticity appears in
Eq. (123) for excitations with a finite component of the wave vector parallel to the layers. It involves the splay elastic constant
K1 [97], which becomes relevant for the dispersion of the Goldstone and hydrodynamic modes with wave vectors at finite
angles to the direction of ordering [139]. The conjugate variable to the momentum density g is the normal velocity vn, which
also appears in the superfluid mass current density js = ρs(vs − vn). Quite generally, for superfluids with an underlying periodic
structure, the normal velocity vn = ∂tu is determined by the time derivative of the displacement field u. This relation, which is
valid at the linearized level around equilibrium and is thus sufficient for the derivation of the hydrodynamic modes, has been
derived in general form by Son [142] as a consequence of Galilean invariance. In particular, for the superfluid smectic, the
deformation field is a scalar. The normal velocity (vn)x = 3n = ∂tu thus has only a component along the x-direction which is just
the time derivative of the layer phase variable u.

The complete set of hydrodynamic modes in a superfluid smectic phase follows from the equations of motion for the conserved
densities ρ, g and ε together with the two effectively scalar variables ∇u and vs that describe the underlying broken symmetries.
The six resulting equations of motion are given by

∂tρ + ∇ · g = 0 (54)
∂tgi + ∂ jΠi j = 0 (55)
∂tε + ∇ · j ε = 0 (56)
∂t(∇u) − ∇3n = 0 (57)
∂tvs + ∇µ/m = 0. (58)

The first three equations (54)-(56) are the standard continuity equations that link the time derivatives of the densities to the
divergences of the momentum density g, the stress tensor Πi j, and the energy current j ε, respectively. Eq. (57) expresses the fact
that a constant shift along the direction of smectic order changes the layer phase by a constant. More generally, if irreversible
effects are included, the right-hand side in this equation no longer vanishes and contains a contribution ζ∇2h, where ζ is the
dissipative coefficient that enters the diffusion constant Dp = ζB of the permeation mode [97]. Finally, Eq. (58) is the Josephson
equation (neglecting a quadratic term in the velocities) that describes the dynamics of the superfluid phase. From the differential
of the entropy (52) and the dynamic equations (54)-(58), one obtains an expression for the material derivative T (∂t s+vn ·∇s) of
the entropy density that depends on spatial gradients ∇T , ∇µ, ∂i3n, j and ∇ · js of the thermodynamic forces. For the inviscid
fluid considered here there is no entropy production, which implies a series of constitutive relations that link the currents and the
thermodynamic forces. To leading order in the velocities, these constitutive relations read:

g = ρvn + js → g = ρnvn + ρsvs since js = ρs(vs − vn) (59)

Πi j = p δi j − δi,x h j →

(
p − B u′ 0

0 p

)
since h = B u′ ex (60)

j ε = (ε + p)vn + µjs/m . (61)

The fact that the explicit form of the currents in equations (54)-(56) are completely fixed by the condition of a vanishing entropy
production is quite important from a conceptual point of view: it shows that – apart from dissipative coefficients like viscosity
or heat conductivity which lead to irreversible damping of the modes – hydrodynamics shares the same level of universality than
equilibrium thermodynamics itself. For the specific case of the superfluid smectic, the only information needed is the equation
of state together with the elastic constant B and the superfluid mass-density tensor ρs, which determine the conjugate fields for
the spatial respectively the superfluid order in the thermodynamic relation (52).

18 The formal equivalence of the order in classic smectic-A liquid crystals and in superfluids was first realized by de Gennes [141]. Note that the associated
angles ϕsm and ϕsf transform in an opposite manner under time reversal: ϕsm is a true scalar while ϕsf is a pseudoscalar.
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The linearized hydrodynamic equations of motion are obtained by substituting the constitutive relations in the dynamic equa-
tions and expanding the thermodynamic forces to leading order in the hydrodynamic variables around equilibrium. For motion
along the direction of the smectic order, the resulting equations only involve the xx - component of the superfluid mass density
tensor, which we denote by ρs = ρ − ρn. In this configuration, the transverse momentum degree of freedom decouples and gives
rise to a diffusion mode which – at the level of reversible hydrodynamics – appears at ω = 0. For the remaining five degrees of
freedom, the characteristic equation reads

−ω/q 1 0 0 0
K/ρ −ω/q 0 0 −B

0 s̃T ρs
ρn
−ω/q −ρs̃T ρs

ρn
0

K/ρ2 0 −s̃/ρcV −ω/q 0
0 1/ρn 0 −ρs/ρn −ω/q



δρ
gL
δq
3s
u′

 = 0. (62)

Here, ω is the frequency of the mode and q the associated longitudinal momentum. Moreover, we introduce a heat current density
variable δq = δε+

ε+p
ρ
δρ with s̃ = s/ρ the entropy per particle and mass, while cV = T∂T s̃

∣∣∣
ρ

is the associated specific heat. Apart
from the transverse momentum diffusion mode mentioned above, Eq. (62) contains another diffusive zero mode with eigenvector
(δρ, gL, δq, 3s, u′) = (−Bρ/K, 0,−BcV/s̃, 0, 1). In the absence of superfluidity, this mode splits into two separate diffusion modes,
one that describes heat diffusion, and one permeation mode that involves an interchange between the layer phase and the particle
density. In the superfluid smectic phase, only the above combination remains, while an orthogonal complement will couple to
the superfluid velocity and give rise to a propagating sound mode. The condition of a vanishing determinant of Eq. (62) which
determines the propagating longitudinal hydrodynamic modes reads

ω4 − ω2q2
[K
ρ

+
B
ρn

+ c̄2(T )
]

+ q4
[BK
ρ2

ρs

ρn
+ c̄2(T )

K − B
ρ

]
= 0 where c̄2(T ) =

ρs

ρn
·

s̃2T
cV

. (63)

In the absence of superfluidity, the parameter c̄2(T ) – which has dimensions of a velocity squared – vanishes. Eq. (63) then
reproduces the longitudinal compression mode of a smectic-A liquid crystal with velocity c2

l = (K + B)/ρ mentioned above.
For a vanishing value of the layer compression modulus B = 0, in turn, the equation describes first and second sound in
a homogeneous superfluid as discussed in textbooks, e.g. the one by Pitaevskii and Stringari [143]. In particular, at low
temperatures, the parameter c̄2(T ) → c2

s/d approaches a finite constant which is determined by the sound velocity cs of the
superfluid at zero temperature and the dimension d. Due to K/ρ → c2

s , Eq. (63) then gives rise to two sound modes with
velocities c1(T = 0) = cs and c2(T = 0) = cs/

√
d. The question which of the two is the Goldstone mode associated with the

broken gauge symmetry turns out to be subtle. The obvious answer seems to be it is second sound because this is the new
mode which arises from a finite value of ρs compared to the normal fluid, where only compression waves exist. In the context
of ultracold gases, however, it is standard to identify the Goldstone mode associated with the broken gauge symmetry with
the Bogoliubov mode ωq = csq, whose velocity c1 → cs is quite generally determined by the superfluid density ns and the
compressibility κ̃ = ∂n/∂µ by mc2

s = ns/κ̃. Indeed, this is the only mode which is present in the limit of zero temperature since
second sound, as a counter-oscillation between the superfluid and the normal component at constant pressure, no longer exists
because there is no remaining normal component. In a homogeneous superfluid, second sound thus exists as a hydrodynamic,
collision dominated mode only in a finite range of temperatures below Tc. There is an avoided crossing between first and
second sound at a characteristic temperature T ∗ first discussed by Lee and Yang [144] 19. For much lower temperatures only
first sound remains which is, however, of a quite different nature than the standard compression mode in the normal fluid. As
a proper Goldstone mode, it describes an elementary excitation associated with exact low-lying eigenstates of the many-body
system, as exemplified in the Bogoliubov Hamiltonian (14), rather than a hydrodynamic, collision-dominated mode. In the
supersolid phase, it turns out that also the second mode with velocity c2 which arises from the solution of Eq. (63) remains
well-defined at zero temperature. It is precisely the additional Goldstone mode associated with the broken symmetry variable ∇u.

In the superfluid smectic phase, where the normal fluid fraction fn ≥ 2δ2 is bounded below by the square of the density
modulation δ , 0 according to Eq. (38), the ratio ρs/ρn remains finite as the temperature approaches zero. The thermodynamic
factor s̃2T/cV , in turn, vanishes. In contrast to the homogeneous superfluid, the parameter c̄2(T ) in Eq. (63) therefore disappears
at low temperatures. As a result, one obtains two undamped propagating modes ω = ±c1,2q with velocities

c2
1,2 =

K
2ρ

+
B

2ρn
±

1
2

[(K
ρ

+
B
ρn

)2

− 4 fs
KB
ρρn

]1/2
. (64)

19 For a detailed discussion of the crossover between first and second sound in the context of weakly interacting BEC’s see section 6.6 of Ref. [143].
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For an understanding of the physics underlying these two modes and in particular the connection to the classic picture of
supersolids in terms of wave-like propagation of defects developed by Andreev and Lifshitz [103], it is instructive to rederive
their velocities and, in particular, the associated eigenvectors with a slightly different set of variables introduced by Yoo and
Dorsey [145]. They decompose small fluctuations of the mass density

δρ = −ρ u′ + δρ4 (65)

into a contribution −ρ u′ associated with deformations of the periodic structure and an additional defect density ρ4. This separates
the density variation of a defect free crystal, for which a change in density is tied to the divergence of the deformation field,
from the additional density change associated with the motion of defects. The defect density obeys a continuity equation
∂tδρ4 = −∂x ρs(3s−3n) whose conserved current g∆ = ρs(3s−3n) is just the Galilean-invariant superfluid mass-current density.
The second time derivative of the defect density is coupled to the strain field variable u′ according to

∂2
t δρ4 = ρs∂

2
x(µ/m) + ρs∂

2
t u′ . (66)

In a situation where the lattice is almost rigid, the contribution that involves the layer phase variable u′ may be neglected.
Using K = ρ2∂(µ/m)/∂ρ

∣∣∣
s,u′ for the bulk modulus, the defect density thus obeys a wave equation with a velocity given by

c2
4 = fs (K/ρ). This is analogous to fourth sound of superfluid 4He in narrow capillaries, where the normal fluid component is

pinned by the walls. It describes the oscillation of the superfluid with no motion of the lattice. This limit is perfectly realized
in the superfluid phase of Bosons in an optical lattice. As was mentioned in the discussion of the Bose-Hubbard model above,
the superfluid fraction fs in a deep optical lattice is exponentially small. The sound velocity in the superfluid phase is therefore
tiny compared to that in a homogeneous BEC. An explicit result can be derived in the limit of small repulsive interactions,
where fs → m/mB is determined by the ratio between the bare and the band mass mB while K/ρ → µMF/m = U〈n̂〉/m.
As a result, one finds c2

4 → U〈n̂〉/mB, which directly connects the smallness of the sound velocity in an optical lattice to
the large band mass. Note that there is no analog of first sound in an optical lattice, which is fixed externally. The variable
u′ therefore disappears and the density fluctuations in Eq. (65) only arise from defects, i.e. the particles added on top of the lattice.

An explicit result for the eigenmodes of the superfluid smectic phase requires to simultaneously solve Eq. (66) for the defect
density and a corresponding one for the layer phase, which reads

ρn∂
2
t u′ = ∂2

x[−p + Bu′ + ρs(µ/m)]. (67)

The solution of the coupled equations (66) and (67) does of course reproduce the result (64) above. The associated dimensionless
eigenvectors are δρ4/ρ

u′


1

=

c2
2/(K/ρ)

1

 and
δρ4/ρ

u′


2

=

c2
1/(K/ρ)

1

 (68)

for the first and second sound modes with speed c1 and c2, respectively. Specifically, for an almost rigid lattice with B/ρn � K/ρ,
the velocities reduce to c2

1 = B/ρn + fnK/ρ and c2
2 = fsK/ρ with c1 � c2. In this limit, second – or better fourth – sound

is essentially a defect density mode with no involvement of the lattice. By contrast, the eigenvector (δρ4/ρ, u′)1 = ( fs, 1)
for first sound in this limit involves the defect density with weight fs. In supersolids with a rather small superfluid fraction
fs � 1, this mode predominantly involves the strain field, i.e., it describes the motion of the lattice. A rather different situation
arises in the opposite limit of a small normal fraction fn � 1 on top of a dominant homogeneous superfluid. Formally, in
the limit fn ' (n1/n̄)2 → 0 of a vanishing density modulation, the contribution B/ρn in Eq. (64) appears to diverge. This
is not the case, however, since the elastic constant B approaches zero as well. The way it does has been discussed in the
context of the nematic-to-smectic-A transition of normal liquid crystals [97]. Within a mean-field approximation, the layer
compression modulus B ∼ |n1|

2 vanishes like the square of the order parameter n1. The ratio B/ρn then turns out to be finite
in the limit n1 → 0 where the smectic order disappears. In particular, in the limit K/ρ � B/ρn of a weak density modulation,
the velocities (64) approach c2

1 = (K + B)/ρ and c2
2 = B/ρn. The velocity of the compression mode is thus unchanged

compared to that in the normal phase. In terms of the variables δρ4/ρ and u′, the eigenvector associated with first sound is
dominated by the layer phase variable with a negligible contribution from the defect density. Due to u′ ' −δρ/ρ, the periodic
structure of the smectic therefore adiabatically follows the density fluctuations δρ in this mode, which describes oscillations
of the lattice. The second sound mode, by contrast, whose velocity B/ρn is determined by the ratio of the layer compression
modulus B and the normal fluid density, involves both an oscillation in the longitudinal strain field as well as the defect
density with essentially equal magnitude. In physical terms, it describes a wave-like propagation of particles in addition to
that associated with variations in the smectic lattice structure, replacing the diffusive permeation mode of a normal smectic phase.
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monitor two different observables, more directly related to the two 
modes found in the theory: the spacing k of the side peaks, which is the 
inverse lattice period, and the modulation amplitude Ak, which is asso-
ciated with the depth of the lattice. As shown in Fig. 2, the two observ-
ables feature clear sinusoidal oscillations, with different frequencies: k 
oscillates with a higher frequency and Ak oscillates with a lower fre-
quency, in agreement with the theoretical predictions.

In Fig. 3 both the predicted and measured frequencies versus εdd are 
reported, together with the phase diagram. The appearance of a density 
modulation marks the transition to the supersolid regime (vertical blue 
dotted line). The transition from the supersolid to the droplet crystal 
regime (vertical red dotted line) is identified with the zero crossing of 
the calculated chemical potential after subtracting the contribution of 
the external harmonic potential, which provides the onset of the for-
mation of self-bound droplets. In the supersolid, the higher-frequency 
mode is clearly related to the lattice deformations and its frequency 
increases owing to the dipolar repulsion between neighbouring density 
maxima. The lower mode is instead related to the compressional oscil-
lation of the superfluid component; its downward frequency shift can 
be justified as an effective mass acquired by the atoms moving through 
the lattice, corresponding to a reduction of the superfluid fraction. The 
lower mode eventually disappears as the system enters the droplet crys-
tal regime, in analogy with the behaviour of the corresponding 
Goldstone mode in uniform systems1,14,17,22. The upper mode instead 
approaches the value characteristic of a solid phase of incoherent drop-
lets (see Methods). It is worth noticing that the changes in the dynamics 
coincide with the predicted transition lines.

The agreement of experiment with theory on the BEC side is remark-
able. The comparison with theoretical results without the Lee–Huang–
Yang interaction term shows a clear stabilizing effect of quantum 
fluctuations already on the BEC side. In the supersolid regime, the 
splitting of the experimental oscillation frequencies agrees qualitatively 
with the theory. For larger εdd, even before the theoretical prediction 
for the transition to the droplet crystal, the k and Ak modes are no 
longer visible in the experiment because n(k) becomes incoherent 

(see Methods). The spontaneous excitation of the axial mode observed 
in the experiment at the BEC–supersolid transition reveals a release of 
excess energy, suggesting a first-order phase transition, in agreement 
with theoretical predictions17–19,22,24.

In conclusion, the bifurcation of the lowest compressional mode of 
a harmonically trapped dipolar supersolid provides evidence of the 
simultaneous breaking of two continuous symmetries, in analogy with 
the gapless Goldstone modes predicted for a homogeneous supersolid. 
The nature of the mode associated with the broken translational sym-
metry demonstrates the compressibility of the crystal structure of the 
dipolar supersolid, in analogy with the hypothesized helium supersolid1 
and in contrast with the incompressible cavity supersolid10,20,37. This 
access to the compressional modes opens up exploration of the 
non-trivial competition between the superfluid and crystalline features 
exhibited in this type of supersolid, in which two separate quantum 
phase transitions can be accessed by tuning a single interaction param-
eter, εdd. For example, a detailed analysis of the mode splitting at the 
BEC–supersolid transition might confirm that the transition is of first 
order, in analogy with the discontinuity in the phonon velocities of the 
Goldstone modes22. Working with systems having reduced losses13 and 
larger sizes, one might also explore the transition between the super-
solid and the droplet crystal, at which the theory predicts the disap-
pearance of the lower-frequency mode. Although the existence of two 
Goldstone modes is a manifestation of superfluidity, our work does not 
exhaust the assessment of superfluidity in supersolid dipolar gases. The 
study of other important consequences of superfluidity—such as the 
occurrence of permanent currents and of a critical velocity, the reduc-
tion of the moment of inertia, as well as the existence of quantized 
vortices—requires the implementation of different geometrical config-
urations and different experimental techniques that will be developed 
in future work.

We note that after completing the present study, we became aware of 
related investigations by the Stuttgart and Innsbruck groups38,39.
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Fig. 3 | Axial mode frequencies from BEC to supersolid and droplet 
crystal. The shaded regions identify the different phases, separated by 
dotted lines determined as described in the text. The dipolar character of 
the system is varied through the parameter εdd = add/as. Dotted lines are 
the theoretically predicted frequencies including the Lee–Huang–Yang 
interaction energy term that is due to quantum fluctuations (blue and red) 
or excluding it (grey). Large circles and squares are experimentally 
measured frequencies: in the BEC regime (circles) the oscillation is 
induced by quenching εdd; in the supersolid regime (squares) the instability 
naturally triggers the oscillation. Colours indicate the dominant character 
of the two modes in the supersolid: superfluid-related (blue) or lattice-
related (red). Error bars are one standard deviation. In the experiment, εdd 
has a calibration uncertainty of 3%.
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FIG. 12: Axial excitation spectrum of a dipolar gas of 162Dy in a cigar-shaped trap as a function of the ratio εdd = `d/as between the dipolar
and the short range scattering length. In the homogeneous BEC (blue) the frequency agrees well with the result ωB =

√
5/2ωx for the axial

breathing mode of a BEC with short-range interactions. In the supersolid, the mode splits into two separate excitations. The frequency of the
lower one disappears at the transition to a phase with independent droplets (red). The dotted lines have been obtained from a numerical solution
of a time-dependent Gross-Pitaevskii equation including the dipolar interaction plus LHY-corrections. The Figure is taken from Ref. [146].

For a description of the low-energy excitations in the supersolid phase of dipolar gases in a cigar-shaped trap, where the
uni-directional nature of the density wave is a consequence of the specific confining potential, the homogeneous model above
is of course not directly applicable. Nevertheless, the analytical results for this idealized model provide some insight into the
excitations of the supersolid which is independent of both the detailed trapping geometry and the description of the supersolid
phase at a microscopic level. In particular, it should be emphasized that Eq. (64) for the sound velocities in a supersolid in
no way depends on the assumption of translation invariance along the direction perpendicular to the density wave. In fact,
as discussed by Yoo and Dorsey [145], it also applies for the longitudinal modes of supersolids in two or three dimensions.
Experimentally, a characteristic signature of the supersolid state in a trap compared to the standard BEC is the emergence
of an additional collective mode at low energies [146–148]. Specifically, as observed by Tanzi et al. [146] and shown in
Fig. 12, the axial breathing mode of a trapped BEC with frequency ωB =

√
5/2ωx shifts towards higher frequencies beyond

the transition to a supersolid with a finite density modulation. In addition, a new mode appears whose frequency goes down as
the density contrast increases. This observation can be understood on a qualitative level within the hydrodynamic description
of a homogeneous system by noting that the lowest value qmin ' 1/lx of the longitudinal wave vector in the trap is set by the
inverse of the axial confinement length lx. In a trap, therefore, the splitting of the Bogoliubov mode of a homogeneous BEC into
two independent propagating modes in the supersolid phase found in Eq. (64) shows up as a bifurcation into a compressional
mode at ω1 ' c1/lx which – at least for a weak density modulation – now involves an oscillation of the lattice structure and a
new second mode at lower frequencies ω2 ' c2/lx in which both the lattice variable u′ and the defect density δρ∆ oscillate with
essentially equal magnitude. With increasing depth of the density modulation, the frequency ω1 is shifted upwards due to the
growing contribution of the layer compression modulus B in the associated sound velocity c1. By contrast, the lower frequency
ω2 decreases upon entering more deeply into the supersolid phase since the velocity c2 goes down with the superfluid fraction
fs. In particular, near the transition of the supersolid to a crystal of droplets, c2 =

√
fsK/ρ is expected to vanish proportional to

the square root of the superfluid fraction fs → 0. A trap analog of the true Goldstone mode, which is properly defined only in a
homogeneous system, has also been seen in experiments by Guo et al. [147] in a small array of three droplets. In the supersolid
regime, the dipole mode associated with the axial motion of the whole cloud remains fixed at the trap-frequency. In addition,
there is an out-of-phase mode whose frequency is much smaller than that of the trap and in which the oscillation of the periodic
background is compensated by a corresponding one in the superfluid to maintain a fixed center-of-mass. A theoretical analysis
of the full mode spectrum in a trap has been given by Hertkorn et al. [149] based on a numerical solution of the time-dependent
Bogoliubov - de Gennes equations.

As a final remark, we stress that the possibility of a supersolid phase in dipolar gases relies on the fact that they form an
incommensurate mass density wave. The inverse of the volume 3cell of a unit cell thus differs from the full density n by a finite
defect contribution n∆ = n− 3−1

cell [97]. It is only the defects which may be associated with a non-vanishing superfluid density. As
shown above, for a finite ρs, the coupling between the lattice deformation and the defect density fluctuations in Eq. (65) gives
rise to separate Goldstone modes associated with the simultaneous breaking of gauge and translation invariance. By contrast, as
emphasized by Anderson [150], (see section 4.C) the ground state of a genuine solid like 4He above the critical pressure or even
a non-periodic rigid structure like glass has n∆ ≡ 0 since it is characterized by a finite energy gap for free motion of a single
atom relative to the background. This is the defining property of a Mott-insulator, for which superfluidity is excluded, consistent
with the original argument against the existence of supersolids by Penrose and Onsager.
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III. PROBING ULTRACOLD GASES AT SHORT DISTANCES

Pair distribution function at short distance In a classic paper by Kagan et al. [151] it was pointed out that losses due to two-
body or three-body collisions will be suppressed quite strongly at the transition to the superfluid phase, as was indeed observed
after BEC had been realized in ultracold gases [152]. The effect arises from the reduction of the local values g(2)(0) and g(3)(0)
of the two- or three-body correlation function from g(l)(0) = l! in the non-condensed phase to g(l)

BEC(0) = 1 in an ideal BEC.
Quite generally, losses due to l-body decay give information about the probability that l Bosons are close together. The question
that will be discussed in the following is how these short distance correlations evolve in the presence of interactions. Now, at
the level of a Gross-Pitaevskii approximation, the pair distribution function - and in fact all higher order correlations - is equal
to g(2)(x) ≡ 1 at arbitrary distances. Formally, this may be seen by using the exact connection

n
[
g(2)(x) − 1

]
=

∫
q

exp (iqx) [S (q) − 1] (69)

between the pair distribution function and the static structure factor and recalling that Eq. (18) gives S GP(q) ≡ 1 at the
Gross-Pitaevskii level, where λGP

q = 0. Including the coherent coupling between particles in the condensate and in the depletion
discussed in Lecture I, the behavior of g(2)(x) at large distances r > ξ is changed into the dependence given in Eq. (13).
As pointed out above, this is an exact result valid for arbitrary interaction strength. For short distances, the asymptotic
dependence SBog(qξ � 1) = 1 − 1/(q2ξ2) obtained by approximating ∆q = n0V(q) by a constant gives rise to a behavior
g(2)

Bog(r � ξ) = 1 − 2a/r which becomes negative at distances smaller than twice the scattering length. Apparently, the pair
distribution function at short distances depends on the specific form of the interaction at large wave vectors and thus the local
value g(2)(0) is ill-defined in general. An exact result g(2)

LHY(r � ξ) = (1 − a/r)2 for the pair distribution function has been
obtained by Lee, Huang and Yang [153] for the special case of a gas of hard spheres in the dilute limit (nσ3)1/2 � 1. It coincides
with the square of the scattering solution 1 − a/r of the two-body Schrödinger equation at zero energy and is consistent with
the result of the Bogoliubov approximation to linear order in the scattering length a � σ, properly staying positive for arbitrary
separations beyond the hard sphere diameter σ. In fact, the expression g(2)

HS(r → σ+) = (1 − σ/r)2 + . . . is the low density limit
of an exact result which will be derived for hard sphere interactions in Eqs. (156) and (157) below.

Somewhat surprisingly, a deeper understanding of two-particle correlations for ultracold gases with short range interactions
came only through the independent work by Tan [154] and by Zhang and Leggett [155] in the context of strongly interacting two-
component Fermi gases and the subsequent realization of the connection to the operator product expansion in QFT by Braaten
and Platter [156]. In particular, it turns out that for quantum many-body systems with short range interactions, there is a well
defined scaling limit where the interaction range is taken to zero at a fixed value of the scattering length. In this limit, the pair
distribution function g(2)(0) at vanishing separation is ill-defined and must be replaced by the dimensionful Tan contact density C2
defined in Eq. (72) below. For a derivation of the resulting short distance behavior of the pair distribution function for arbitrary
interaction strength and temperature, we adapt an argument used by Zhang and Leggett [155] in the case of two-component
Fermi gases and consider the spectral representation

〈ψ̂†(x1)ψ̂†(x2) ψ̂(x2)ψ̂(x1)〉 =
∑

n

λ(2)
n |Φn(x,R)|2 (70)

of the diagonal elements of the exact two-particle density matrix ρ̂2. Its eigenvalues λ(2)
n can be interpreted as the number of

pairs of Bosons which are found in a two-particle wave function Φn(x,R) expressed in terms of center-of-mass and relative
coordinates R = (x1 + x2)/2 and x = x1 − x2. For separations x which are smaller than the distance to all other atoms, the
dependence of the exact eigenfunctions Φn(x,R) on r = |x| is expected to be determined by two-body physics, as observed
above for g(2)

LHY(r � ξ). This suggests that the Φn at short distances may be factorized according to

Φn(x,R) −−−−→
|x|→0

cn(R)ψ0(r)/(4π) , (71)

where the prefactor in the zero energy solution ψ0(r) = 1/r − 1/a of the two-particle problem and the 1/4π are choosen for
later convenience. The many-body nature of the problem is hidden in the complex numbers cn(R) which depend both on the
microscopic parameters and also on temperature, since Eq. (70) holds for an arbitrary equilibrium state. The weighted sum of
their squares defines the so called two-body contact density

C2(R) =
∑

n

λ(2)
n |cn(R)|2 . (72)

In a translation invariant situation, C2 is independent of the center-of-mass coordinate since Φn(x,R) ∼ exp iQR reduces to
plane waves with respect to R. In this case, Eqs (70) and (71) lead to a singular behavior

n2g(2)(r → 0) =
C2

16π2

(
1
r2 −

2
ar

+ . . .

)
−−−−−→
na3�1

n2
[(a

r

)2
− 2

(a
r

)
+ . . .

]
(73)



34

of the pair distribution function at short distance and zero temperature. This quite general result reduces to the one obtained
by LHY if the contact density is replaced by its weak coupling value C2 → (4πna)2 but it now applies for arbitrary inter-
action strength and also below r = a. Note, however, that the term of order r0 from |ψ0(r)|2 in the expansion (73) must be omitted.

In weak coupling, this contribution gives rise to the correct trivial limit
g(2)(∞) = 1 at large distance which holds for any translation invariant fluid
state. This is, however, misleading because the correct long distance behavior
of g(2)(r) displays a 1/r4-tail at zero temperature, as specified in Eq. (13). It
should also be noted that for realistic two-body interactions, the exact two-body
wave function and thus also g(2)(r . σ) ∼ exp (−(σ/r)α) eventually vanishes
exponentially at short distances. Taking a Lennard-Jones potential for instance,
the (σ/r)12 repulsion leads to an exponent α = 5. For an ultracold gas, however,
the energies involved are far too small to see the behavior at distances less than
even the effective range re ' `vdW. In particular, due to the separation of scales

n−1/3, λT � re ' `vdW ( � σ ) (74)

there is a wide range where universal results appear not only at large but also at
small distances `vdW � r � n−1/3, ξ (and also r � λT at finite temperature).

A surprising consequence of the singular behavior (73) at short distances follows from the connection (69) between g(2)(x)
and the static structure factor, which approaches its limiting value one at large momenta by a slow C2/q -decay according to

S (qξ � 1) = 1 +
C2

8n

(
1
q
−

4
πaq2 + . . .

)
. (75)

This is quite different from the result of Bogoliubov theory at zero temperature, where S Bog(qξ � 1) = 1 − 1/(q2ξ2) + . . .
approaches its trivial limit one from below. The Bogoliubov approximation which - as emphasized in Lecture I is exact in the
limit qξ � 1 - therefore misses the leading positive contribution C2/q to the static structure factor at large momentum. In fact,
in the context of two-component Fermi gases with large scattering lengths, it is precisely the slow C2/q -decay that has been
used to measure the contact density [157, 158]. Note, however, that independent of the value of C2, the negative contribution
−1/(q2ξ2) found within a Bogoliubov approach dominates the leading term in the conventionally accessible regime qa � 1.

Tan relations and the operator product expansion Beyond the short distance behavior of the pair distribution function, the
contact density also appears in a number of thermodynamic quantities and in experimentally accessible response functions of
many-body systems with short range interactions. A comprehensive review of this subject has been given by Braaten [159]
and in two detailed papers by Werner and Castin, using a derivation based on many-body wave functions. They cover both
Bose gases and mixtures [160] or two-component Fermi gases [161] and also the case of two dimensions, where many of the
results hold without much change provided that the zero energy two-body wave function is replaced by its d = 2 counterpart
ψ0(r) = ln (r/a2), with a2 the associated scattering length. The relevance of C2 for thermodynamic properties becomes evident
from Tan’s adiabatic theorem [154], which relates the derivative

∂U
∂(1/a)

∣∣∣∣∣∣
S

= −
~2

8πm
·

∫
R

C2(R) = −
~2

8πm
·C2 (76)

of the internal energy U with respect to the inverse scattering length at constant entropy S to the integrated contact C2. The
theorem follows from the Hellman-Feynman relation

d〈Ĥ〉 =
1
2

∫
x1

∫
x2

dV(x1 − x2) 〈ψ̂†(x1)ψ̂†(x2)ψ̂(x2)ψ̂(x1)〉 =

∫
R
C2(R)

∫
x

dV(x)
|ψ0(r)|2

32π2 = −
~2

8πm
C2 · d(1/a) (77)

by using a result derived by Zhang and Leggett [155] which relates a change dV(x) of a short range interaction to the one
in the associated inverse scattering length by an integration of the product dV(x) and |ψ0(r)|2. From Tan’s adiabatic theorem,
the result C2 → (4πna)2 quoted above for weakly interacting BEC’s at zero temperature follows from the leading mean-field
term u(n) = gn/2 + . . . of the energy per particle. A simple physical interpretation of the concept of a contact is obtained by
considering the average number of pairs of Bosons with a separation |x1−x2| < b which is smaller than the average interparticle
spacing. Using the short distance behavior (73), this - of course extensive - number is given by

Npairs(r < b) =
1
2!

∫
R

∫
|x|<b

n2(R) g(2)(R,x) =
C2

8π
· b + O(b2) . (78)



35

For small separation b, the average number of close pairs of Bosons thus scales linearly with their maximum distance instead
of the naive scaling with the associated volume. This anomalous behavior is a result of the 1/r2-dependence of the probability
density |ψ0(r)|2 at short distances, which cancels the factor 4πr2 from the volume element.

It was realized by Braaten and Platter [156] that an effective and rather general approach to derive exact relations for the
many-body problem with zero range interactions is provided by the operator product expansion (OPE), due independently
to Wilson [162], Kadanoff [163] and Polyakov [164]. As a simple example, consider two particles whose separation |x| is
smaller than the average distance to the remaining N − 2 particles. They thus feel only their direct interaction. Extending the
expansion (71) of the eigenfunctions of the two-particle density operator ρ̂2 to the level of operators, the product

lim
r→0

ψ̂(R − x/2) ψ̂(R + x/2) =
ψ0(r)

4π
φ̂(R) + . . . (79)

of two annihilation operators at short distances factorizes into the two-body wavefunction ψ0(r) = 1/r − 1/a in vacuum and an
operator φ̂(R) which describes the dressing of the bare two-particle state by the surrounding many-body system. The physical in-
terpretation of the operator φ̂(R) is elucidated by considering the product of two density operators at small distance. Introducing
the so called contact operator Ôc(R) = φ̂†(R)φ̂(R), (79) gives rise to a short distance expansion of the form

n̂(R+x/2) n̂(R−x/2)= n̂(R) δ(x)+ψ̂†(R+x/2)ψ̂†(R−x/2) ψ̂(R−x/2)ψ̂(R+x/2) −−−−→
|x|→0

δ(x) n̂(R)+
ψ2

0(r)
16π2 Ôc(R)+. . . (80)

which is written here for a general inhomogeneous situation. Now, the second term is just the associated pair distribution function
and the comparison with Eq. (73) shows that the contact density is simply C2(R) = 〈Ôc(R)〉. Quite generally, the OPE provides
an expansion of a product Ôa Ôb of operators at nearby points in space in terms of local operators Ô` in the form

Ôa(R −
x

2
) Ôb(R +

x

2
) =

∑
`

W (a,b)
`

(x) Ô`(R). (81)

As an identity at the level of operators, Eq. (81) is valid for expectation values between any state. The state-independent
coefficients W (a,b)

`
(x) are ordinary c-numbers and are called the Wilson coefficients. They depend both on ` and the specific

operators Ôa and Ôb which appear on the left-hand side of Eq. (81). What distinguishes an operator relation of the type (81)
from more familiar operator identities like the Baker-Campbell-Hausdorff relation is that the latter holds completely generally,
while the OPE is valid only in eigenstates of a specific Hamiltonian. An important concept in an OPE is that of the scaling
dimension ∆` of an operator Ô` which determines the dependence of the Wilson coefficients at small separation x via

W (a,b)
`

(x) ∼ |x|∆`−∆a−∆b . (82)

As an example, in the OPE in Eq. (80), the Wilson coefficient W (n,n)
n (x) = δ(x) associated with the density operator scales like

|x|−3 since n̂(R) has scaling dimension ∆n = 3. The contact operator Ôc(R), in turn, has scaling dimension ∆c = 4 which follows
from the weaker divergence W (n,n)

c (x) =
(
ψ0(r)/4π

)2
∼ 1/|x|2 of the associated Wilson coefficient as |x| → 0. Obviously, the

operators Ô` with the lowest scaling dimension dominate the behavior of an operator product at small separation. In particular,
Wilson coefficients which are non-analytic in x give rise to power law tails of the associated correlatorOa Ob at large momentum.
The most important example for this connection is provided by the OPE for the one-particle density matrix

ψ̂†(R − x/2) ψ̂(R + x/2)= n̂(R) + (i/~)x · ĝ(R) −
|x|

8π
Ôc(R) + . . . (83)

At first sight, it seems surprising that the operator which appears in the short distance expansion (80) of the product of two
densities also appears in the corresponding one of two field operators. The underlying reason for this may be understood by
considering the expression

n(q) =
N
V

∫
xa

∫
xb

e−iq(xa−xb)
∫

d2 . . . dN ψ∗(xa,x2, . . .xN)ψ(xb,x2, . . .xN). (84)

for the dimensionless momentum distribution n(q) of a pure state. Its asymptotic behavior for large momentum is determined
by the integration regions in which both xa and xb approach one of the remaining particle coordinates x2 . . .xN simultaneously.
Factoring out the associated bare two-body wave function ψ0(x), this gives rise to a momentum distribution which behaves like

n(q)→ C2

∣∣∣∣∣∫
x

ψ0(x)
4π

e−iq·x
∣∣∣∣∣2 + . . . = C2/q4 + . . . (85)
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at large momentum, as first derived by Tan [165]. The same result is obtained from the OPE expression (83) by noting that the
formal Fourier transform of −|x| is 8π/q4. Extending this expansion to higher order is a rather complex problem which will not
be discussed here. As shown by Braaten et al. [166], the subleading correction to the result (85) is of the form

n(q) =
C2

q4 +
C3

q5 F(q) + · · · , (86)

where F(q) = A sin
[
2s0 ln (q/κ∗) + 2φ

]
is a log-periodic function that depends on the value of the three-body parameter κ∗,

while s0 = 1.00624, φ = −0.669064, and A = 89.26260 are universal constants. The appearance of a log-periodic function
is a consequence of the Efimov effect: three-body bound states appear at a geometric sequence a(n)

− (3) ∼ − exp (πn/s0) of
increasingly negative scattering lengths, approaching the threshold 1/a = 0 for the existence of a two-body bound state at which
an infinite number of trimers is present. The overall magnitude of the subleading contribution ∼ C3/q5 is determined by the
three-body contact density C3 which measures the likelihood for three particles to be close together. Within a strict zero range
interaction, C3 actually vanishes. Indeed, as realized by Werner [167], a finite range is needed to properly account for the three-
body correlations associated with the Efimov effect. In the function F(q) defined above, this is hidden in the parameter κ∗. The
connection between C3 and the finite interaction range is elucidated by the thermodynamic definition [166]

C3 =

∫
R
C3(R) = −

m κ∗

2~2

∂U
∂κ∗

∣∣∣∣∣∣
S ,1/a

(87)

of the integrated three-body contact in terms of the derivative of the internal energy U with respect to κ∗, in close analogy
to Eq. (76) for the two-body contact C2. A finite value of this derivative, which needs to be taken at both fixed entropy and
scattering length, thus implies that the energy is sensitive to the short distance behavior of the interaction. Importantly, however,
this only enters through a single parameter κ∗ which determines the characteristic momentum scale of the three-body bound
states. The associated binding energies E(n)(3) = −~2(κ(n))2/m right at unitarity follow from the condition sin [s0 ln (κ(n)/κ∗)] = 0.
As discussed in Lecture I, the finite range of the interaction in ultracold gases of the order `vdW provides a lower cutoff for this
infinite sequence at κ(0) = κ∗ ' 0.2/`vdW and, correspondingly, a minimum (in magnitude) value a(0)

− (3) = a−(3) ' −9 `vdW at
which the trimers detach from the continuum [65].

Quantitative results for the contact densities C2,3 are so far available only in the regime of weak interactions (na3)1/2 � 1 or
in moderately degenerate gases with fugacities z = exp (βµ) . 1. In the latter case, the leading order results [168, 169]

C2 =
16π2

λ4
T

∂ b2

∂(λT /a)
z2 −−−−−→

λT�|a|
32π (nλT )2

(
1 −

λT
√

2 |a|
+ ..

)
and C3 =

π

λ5
T

∂ b3

∂ ln (λT κ∗)
z3 −−−−−→

λT�|a|
3
√

3s0 (nλT )4/n ∼ n3/T 2 (88)

exhibit a power law decay with temperature. The contact densities are expected to reach a maximum value near the BEC
transition temperature and then decrease towards their finite values C2 → (4πna)2 and C3 → 2.9 (na)4/n [168] in the ground
state. Surpisingly, no quantitative results are available which cover the full temperature range, not even for C2 and the limit
of weak interactions. Essentially exact results are available in one dimension, where zero range interactions again lead to an
asymptotic power law decay n(q)→ C2/q4 of the momentum distribution [170]. The result can be derived by an operator product
expansion and thus holds for arbitrary states of the associated Lieb-Liniger gas [171]. Since delta function interactions give rise
to wave functions which are non-singular in one dimension, exhibiting only a jump in their slope, the pair distribution function
at vanishing distance g(2)(0) is finite. Together with the dimensionless Lieb-Liniger parameter γ = 2/(n1|a1|), it determines the
two-body contact density simply by C1d

2 = n4
1 γ

2 · g(2)(0). Here, n1 is the number of particles per length and a1 the scattering
length in one dimension, which is negative for repulsive interactions 20. For weak interactions γ � 1, where g(2)(0)→ 1−2

√
γ/π

and the ground state of the Lieb-Liniger gas is essentially a true BEC, the contact density at T = 0 is given by C1d
2 → (2n1/|a1|)2.

In the Tonks-Girardeau limit γ � 1 in turn, where the gas is fermionized, one obtains C1d
2 → 4π2 n4

1/3 which is the 1d - analog
of the result C2 → const · n4/3 expected for the unitary Bose gas in three dimensions. At finite temperature, the contact density
has been determined numerically by Yao et al. [172]. In the regime where there is no Fermionization, C1d

2 (T ) exhibits a broad
maximum near the degeneracy temperature where n1λT ' 1. A similar behavior is expected in three dimensions. In this case,
however, there is a sharp BEC transition which results in a weak singularity of the contact density. It is determined by the one in
the entropy density s(T ) using Gibbs-Duhem and the resulting Maxwell relation [173, 174]

d p(µ,T, 1/a, κ∗) = n dµ + s dT +
~2

8πm
C2 d (1/a) +

2~2

mκ∗
C3 dκ∗ →

~2

8πm
∂C2(T )
∂T

=
∂ s(T )
∂(1/a)

. (89)

20 For a discussion of the exactly soluble Lieb-Liniger gas in the context of ultracold atoms, see chapter V in the review by Bloch et al. [49].
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wherem is the atom mass, n the density of the ↑
component, and a the ↑↑ scattering length. Away
from unitarity, C2º n2a2 and C3º n3a4 (19, 20),
and the ratio of the C3 and C2 contributions to
W is of the order of n|a|3 ≪ 1. At unitarity, both
contacts saturate at their maximal values; in a
thermal gas, C2º n2l2 and C3º n3l4, where l is
the thermal wavelength. The crucial advantage
of using the precession of the Bloch vector to
observe three-particle correlations is that the
C2 contribution toW vanishes at unitarity (where
|a| →1).

Our experimental setup is described in (32).We
worked with 39K atoms prepared in an optical
harmonic trap with frequencies (wx, wy, wz)/2p =
(48.5, 56.5, 785) Hz. Our two spin states, labeled
in the low-field basis, were j↑i ¼ jF ¼ 1;mF ¼ 1i
and j↓i ¼ jF ¼ 1;mF ¼ 0i. We tuned the ↑↑ scat-
tering length a by using a Feshbach resonance
centered on a magnetic field of B0 = 402.70(3) G
(30). In all our experiments, |a| > 300a0, whereas
the moduli of the ↑↓ and ↓↓ scattering lengths
are <10a0 (33), where a0 is the Bohr radius.
Near B0, the bare splitting of the ↑ and ↓ states is

≈99 MHz. We prepared clouds at the critical
point for Bose-Einstein condensation, with a
phase-space density ntotl

3 ≈ 2.6 at the trap
center, where ntot is the number density, and the
cloud temperature of 370 nK corresponds to l ≈
8600a0. The duration of each p/2 pulse was tp =
17 ms, and the evolution time between the pulses,
T, was varied between 40 and 130 ms. At the end
of the whole Ramsey sequence, we measured
the fractional ↑ population, n↑/ntot, by in situ
absorption imaging along the axial direction, ẑ
(Fig. 2A). In Bose gases, strong coherent in-
teractions are generally accompanied by sub-
stantial inelastic losses, but on the time scale of
our experiments, the atom loss at our highest
density was <10%.
Tomeasure the density-dependentW, we scan-

ned the detuning of the RF source from the non-
interacting resonance, observedRamsey oscillations
of the spin populations, and extracted the detun-
ing for which n↑/ntot is maximal, d0 (Fig. 2A). We
exploited the fact that the atoms are essentially
stationary during the Ramsey sequence to simul-
taneously extract d0 for a wide range of densities
from the local oscillations of n↑/ntot in different
regions of the cloud. Generally

d0 ¼ −
ϕþ Dϕp

T þ 4tp=p
ð2Þ

where Dϕp is any interaction-induced phase
accumulated during the RF pulses (30). For
constant W (so ϕ = WT ) and T ≫ tp, Eq. 2 re-
duces to the intuitive d0 = –W. Formeasurements
at low density and away from unitarity, this is
an excellent approximation. For more accurate
studies at high densities or close to unitarity,
we performed differential measurements, in
which we extracted d0 for various evolution times

Fletcher et al., Science 355, 377–380 (2017) 27 January 2017 2 of 4

Fig. 3. Two-body contact. (A) Initial
slope a of WðnÞ, normalized to a0 =
8pℏl=m. The solid red line shows the
theoretical prediction (34), and the
dashed orange line shows its weakly
interacting limit, a/a0 = a/l. The
dashed black vertical line shows the
Feshbach resonance position. Inset,
measurements close to the resonance.
(B) C2 extracted from a. The red line
is the theoretical prediction of (35).
The thickness of the red lines reflects
the uncertainty inB0. In both plots, the
error bars are smaller than the
point size.

Fig. 2. Density-dependent phase winding. (A) Ramsey oscillations of the
spin-↑ density as a function of the RFdetuning d.Oscillations at different positions
in the trap reveal the density dependence ofϕ. Strong interactions both shift the
center of the Ramsey fringes, d0, and reduce their contrast. (B) For weak inter-
actions (top and bottom), W varies linearly with density, but close to unitarity
(middle), it shows nonlinear behavior that reveals the influence of three-body
physics. At all scattering lengths, the data are fitted well by a second-order poly-
nomial (solid blue lines); the red dashed lines show the linear parts of the fits.W
was obtained from themeasured d0 by settingW = –d0, and the error bars show
standard errors in the fitted center of the corresponding Ramsey fringes.
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(a)

(b)

FIG. 7. (Color online) Momentum distribution of spin-up parti-
cles in a population-balanced two-component Fermi gas as a function
of dimensionless momentum ζ = qλT including terms up to third
order in the fugacity z. The scattering lengths are λT /a = −1 (green),
λT /a = 0 (red), and λT /a = 1 (blue). Fugacities were chosen such
that z2eβE = 0.15, where E = ED for a > 0 and E = 0 otherwise.
Dot-dashed lines denote the corresponding values of the contact as
obtained from an independent calculation for the virial coefficients.

density profile. Since our calculations are performed at fixed
κ∗λT , we keep κ∗/kn fixed at its value at the trap center,
which neglects logarithmic corrections to the fugacity. The
experiment was performed using 85Rb, which has a three-body
parameter κ∗ = 38(1) µm−1 [63]. Remarkably, our results
are in good agreement with the experiment if and only if
we exclude the lowest trimer branch from our calculation

FIG. 8. (Color online) Momentum distribution of a unitary Bose
gas. κ = q/kn denotes the dimensionless momentum. The solid red
and blue lines are the result of the trap-averaged virial expansion with
fugacities z1 = 0.5 and z2 = 0.4, respectively, corresponding to the
experimental data [31] at 〈n1〉 = 5.5 × 1012 cm−3 (orange line) and
〈n2〉 = 1.6 × 1012 cm−3 (green line). The dashed red and blue lines
are the corresponding O(z2) results. All momentum distributions are
normalized to unity

∫
d3κ n(κ)/(2π )3 = 1.

and set κ ′
∗ = κ∗/22.7, indicating that on the time scales of

the experiment [31], the lowest Efimov trimer branch is not
occupied. In this case, the virial expansion agrees well with
the experimental data with z1 = 0.5 and z2 = 0.4. The small
values of the fugacity justify the use of the virial expansion.
The results are shown in Fig. 8. For comparison, we include a
fit up to second order in z as a dashed line.

V. RESULTS AND CONCLUSIONS

In summary, we have characterized the strongly interacting
Bose gas in the normal phase by computing the first three
virial coefficients, the two-body and the three-body contacts,
and the momentum distribution. The results for the momentum
distribution are in good quantitative agreement with the recent
experiment [31]. Surprisingly, the fit indicates that the lowest
Efimov trimer state is not populated in the experiment. Our
work opens the possibility for the spectroscopy of Efimov
states at unitarity.

ACKNOWLEDGMENTS

We thank C. Langmack and W. Zwerger for discussions.
This work is supported by the DFG research unit “Strong
Correlations in Multi-flavor Ultracold Quantum Gases” (M.B.)
and by LPS-MPO-CMTC, JQI-NSF-PFC, and ARO-MURI
(J.H.). The authors acknowledge the University of Maryland
supercomputing resources made available in conducting the
research reported in this paper.

APPENDIX A: STM EQUATION

The O(z3) of the virial expansion relates the density and the
momentum distribution to the vacuum three-body T3 matrix,
and we summarize some basic properties in this section.
The T3 matrix is obtained by solving the Skorniakov–Ter-
Martirosian (STM) integral equation [50], which is shown
diagrammatically in Fig. 1(a). The three-body matrix depends
on the total energy s and the total momentum P of the
incident atom-dimer state as well as the energy and momentum
(Ein,kin) and (Eout,kout) of the ingoing and outgoing atom line.
It turns out that our calculations require only the on-shell T3
matrix where the external atom energy is equal to the kinetic
energy of a free atom, i.e., Ein = εk ≡ k2/2m and Eout = εp ≡
p2/2m. Using the Feynman rules of the Lagrangian (2) in the
main text, the integral equation for the on-shell T3 matrix with
total energy s and incoming and outgoing atom momenta p
and k reads

T3(s, εp,εk,P,p,k) =
[

1
s − εp − εk − εP−p−k

+ g3

9g2
2

]

+
∫

q

[
1

s − εp − εq − εP−p−q
+ g3

9g2
2

]

×T2

(
s − εq − εP−q

2

)

×T3(s,εq,εk,P,q,k), (A1)

where we have defined
∫

k ≡
∫

d3k/(2π )3 as a shorthand for
the momentum integrals. T2 is the two-particle scattering
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FIG. 13: The Figure on the left shows the measured two-body contact of a moderately degenerate Bose gas of 39K near a Feshbach resonance
at B0 ' 402.7 G in comparison with the theoretical leading order result (88) from a virial expansion. It is adapted from Ref. [177]. On the
right, the solid red and blue lines show the trap averaged momentum distribution for fugacities z = 0.5 and z = 0.4 respectively in comparison
with the experimental results obtained obtained by Makotyn et al. [178] for a unitary gas of 85Rb. The dashed lines show the result up to O(z2),
where the oscillatory behavior due to three-body correlations is absent. The Figure is adapted from Ref. [169].

Experimentally, the two-body contact has been determined in weakly interacting BEC’s from a measurement of the tail
Γ(ω) ∼ C2/ω

3/2 of the momentum integrated RF-spectrum at high frequencies [175]. More recently, the contact of a weakly
confined two-dimensional 87Rb gas has been measured by Zou et al. [176], using the tiny shift in the frequency of the clock-
transition |1〉 → |2〉 due to the fact that the scattering lengths a11 and a22 differ slightly. An interferometric method which allows
to determine both the two- and three-body contact densities has been developed by Fletcher et al. [177]. It relies on a Ramsey
scheme in a Bose gas of 39K with two internal states | �〉, | �〉 where the � �-interaction is resonant while all other interactions are
negligible. The initial configuration with all atoms in the | �〉 state is changed to an equal weight superposition (| �〉 + | �〉)/

√
2

by a π/2 - RF pulse. Due to the � � - interactions, the relative phase of the superposition state precesses at a rate [177]

Ω =
dϕ
dt

=
~

4πmna

(
C2 + 5π2aC3

)
(90)

which depends on the two-body contact density C2 through a generalized mean-field shift ~2C2/(4πmna) → gn. In fact, this
shift appears again in Eq. (106) below in the context of Bragg scattering at large momentum. In addition, three-body interactions
give rise to a term proportional to C3, which is the only contribution that remains at the unitary point 1/a = 0. The rate is
measured by mapping the accumulated phase Ω T after time T to a population imbalance by a second π/2 - pulse. In particular,
using a Feshbach resonance at B0 ' 402.7 G where the scattering length a = a�� diverges, allows to disentangle C2 and C3. As
shown in Fig. 13, the measured two-body contact is found to be in excellent agreement with the cusp-like structure predicted
by the leading order expression (88) from the virial expansion 21, despite the fact that the gas is initially prepared near the
transition temperature nλ3

T ' 2.6 of an ideal BEC where z ' 1. Moreover, also the observed value of the three-body contact is
consistent with the corresponding results in Eq. (88). They were obtained by Barth and Hofmann [169] by a virial expansion of
the momentum and frequency dependent Green functions up to third order in the fugacity z, which allows to calculate not only
thermodynamic quantities but also the full momentum distribution in moderately degenerate Bose gases even at large scattering
lengths. Since the contributions ∼ z3 properly account for three-body correlations, the results also determine the subleading,
log-periodic oscillations of the momentum distribution discussed in Eq. (86). A corresponding experiment has been performed
by Makotyn et al. [178], using a rapid quench from the weakly interacting regime (na3)1/2 . 3 · 10−3 to the unitary point 1/a = 0
in a gas of 85Rb. Their results for the momentum distribution, which reached a stationary form after an equilibration time of
a few hundred micro-seconds, are shown in Fig. 13 as a function of the dimensionless variable κ = q/kn. At small momenta
qλT . 1, three-body losses lead to a flattening of the momentum distribution [179]. This is not seen in Fig. 13, however,
since the distribution is multiplied by q4 in order to extract the behavior at large momentum where n(q) · q4 must approach the
two-body contact density C2. Apparently, at the present stage neither the flattening off at large momentum nor the rather small
oscillatory contributions from the Efimov effect could be resolved, unfortunately.

21 The cusp arises because the second virial coefficient b2 in Eq. (88) is restricted to the contribution of continuum states only, i.e. upon crossing 1/a = 0 from
negative to positive values, one switches from the attractive to the repulsive branch of the Feshbach resonance, excluding the weakly bound state at a > 0.
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Inelastic decay rates and contact coefficients Ultracold gases are generically subject to losses which - apart from trivial
single-particle losses due to collisions with some background gas - dominantly occur via either two- or three-body collisions.
In an inhomogeneous situation, the loss coefficients Ll for l-body decay processes are conveniently defined by dNl−body/dt =

−Ll 〈nl−1〉N, factoring out the expected dependence of the loss rates on the averaged density 〈n〉. The resulting characteristic
power law decay Nl−body(t) ∼ t−1/(l−1) for l ≥ 2 allows to separate the different contributions, at least in principle. For Bosons,
l-body decay processes are possible in s-wave collisions and the associated decay rates are proportional to the probability that
l particles are close together. On a formal level, losses may be described by adding a finite imaginary part Ĥ → Ĥ − iK̂ to
the many-body Hamiltonian. As discussed by Braaten et al. [180], the requirement that the resulting equation of motion for the
reduced time-dependent density matrix ρ̂(t) is linear, trace preserving and Markovian leads to a Lindblad type equation

i~
d
dt
ρ̂ = [Ĥ, ρ̂] − i{K̂, ρ̂} + 2i

∑
l=1

γl

∫
R
φ̂l(R) ρ̂ φ̂†l (R) with K̂ =

∑
l=1

γl

∫
R
φ̂†l (R) φ̂l(R) =

∑
l=1

K̂l (91)

which has originally been used in this context by Sinatra and Castin [181]. It involves a sum of local Lindblad or quantum
jump (respectively collapse) operators φ̂l(R) which annihilate l atoms at low energy in the initial state and thus obey [φ̂l, N̂] =

l · φ̂l. The total particle loss dN/dt = −2
∑

l l 〈K̂l〉/~ following from Eq. (91) is additive in the different channels. It allows to
define individual loss rates Γl by dNl−body/dt = −Γl N which are determined by the initial (or instantaneous) expectation values
Cl =

∫
R〈φ̂

†

l (R) φ̂l(R)〉 by the simple relation Γl N = 2l γl · Cl/~. To see that the extensive, quasi-equilibrium coefficients Cl
can indeed be identified with the integrated contacts C2,3 discussed above, consider first the case of two-body losses which may
occur via a spin or dipolar relaxation mechanism. On a phenomenological level, they may be accounted for by a finite, negative
imaginary part Im a < 0 of the scattering length. The relevant collapse operator φ̂2 ≡ φ̂ associated with the annihilation of two
close atoms with center-of-mass position R is precisely the one which appears in Eq. (79). Moreover, the associated kinetic
coefficient γ2 = ~2/(8πm) · Im (1/a) may be inferred from the Tan adiabatic theorem. Indeed, the result 〈K̂2〉 = γ2 C2 must
be consistent with the imaginary contribution to Eq. (76) which appears upon adding a finite imaginary part −i Im a/|a|2 in the
inverse scattering length. As a result, the two-body decay rate

Γ2N =
~

4πm
C2 Im

(
1
a

)
−−−→
hom

Γ2 = L2 n =
~C2

4πm n
Im

(
1
a

)
(92)

is determined by the corresponding contact C2. Note that the associated loss coefficient L2 is density independent only in the
regime where C2 ∼ n2 scales with the square of the density. This is no longer valid for strongly interacting Bose gases with
(na3)1/2 & 1. The extension of the result (92) to three-body losses and their connection with the contact density C3 is similar but
more subtle. Following the discussion by Werner and Castin [160], the origin of a finite rate of three-body decay even in the zero
range interaction limit can be understood as a result of a cancellation of two effects: the deeply bound dimer states which are
populated by three-body collisions have a binding energy of order ~2/m`2

vdW. The resulting loss coefficient is expected to scale
like the product L3 ∼ Ntriplets · ~

2/m`2
vdW of this energy times the average number of triples of Bosons within a distance of order

`vdW. Now, in close analogy to the anomalous linear behavior on distance for the number of close pairs discussed in Eq. 78 above,
a finite value of the three-body contact implies that Ntriplets ' C3`

2
vdW vanishes quadratically. As a result, the three-body loss

coefficient L3 remains finite in the zero-range limit `vdW → 0. For three-body losses, the analog of a finite imaginary part of the
scattering length is played by the so-called inelasticity parameter η introduced first by Braaten et al. [182]. It allows to introduce
a finite width of three-particle states due to decay into deeply bound molecules by the formal substitution ln κ∗ → ln κ∗ + iη/s0.
The definition (56) of the three-body contact determines the associated kinetic coefficient γ3 = (2~2/m) Im [ln κ∗] which needs
to be replaced by γ3 = ~2/(ms0) sinh 2η in a more refined description [180]. The three-body decay rate is thus [160, 180]

Γ3N =
6~

ms0
C3 sinh 2η −−−→

hom
Γ3 = L3 n2 =

6~C3

ms0 n
sinh 2η . (93)

For weakly interacting BEC’s, the dependence C3 ' n3a4 mentioned above leads to a density independent three-body loss
coefficient L3 ' (~/m) sinh 2η · a4 which diverges strongly near a Feshbach resonance. In practice, this divergence is cutoff by
the thermal wavelength λT . Indeed, the corresponding result for C3(T ) in Eq. (88) shows that in the regime λT � |a|, the loss rate
Γ3(T ) ∼ (~/m) n2λ4

T ∼ n2/T 2 exhibits a power law dependence on temperature This has been verified experimentally [183, 184]
for Bosons near infinite scattering length. An important point to note is that the result L3 ∼ ~a4/m at low temperatures only
describes the dependence on a on average. In fact, as realized by Esry et.al. [185] and by Bedaque et.al. [186], the Efimov
effect gives rise to a log-periodic structure in the three-body loss rate which leads to pronounced maxima at scattering lengths
a(n)
− < 0 where the Efimov states detach from the two-particle continuum. In turn, there are minima of L3(a) at a set of positive

a(n)
∗ , where the n-th trimer state crosses the two-body bound state energy. This intricate structure can be inferred directly from

the solution of the three-body problem, which determines the zero density limit of the loss coefficient from the imaginary part
of the scattering hypervolume D introduced in the Lecture I by the relation L3(n→ 0) = −(~/m) Im D [72].
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Short distance physics in the presence of power law interactions Some of the exact results which characterize quantum many-
body systems with zero range interactions can be extended to power law interactions. A case of fundamental importance is the
one with pure Coulomb interactions which has been discussed by Hofmann et al. [187]. From the exact solution of the two-body
problem in the hydrogen atom, it is well known that only s-states have a finite probability at the origin and that the associated
wave functions locally behave like 1 − |x|/aB + . . .. In the repulsive case of two electrons, the short distance behavior for their
relative motion is ψ0(r) = 1 + |x|/(2aB), which replaces the 1/r−1/a result above in the case of zero range interactions. The pair
distribution function g(2)(r) = g(2)(0) (1 + r/aB + . . .) at short distances e.g. in the standard jellium model is again determined
by |ψ0(r)|2, which now leads to a finite value g(2)(0) at the origin. The fact that relations of this type are exact at the many-body
level has originally been proven by Kato [188] and is called the Kato theorem in the mathematical literature. For the attractive
situation with a point like nucleus of charge Ze > 0 at the origin, this leads e.g. to Kato’s cusp condition

Z = −
aB

2n(x)
dn(x)

dr

∣∣∣∣∣∣
r→0

(94)

which constrains the local upward cusp in the electron density n(x) in many-body calculations. Due to the power law tail
ψ0(q) → −4π/aB q4 in the Fourier transform of the two-body wave function, the momentum distribution in the many-body
problem asymptotically decays like n(q)→ n2g(2)(0) |ψ0(q)|2 ∼ g(2)(0)/(a2

Bq8), a relation which again holds for any state, similar
to the Tan result (85) in the case of zero range interactions [187]. An important difference to this latter case, however, is that there
is no analog of the Tan adiabatic theorem (76) because the interaction energy now depends on the pair distribution function g(2)(r)
at arbitrary distances and not just its value at contact. More generally, for interactions which exhibit a power law dependence
mV(r)/~2 → bs/rs at short distances, the associated two-body wave function ψ0(r) is finite at the origin if the exponent s lies
in the range 0 < s < 2. In the many-body problem, therefore, the pair distribution function g(2)(0) for coincident arguments
is finite. Due to the non-analytic contribution ψ0(r) = 1 + bsr2−s/[(3 − s)(2 − s)] + . . . in the two-body wave function at short
distances, a universal correction ∼ r2−s appears in g(2)(r → 0) = g(2)(0) |ψ0(r)|2. Moreover, the Fourier transform ψ0(q) ∼ bs/q5−s

exhibits a power law tail which leads to a characteristic decay n(q) ∼ g(2)(0) b2
s/q

2(5−s) in the momentum distribution. Note that
the amplitude of the leading order non-analytic correction in ψ0(r) is independent of the energy. The subscript in ψ0(r) which
indicates that we are considering the short-distance behavior of the solution at zero energy is thus superfluous. As will be
discussed below, however, it plays a crucial role in the context of the original Tan relations. In cases where the exponent s is
larger than two, the situation is fundamentally different for repulsive or attractive interactions. In the repulsive case, the two-
body wave function vanishes exponentially near the origin. This implies g(2)(0) = 0 and an exponentially decaying momentum
distribution in the many-body problem. For attractive interactions with bs < 0 in turn, the two-body wave function at short
distance

ψ0(r → 0) = A r(s−4)/4 cos

 2
s − 2

(
|bs|

rs−2

)1/2

+ B

 (95)

exhibits a power law dependence with exponent (s − 4)/4 > −1/2, modulated by an oscillation which becomes infinitely fast
as r → 0 [189]. This is a reflection of the fact that the spectrum of bound states is now no longer bounded from below. A
similar ’fall into the center’ appears for scale invariant attractive interactions mV(r)/~2 → −γ/r2 in the regime γ > 1/4 [190].
Interactions of this type arise in the three-body problem of Bosons with short range interactions. Specifically, the Efimov
effect is a consequence of a supercritical inverse square interaction in a hyperradial coordinate R = (r2

12 + r2
13 + r2

23)1/2.
The full momentum distribution of the three-body problem has been determined by Castin and Werner [191]. At large
momenta, it is of the form stated above in Eq. (86), with integrated two- and three-body contacts C2 = 53.0972 κ∗ and
C3 = κ2

∗ [166]. The latter result follows from Eq. (87) by noting that the wave number κ∗ is related to the trimer energy by
Etrimer = −~2κ2

∗/m. The log-periodic dependence of the universal function F(q) in the subleading contribution ∼ 1/q5 in Eq. (86),
which is invariant under the discrete scale transformation (q/κ∗)→ (q/κ∗) ·exp (π/s0), is thus a consequence of the Efimov effect.

An important example for power law interactions with an exponent s > 2 , now at large distances, is provided by dipolar
gases. Compared to the rotation invariant potentials discussed so far, they involve a nontrivial angular dependence. Indeed, even
for aligned dipoles, the long-range potential −2d2 P2(cos θ)/r3 depends on the angle θ between the direction of alignment and the
relative separation. As a result, the angular momentum l is not conserved. With `d = md2/~2 the dipolar length, the amplitude for
angular momentum changing collisions vanishes like ∼ (k`d)2 in the ultracold limit k`d � 1 [192]. As a result of the long range
nature of the interaction, however, the s-wave scattering amplitude diverges like `d ln (1/k`d) while the phase shifts for finite l
start at linear order δl(k) = −ãlk + O(k2) for all angular momentum channels, with effective scattering lengths ãl ' `d/l2 that
decay only slowly with increasing l [190]. Hence, unlike the case of isotropic short-range interactions with a van der Waals tail,
the interaction of three dimensional dipolar gases at low energies cannot be described in terms of a single effective parameter and
no universal description of the thermodynamics and short-distance correlation functions exists. An extension of the complete
set of Tan relations to dipolar gases turns out to be possible only in two dimensions, where the interaction Vdd(r) = d2/r3 for
dipoles aligned perpendicular to their motion is purely repulsive in addition to some unknown short-range potential. In this case,
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two-body scattering at low energies is dominated by the s-wave contribution. Moreover, at the many-body level, the interaction
decays sufficiently fast to give rise to a well defined free energy per particle in the thermodynamic limit, independent of the
boundary conditions [3]. The thermodynamic relation (119) can then be extended in the form [121]

dp(µ,T, a2, `d) = n dµ + s dT −
~2

4πm
C2 d(ln a2) −D d(ln `d) . (96)

In addition to the two-dimensional scattering length a2 of the combined short-range plus dipolar potential for which C2 is the
conjugate force, it involves a dipolar analogD of the contact associated with the dependence of the pressure on the dipolar length.

Finally, we mention an important point that distinguishes the Tan relations from the exact relations for Coulomb interactions
discussed above. The latter remain valid even in a high-density Wigner crystal or a plasma phase at arbitrary temperature [187].
By contrast, the Tan relations only apply as long as the physical interactions may be replaced by a zero-range pseudopotential
Ṽ(x)ψ(x) = g δ(x) ∂r

(
rψ(x)

)
[37]. Similar to the scaling limit in statistical physics, where the lattice constant is taken to

zero at a fixed value of the correlation length, the finite effective range re of the true interaction is set to zero and the strength
g = 4π~2 a/m of Ṽ(x) is adjusted to reproduce its experimentally determined scattering length. The Tan relations, which follow
as an exact consequence of the pseudopotential description, are thus restricted to low densities and temperatures, where the finite
effective range and the presence of interactions beyond s-wave scattering are negligible. On a formal level, the restrictions due
to the finite range arise from the deviation in the regime r . re between the solution of the Schrödinger equation with the true
interaction from the exact two-body wave function ψ̃(r) = 1 − a/r 22 at zero energy with interaction Ṽ(x), where the asymptotic
form remains valid at arbitrary small distances. In order to determine the range of densities where such deviations show up,
consider the ground state energy per particle u(n) = gn/2 [1 + . . .] of a dilute Bose gas with density n. Both the mean-field
contribution and the first two leading corrections are fully determined by the scattering length a alone. By contrast, as shown
by Tan [70] within a fully analytical calculation, the correction of order na3, which physically describes three-body forces, is
sensitive to both the range of the interaction and the three-body scattering hypervolume D defined in Eq. (30). For ultracold
atoms, which have van der Waals interactions supporting many bound states, the effective range in two-body scattering at low
energies lies between 1.4 `vdW and 2.8 `vdW in the relevant range of positive scattering lengths a > `vdW, irrespective of the
details of the interaction at short distances [193]. Moreover, as discussed in Lecture I, the van der Waals length also determines
the typical magnitude D ' `4

vdW of the three-body scattering hypervolume. As a result, the Tan relations only apply for densities
n � `−3

vdW. In practice, this limitation is not of relevance because densities where n`3
vdW becomes of order one are inaccessible

due to their short lifetime. A similar conclusion holds for the consequences of the finite range for power laws like n(q)→ C2/q4

which only hold if qre � 1. With re ' `vdW, this is again not an important limitation in practice. In particular, due to the
strong inequality `vdW � n−1/3, there is a wide range ξ−1 � q � 1/`vdW where the C2/q4-tail in the momentum distribution is
observable even in weakly interacting BEC’s like 87Rb, where a ' `vdW and the strength C2,Bog = 1/4ξ4 is determined by the
healing length ξ. By contrast, the contribution ∼ C2/r2 in the short-distance behavior of the pair distribution function, which
implies an effective bunching of atoms with separations `vdW � r < a, requires large scattering lengths a � `vdW because this
term dominates the subleading contribution in g(2)(r) of order −2C2/ar only at distances r < a/2, which must still be much
larger than the interaction range re ' `vdW.

Bragg scattering at large momentum In the following, based on work together with J. Hofmann [194], it will be shown
that the short distance expansions discussed above determine the behavior of the dynamic structure factor S (ω, q) of strongly
interacting Bose gases at large momentum transfer. The approach is analogous to the one which is used to understand deep
inelastic scattering in high energy physics. The dynamic structure factor can be determined from a measurement of the rate at
which momentum is imparted on a cloud of atoms subject to two intersecting light fields with a difference q in wave vectors and
ω in frequency by a two-photon transition via

dP
dt

= −
~q Ω2

2
Im χ(ω, q) ,

(
S (ω, q) =

1
π

[
1 − e−β~ω

]−1 Im χ(ω, q) −−−→
T→0

Im χ(ω, q) · θ(ω)/π
)

(97)

where Ω is an effective Rabi frequency and χ(ω, q) the density response function. Within the Bogoliubov approximation, the
bosonic quasiparticles with spectrum Eq exhaust the complete set of excitations. As a result, the dynamic structure factor

S Bog(ω, q) = nS Bog(q) δ(~ω − Eq) with Eq = εq/S Bog(q) =
[
εq(εq + 2∆q)

]1/2
−−−−→
qξ�1

εq + gn + . . . (98)

22 The replacement of this by the form ψ0(r) = 1/r − 1/a used above allows to apply the pseudopotential description even at infinite scattering length. Note that
in the OPE of Eq. (81), it is always possible to switch a multiplicative factor between the operators Ô`(R) and the associated Wilson coefficients W(a,b)

`
(x).
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Defining a dimensionless interaction frequency shift

α≡ mq
4πℏn

Δω; ð4Þ

the FT prediction of Eq. (3) is recast as

αFT ¼ qa
!
1 −

π
4
qa

"
; ð5Þ

which is a universal function of qa only; with the same
normalization the Bogoliubov theory gives αB ¼ qa. Note
that the normalization in Eq. (4) also allows us to correct for
the small ($10%) density variations between measure-
ments taken with different values of a and the same
nominal n. In Fig. 3(b) we show measurements of α with
three different combinations of n and q, which all fall onto
the same universal curve, in good agreement with the FT
theory.

In Fig. 3(b), for our most strongly interacting samples
qa ≈ 2.5 and

ffiffiffiffiffiffiffiffi
na3

p
≈ 0.05. In the final part of the paper we

explore even stronger interactions and observe that the FT
theory also breaks down. In Fig. 4(a) we show measure-
ments of Δω with n ≈ 0.2 × 1012 cm−3 and q ¼ 2krec, for
which we explore scattering lengths up to ≈ 8 × 103a0,
corresponding to qa ≈ 7 and

ffiffiffiffiffiffiffiffi
na3

p
≈ 0.1. Here we observe

a clear deviation from the FT prediction.
Tuning a at fixed n and q simultaneously changes qa andffiffiffiffiffiffiffiffi
na3

p
, making it nonobvious which of the two dimension-

less interaction parameters is (primarily) responsible for the
breakdown of the FT theory. In an attempt to disentangle
the two effects, we collect data with many fn; q; ag
combinations, and group them into sets with (approxi-
mately) equal

ffiffiffiffiffiffiffiffi
na3

p
, but varying qa values. In Fig. 4(b) we

plot α − αFT versus qa, with different symbols correspond-
ing to different

ffiffiffiffiffiffiffiffi
na3

p
. These measurements suggest that, at

least for our range of parameters, the breakdown of the FT
theory occurs for qa≳ 3, independently of the value
of

ffiffiffiffiffiffiffiffi
na3

p
.

(a)

(b)

FIG. 3. Breakdown of the Bogoliubov approximation and
observation of negative frequency shifts. (a) Δω as a function
of a for n ≈ 2.0 × 1012 cm−3 and q ¼ 1.1krec (blue circles), and
for n ≈ 0.8 × 1012 cm−3 and q ¼ 2krec (orange diamonds). (b) Di-
mensionless frequency shift α versus qa for three different
combinations of n and q. Solid lines in (a) and (b) show the
FT predictions from Eqs. (3) and (5), respectively, with no
adjustable parameters. The dashed lines show the corresponding
Bogoliubov predictions. Vertical error bars show statistical fitting
errors and horizontal error bars reflect the uncertainty in the
position of the Feshbach resonance.

(a)

(b)

FIG. 4. Deviation from the Feynman-Tan prediction. (a) Fre-
quency shift versus a for n ≈ 0.2 × 1012 cm−3 and q ¼ 2krec. The
solid line shows the FT prediction. (b) Deviation of the
dimensionless frequency shift α from the FT theory as a function
of qa, for various values of

ffiffiffiffiffiffiffiffi
na3

p
(see the legend). The dashed

line is the OPE prediction with C ¼ ð4πnaÞ2 and no adjustable
parameters. The dot-dashed line is the OPE prediction that also
includes the LHY correction with

ffiffiffiffiffiffiffiffi
na3

p
¼ 0.093, corresponding

to the open-circles data. Inset: comparison of the FT (solid) and
OPE (dashed) calculations with the data at low qa.
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FIG. 14: The Figure on the left shows the lineshift measured in Bragg scattering at a fixed large momentum transfer q in a gas of 39K atoms as
a function of the scattering length for two different densities. The Figure on the right shows the line shift at lower densities and over a larger
range of scattering lengths, reaching values qa ' 7. The data are compared with the theoretical prediction from a single mode approximation
(full curves) and the result (106) from the operator product expansion (dashed curve on the right). Both Figures are adapted from Ref. [200].

exhibits a sharp single peak, whose position evolves smoothly from the linear, phonon like behavior Eq → ~csq at small momenta
to single particle like behavior Eq → εq + gn in the regime of large wave vectors qξ � 1. This behavior has been observed
in early Bragg scattering experiments in weakly interacting BEC’s [195, 196]. In particular, it has been nicely verified that
for large wave vectors, the shift ∆(~ωq) → gn of the Bragg peak with respect to the bare single particle energy εq is twice as
large as the mean-field energy uMF = gn/2 per particle in the condensate [197, 198]. Within the Bogoliubov approximation, the
dynamic structure factor (98) exhibits only a single peak of zero width for arbitrary values of the momentum transfer q. The
single-mode approximation S (ω, q) ∼ Zq δ(~ω − ~ωq), where both the excitation energy ~ωSM

q = εq/S (q) and the quasiparticle
weight ZSM

q = nS (q) are fixed completely by the two lowest sum rules

m0(q) = ~

∫ ∞

−∞

dω S (ω, q) = n S (q) and m1(q) = ~2
∫ ∞

−∞

dωωS (ω, q) = n εq (99)

therefore turns out to be exact at arbitrary momenta. As will be shown below, this simple structure is not valid in general.
It is a deep result due to Feynman [23], however, that even in strongly interacting superfluids like 4He, phonon excitations
exhaust the f -sum rule in the limit of small wave vectors. The single-mode approximation is thus exact quite generally in the
long-wavelength limit q→ 0. Feynman’s arguments rely on showing that - as a result of the symmetry and positivity of the
ground state wave function 〈x1 . . .xN |ψ0〉 - the only excitations above the exact ground state as q→ 0 are of the form ρ̂†q |ψ0〉.
Such a simple description no longer holds at large momentum qξ � 1 unless the parameter qa = qξ (8πna3)1/2 remains much
smaller than one. Indeed, the failure of Bogoliubov theory in the regime qa = O(1) was observed some time ago in a Bragg
scattering experiment on 85Rb by Papp et al. [199]. The experiment measures the so-called line shift ∆ωq = ωq − εq/~ defined
by the deviation of the peak position ~ωq in the dynamic structure factor from the single-particle energy εq. The measurement
is carried out at fixed large momentum as a function of the scattering length. For small values qa � 1, the observed line shift
follows the linear dependence ∆(~ωq) = gn ∼ a on the scattering length predicted by the Bogoliubov theory. For increasing
scattering lengths, however, the shift reaches a maximum near qa ' 1 and then starts to decrease slightly [199]. A detailed
analysis of this quite unexpected phenomenon has been performed more recently by Lopes et al. [200] with a gas of 39K in a box
geometry. Changing the scattering length near a Feshbach resonance at B0 ' 402.7 G, they have measured the line shift at fixed
wave vector of the Bragg pulse for scattering lengths up to qa ' 7. As shown in Fig. 14, the line shift exhibits a non-monotonic
behavior and assumes negative values beyond a characteristic dimensionless product qā ' 1.3. The data in the left figure for
two different densities reach up to qa ' 2.5 and (na3)1/2 ' 0.05 (orange diamonds). They are in quite good agreement with
the prediction of the single mode approximation (full curves) which is called Feynman-Tan in Ref. [200]. The data in the
Figure on the right is taken at densities about a factor ten lower than those of the blue circles on the left. Due to the strongly
reduced three-body decay rate, this allows to reach scattering lengths up to qa ' 7 and a dimensionless interaction parameter
(na3)1/2 ' 0.1. Apparently, over this much wider range the single mode approximation fails and the data are consistent with the
result in Eq. (106) below derived from a systematic expansion in inverse powers of the momentum. As will be discussed below,
the considerable deviation at large values qa & 4 is likely to be caused by three-particle or higher order correlations.

The physical origin of the eventually negative line shift can be understood in qualitative terms by considering the thresholds
in energy above which processes where a given momentum q is imparted on n = 1, 2, 3 . . . particles are possible. Obviously, for
n = 1, the threshold is at the single particle energy εq to lowest order because for qξ � 1, the characteristic momenta ' 1/ξ of
Bosons in the initial state are negligible (a more refined description is provided by the impulse approximation below).
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For n = 2, however, the threshold is only half as large. Indeed, as indicated
in the Figure, for an initial momentum q = q1 + q2 which - for simplicity - is
assumed to be distributed symmetrically to two atoms at rest, the necessary
energy ~ω(2)

q (α) = εq1 + εq2 = εq/(2 cos2 α/2) depends on the angle α between
q1 and q2. It becomes arbitrarily large as α → π, is equal to εq at α = π/2 and
assumes its minimum value ~ω(2)

min = εq/2 for collinear processes with α = 0.
Thus, taking into account processes in which two atoms are involved in taking
up the momentum, gives rise to an energetic threshold a factor two below the
single particle energy εq. The likelihood for such processes is proportional to
the probability that two particles are close together, which is quantified by the
two-body contact density C2. As discussed above, the contact density increases
with the scattering length, thus making two-particle processes more likely for
larger values of qa.

This provides a simple picture for the origin of the downturn of the line shift as a function of qa and its eventual negative
values shown in Fig. 14. As will be discussed below, a quantitative description of the observed behavior requires to include also
processes in which the momentum is transferred to more than two particles. The associated threshold energies ~ω(n)

min = εq/n
form a cascade, decreasing inversely with the number n of particles involved in higher order collinear processes [201].

Line shift from an operator product expansion For a quantitative description of the relative weight of single- versus multi-
particle contributions to the dynamic density response, the operator product expansion in Eq. (80) must be extended to the
product of two density operators at points which are close both in space and also in time. The product is again expanded
as a sum of local operators Ô`(0, 0). The resulting Wilson coefficients W`(t, r, a) then also involve a dependence on the time
difference. In addition, as usual, they depend parametrically on the scattering length a. Upon Fourier transformation, the OPE
thus gives rise to an expansion

χ(ω, q) =
∑
`

m
~2q∆`−1 J`

(
Z,

1
qa

)
〈Ô`〉, (100)

of the density response function in inverse powers of the momentum, where the momentum dependence arising from the Wilson
coefficients W`(t, r, a) is factored out. The remainder is written in terms of a dimensionless scaling function J` which depends on
the dimensionless momentum and frequency variables (qa)−1 and Z = (~ω−εq)/εq. The exponents in the prefactor depend on the
scaling dimension ∆` of the operators Ô`. Its leading-order terms are formed by the operators with the lowest scaling dimension,
which are the density operator with ∆n = 3 and the two-body contact operator Ôc with dimension ∆C2 = 4 as discussed above.
Up to this order, the dynamic structure factor is of the form

S (ω, q) =
mn
~2q2 ·

1
π

Im Jn(Z) +
mC2

~2q3 ·
1
π

Im Jc(Z,
1

qa
) + . . . = n δ(~ω − εq) +

mC2

~2q3 JOPE(Z,
1

qa
) + . . . (101)

Due to Im Jn(Z) = 2π δ(Z), the leading term does not depend on the interaction strength and gives rise to a sharp single particle
peak at the energy of a free particle with momentum q. Apparently, at this level, the OPE does not account even for the mean-field
shift gn which appears within the Bogoliubov approximation. To determine this shift and also the associated finite broadening
for arbitrary values of qa, the density response function near the single-particle peak is expressed in the form

χ(ω, q) = −
Zq

~ω − εq − Π(ω, q)
+ χinc(ω, q) . (102)

Here, Π(ω, q) is a self-energy while χinc denotes an incoherent part that will be discussed in more detail below. The peak position
at ω = ωq is defined by the zeros of the denominator ~ω− εq −Re Π(ω, q) = 0. Moreover, the width Γ of the peak is determined
by the associated imaginary part Γ = −Im Π(ωq, q) at the peak position ωq. At large momentum, the many-body correction
induced by Π is subleading, and we can determine the shift ∆(~ω) = Re Π(εq, q) of the single particle peak in the on-shell
approximation. Expanding the density response to leading order in Π,

χ(ω, q) = −
Zq

~ω − εq
−

ZqΠ(εq, q)
(~ω − εq)2 + · · · , (103)

we may infer the high-momentum structure of Zq and Π by computing the contribution proportional to 1/Z2 of the universal
scaling functions J` in Eq. (100). At the leading non-trivial level associated with two-particle processes described by the contact
operator Ôc, the result is [194, 202]

Jc(Z → 0,
1
qa

) =
1
πZ2

[
i
2

+
1

qa
−

2
qa

1
1 + iqa/2

]
. (104)
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To leading order, the pole strength Zq = n is thus unchanged but there is a finite, complex self energy

Π(εq, q) =
~2C2

4πmna

[ 2
1 + iqa/2

−
iqa
2
− 1

]
. (105)

Its real and imaginary part

∆(~ωq) =
~2C2

4πmna

[ 2
1 + (qa/2)2 − 1

]
and Γq =

~2C2q
8πmn

[ 2
1 + (qa/2)2 + 1

]
. (106)

then determine the line shift and the associated finite peak width. For small momenta qa � 1, the width Γq → gn · 3qa/2
vanishes while it increases linearly with momentum Γq ∼ q in the opposite limit, a dependence that will be discussed in more
detail below. Regarding the line shift, the OPE result (106) coincides with the Bogoliubov prediction ∆(~ωq) → gn in the limit
qa � 1, where C2 → (4πna)2 may be replaced by the contact density of a weakly interacting gas. With increasing values of qa,
however, the line shift approaches a maximum close to qa ' 1, then bends downwards and changes sign at qā = 2. In the regime
qa � 1, Eq. (106) predicts a negative line shift

lim
qa�1

∆(~ωq) = −
~2C2(a)
4πmna

→ 0 (107)

independent of the momentum tranfer q which approaches zero in the unitary limit. This result is likely to be changed at higher
order in the OPE. In particular, the contribution from the three-body contact is expected to lead to a finite line shift ' ~2C3/(mn)
in the limit qa � 1, similar to the result (90) for the Ramsey precession rate.

As shown in Fig. 14, a comparison between theory and the experimental results reveals that, up to values qa ' 2 − 3, they
agree quite well with the assumption that the single-mode approximation remains valid even at large momenta. Indeed, using
the exact asymptotic dependence (75) of the static structure factor, the resulting peak position

~ωSM
q = εq/S (q) −−−−→

qξ�1
εq +

~2C2

4πmna

(
1 −

πqa
4

+ O(1/q)
)
/S (q) (108)

correctly captures the mean-field shift gn obtained within Bogoliubov theory if the contact density is replaced by its weak
coupling value. It also accounts for the observed backbending in the regime qa ' 1 through the factor 1 − πqa/4 which
arises from the slow C2/q-decay of S (q) towards one. In particular, neglecting the 1/q-corrections from both the numerator and
denominator, Eq. (108) predicts a zero crossing of the line shift at qā = 4/π which is close to the observed value. By contrast, the
result qā = 2 for the zero crossing obtained from the OPE above is appreciably larger. The apparent success of the single-mode
approximation even at large momenta has a historical precursor in Feynman’s famous explanation [23] for the roton minimum
in the excitation spectrum of 4He as a result of the peak in the static structure factor. In practice, the peak is hardly pronounced,
with a maximum value S (q0) ' 1.4 around q0σ ' 5 [6]. In a dilute quantum gas, where σ is essentially zero, such a maximum
appears in the presence of dipolar interactions, whose Fourier transform Vdd(q) is negative in a finite range of wave vectors,
see the discussion in Lecture II. In fact, however, a broad maximum in the static structure factor is present even for gases with
short-range interactions and large scattering lengths. Using the asymptotic expansion (75), it appears at q0a = 8/π with a value

S (q0) = 1 +
πa

128n
C2(a) −−−−−→

na3�1
1 +

π3

8
na3 . (109)

Within the single mode approximation (108), the presence of a maximum in the level shift shown in Fig. 14 might thus be
interpreted as a roton precursor in a dilute but strongly interacting BEC. In the following, we will show that this interpretation
fails in the regime where qa becomes appreciably larger than one. Indeed, the single mode approximation misses the fact that
the complete spectrum for large momentum is spread over an energy range which increases proportional to q2. Its failure at large
momenta is evident already from the limiting behavior ∆(~ωSM

q ) → −εq C2(a)/(8nq) ∼ −qC2(a) of the associated line shift,
which becomes increasingly negative in the limit qa � 1 instead of approaching a momentum independent value as predicted
by the OPE result (107). A proper theory of Bragg scattering at large momentum requires to combine the classic impulse
approximation due to Hohenberg and Platzman [203] to describe the behavior near the single particle peak with a systematic
OPE which properly accounts for multi-particle excitations. Taken together, this gives rise to a complex spectrum which cannot
be captured within a single mode approximation. An important point to note is that the associated characteristic frequency
~ωSM

q = εq/S (q) = m1/m0 provides an exact result for the normalized first moment of the spectrum as the ratio of the two sum
rules in Eq. (99), irrespective of how complex the spectrum may be. However, unless there is a single dominant peak, the first
moment contains litte information: neither the position nor the width of peaks in a more complex structure can be extracted.
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Impulse approximation and the parton model The expansion (101) shows that the leading term in the OPE does not capture
any details of the spectrum near the single particle peak and, in particular, it is insensitive to the specific momentum distribution
of the many-body system. As shown above, however, the corrections which are described by the contact operator allow to
determine the overall shift and broadening of the peak due to two-particle processes. Now, it turns out that in the vicinity of the
single particle peak at large momenta a more refined description is possible where a rather different universal scaling function
emerges. Indeed, as anticipated by Miller, Pines, and Nozières [204] and then shown in detail by Hohenberg and Platzman [203],
the dynamic structure factor at large wave vectors provides a direct measure of the momentum distribution. This prediction is
based on the so-called impulse approximation (IA) which assumes that, at large wave vectors q, the response is given by a Fermi
golden rule expression for exciting a single atom with small momentum k to a large momentum k + q. Neglecting interactions
between the final and initial state atoms, this yields the impulse approximation

S IA(ω, q) =

∫
k

n(k) δ(~ω + εk − εk+q), (110)

in which the dynamic structure factor is completely determined by the momentum distribution n(k) of the strongly interacting
quantum fluid. As will be indicated schematically in Eq. (116) below, this approximation is analogous to the parton model of
high-energy physics introduced by Feynman [205] and Bjorken and Paschos [206]. The IA does not take into account interactions
between the scattered state and the initial state. As a result, it carries information about the time-dependent density correlations
only through the equal-time momentum distribution. A crucial prediction of the IA is a spectrum which is perfectly symmetric
around the single particle energy and, moreover, obeys a particular form of scaling. Specifically, assuming a rotationally invariant
system with a finite condensate density, the general form n(k) = (2π)3n0δ(k) + ñ(k) of the momentum distribution gives rise to a
scaling form of the dynamic structure factor

S IA(ω, q) =
m
~2ξ̃2

1
q

JIA(Y) =
m
~2ξ̃2

1
q

[
n0ξ̃

3δ(Y) +
ξ̃2

4π2

∫ ∞

|Y |/ξ̃
dk k ñ(k)

]
. (111)

It has a singular part arising from the condensate and a smooth background associated with particles in the depletion. Formally,
this expression is of the form (100) with a scaling dimension ∆ = 2. The associated scaling variable

Y =
mξ̃
~2

~ω − εq

q
=

qξ̃
2
· Z (112)

however, differs from that in (100) by a factor qξ̃. It involves a length scale ξ̃ whose inverse is the characteristic scale over
which the momentum distribution varies. For weakly interacting Bosons, a convenient choice for ξ̃ is the standard healing length
ξ = (8πna)−1/2 which determines the associated contact density by C2 = 1/(4 ξ4). In the limit of a unitary Bose gas, in turn,
the characteristic wave number is determined by the inverse 1/ξ̃ ' n1/3 of the average interparticle spacing. Apparently, the IA
exhibits a delta peak in the spectrum at ~ω = εq only in the presence of a finite condensate density n0. This is quite different from
the prediction (101) of the OPE, where the spectrum near the single-particle energy consists of a delta function with full weight
n plus a background proportional to 1/Z2. Remarkably, it turns out, that the latter dependence is identical to what is obtained
in the limiting regime |Y | � 1 of the range Y = O(1) of validity of the IA. As a result, there is a smooth crossover from the
IA to the OPE which is reached when the associated scaling variable |Z| = 2|Y |/qξ̃ is of order 1/qξ̃, as indicated schematically
in Fig. 15. On a formal level, the fact that the IA and the OPE are smoothly connected follows by realizing that both the OPE
scaling function (104) and that of the impulse approximation exhibit a quadratic divergence ∼ 1/Z2 ' (qξ̃)2/Y2 near the single
particle peak. Indeed, in the limit |Y | � 1, the scaling function JIA(Y) in Eq. (111) depends on the behavior of the momentum
distribution at large momenta. As derived in Eq. (85), for zero range interactions n(k) → C2/k4 exhibits a universal power-law
decay determined by the contact density C2. For large values |Y | � 1, the scaling function JIA(Y) thus acquires a universal form

lim
|Y |�1

JIA(Y) =
ξ̃4C2

8π2Y2 . (113)

Combining this result with that of Eq. (104), the dynamic structure factor near the single particle peak

lim
|Z|�1

S OPE(ω, q) =
mC2

~2q3

1
2π2Z2 ≡ lim

|Y |�1
S IA(ω, q) =

m
~2ξ̃2

1
q
ξ̃4C2

8π2Y2 (114)

turns out to exactly coincide in both approaches, independent of the choice for the characteristic length ξ̃. For large momentum
qa � 1, the IA and OPE are therefore complementary scaling functions that describe separate asymptotic high-momentum
regimes. They match smoothly in the regime where |Z| = 2|Y |/(qξ̃) is of order 1/(qξ̃), which is precisely beyond the width
Γq ' ~

2C2/(mn) · q of the single particle peak as determined above in Eq. (106).
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FIG. 15: The diagram on the left shows the crossover between the regimes where the dynamic structure factor at large momentum is described
by either the operator product expansion (OPE) or the impulse approximation (IA), whose range of applicability shrinks with increasing
momentum. The OPE properly describes the spectrum away from the single-particle peak, which is strongly asymmetric. This is shown
explicitely on the right for the special case of a unitary Bose gas. The OPE and IA results are represented by the dashed green or red lines,
respectively, with a sharp threshold in the OPE at εq/2 due to collinear two-particle processs. A uniform approximation which captures the
complete spectrum including the condensate delta-peak and which is rather close to the OPE unless ~ω ≈ εq is shown in blue (from Ref.[194]).

The underlying physics behind this crossover can be understood by noting that the impulse approximation describes the
dynamic structure factor in the regime where an excitation is created by transferring the large probe wave vector q to a single
atom with wave vector k, which is drawn from an initial momentum distribution n(k) that is concentrated in a momentum range
ξ̃−1 � q. Energy conservation then implies ~ω + εk = εk+q to leading order, giving rise to a deviation ~ω − εq = O(q1)
of the excitation energy from the single-particle energy which scales linearly with the wave vector q. The scaling variable
Y ∼ (~ω − εq)/q is therefore of order one, which defines the regime where the impulse approximation applies. As discussed
above, the behavior further away from the single particle peak involves excitations in which a large momentum is transferred to
two or more particles. The associated excitation energies are then of order ~ω−εq = O(q2), corresponding to Y = O(qξ̃) and thus
Z = O(1). This regime is properly described by the OPE, which provides a systematic treatment of multi-particle excitations
through the expansion (100) in inverse powers of the momentum. Explicit results for the dynamic structure factor away from the
single-particle peak are so far restricted to the leading order associated with two-particle processes, where

S (ω, q) |Z/0 =
mC2

~2q3 JOPE(Z,
1

qa
) + . . . −−−→

Z�1

2~3/2

45π2m5/2

q4C2

ω7/2 + . . . (115)

is proportional to the two-body contact density C2. The associated scaling function JOPE can be determined in analytical form
(for the special case of a unitary gas, see Eq. (16) of Ref. [194]). As shown in Fig. 15 on the right, the resulting full spectrum
is far more complicated than what is captured by a single mode approximation, which only describes a single peak but no
incoherent background S inc(ω, q) arising from the corresponding contribution in Eq. (102). In contrast to the prediction of
the impulse approximation, the incoherent background is apparently strongly asymmetric. In particular, in the deep inelastic
limit Z � 1 far to the right of the single-particle peak, it decays with a power law ∼ ω−7/2 as derived originally by Son and
Thompson [201]. Physically, this decay arises from processes in which a given momentum q is transferred to two particles with
momenta q1 and q − q1 such that |q1| � q. As discussed above for the special symmetric case |q1| = |q − q1|, this requires an
energy transfer ~ω which is far larger than the single particle energy. To the left of the single particle peak, there is a sharp
onset at ~ω(2)

min = εq/2 which is due to collinear processes in which the initial momentum is distributed to two atoms at rest. In
the special case of a unitary gas which is shown in Fig. 15, the dynamic structure factor just above threshold exhibits a square
root divergence since the two-body scattering amplitude diverges near zero energy. For finite scattering length, this divergence
disappears and is replaced by the standard Wigner threshold law.

The presence of an appreciable weight in the spectrum at energies which are a factor two below the single particle energy
provides a simple explanation for the observation above that the formal line shift ∆(~ωSM

q ) → −qC2(a) in the single mode
approximation diverges linearly with the momentum. Indeed, if the spectrum is modelled in terms of two sharp peaks at εq and
εq/2 with respective weights Z(1)

q and Z(2)
q , the sum rule m0 = nS (q) ' n + C2/8q for the static structure factor together with the

f-sum rule m1 = nεq uniquely determine both Z(1)
q = n − C2/8q and Z(2)

q = C2/4q to leading order in the inverse momentum.
That the normalized first moment of the spectrum is below the single particle energy by an amount of order qC2 is thus a simple
consequence of the presence of spectral weight of order C2/q at energies of about εq/2 below the single particle peak. The
argument also shows that the single mode energy ~ωSM

q , which provides an upper bound to the minimum energy associated with
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an excited state of the form ρ̂†q|ψ0〉 [143], may be very far above the true onset of the spectrum. The bound is therefore useful
only the limit q→ 0, where m1(q)/m0(q)→ ~csq and the dominant peak in the dynamic structure factor approaches zero energy.

Experimentally, the nontrivial form of the spectrum shown in Fig. 15 on the right, has not been resolved and it is only the shift
of the single-particle peak and its width which is accessible so far. Moreover, even within this limited information, the regime
where the line shift bends upwards again according to Eq. (107) has apparently not been reached in the results shown in Fig. 14.
Theoretically, the line shift is expected to approach a finite value of order ' ~2C3/(mn) in the unitary Bose gas due to processes
where the large momentum is distributed to three particles. Unfortunately, a quantitative prediction in this limit requires to extend
the OPE result (106) to include three-particle and maybe even higher order processes. Since the associated threshold energies
εq/n are below the two-particle onset at εq/2, this will lead to a more negative line shift for large scattering lengths compared
with the two-particle result (106). This provides a qualitative explanation for the observation that the shifts shown in Fig. 14
on the right are more negative than the OPE result in the regime qa & 4. Higher order effects will also change the prediction
qā = 2 for the characteristic dimensionless scattering length qā where the line shift crosses zero to lower and density dependent
values, again qualitatively consistent with the observed behavior. On a formal level, the problem of accounting for processes
which involve more than two particles is similar to the one which appears in the extension of the parton model in high-energy
physics by incorporating interactions between the constituents in a systematic expansion in powers of the coupling constant αs
of the strong interactions. Indeed, as mentioned above, the impulse approximation of Hohenberg and Platzman is historically a
precursor of the parton model for the scattering of electrons on protons at energies E � mpc2, where the proton behaves as a
composite object. Specifically, introducing a distribution function f (ξ) for the constituents to carry a fraction ξ ∈ (0, 1) of the
proton’s four momentum, a process at large momentum transfer Q associated with a loss ν = E − E′ of the electron energy in
the lab frame gives rise to a cross section which involves [207]

f (ξ) δ(ν −
~2Q2

2mpξ
) =

2mpx2

~2Q2 f (ξ) δ(x − ξ) with x =
~2Q2

2mpν
∈ (0, 1) , (116)

in analogy to what appears in the impulse approximation (110) for scattering from a non-relativistic quantum fluid with an
unknown momentum distribution n(k). In high-energy physics, the expression (116) leads to a cross section which - at a fixed
value of the Bjorken scaling variable x - turns out to be independent of Q. This is analogous to the description of the dynamic
structure factor in the vicinity of the single particle peak in terms of a scaling function (111) which only depends on the variable
Y ∼ (~ω − εq)/q. As discussed above, this scaling is replaced by a different one in the regime |Y | � 1, where multi-particle
processes become relevant 23. The OPE results so far properly account for this at the two-particle level. Their extension to
include the effects of the three-body and higher order contacts remains an open problem, however.

23 Similarly, in high-energy physics, interactions between the partons lead to corrections of the form δ(1 − x/ξ) → δ(1 − x/ξ) − αsP(x/ξ)/2π + . . . in Eq. (116)
to linear order in the coupling constant αs. The associated function P(z) then leads to logarithmic violations of Bjorken scaling, see Ref. [207].
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IV. SCALE AND CONFORMAL INVARIANCE IN ULTRACOLD GASES

Hidden symmetries in the 4D hydrogen atom, in electrodynamics and the theory of elastic continua The subject of scale
and conformal invariance has been a central theme in statistical physics and QFT for quite some time, for an introduction see
e.g. the book by Cardy [208] or the Lecture notes by Nakayama [209] and by Rychkov [210]. Its relevance in the context
of ultracold atoms has been realized by Pitaevskii and Rosch [211] for Bose gases in two dimensions and independently
by Werner and Castin [212] and by Son and coworkers [107, 213] in the context of two-component Fermi gases at infinite
scattering length. As an introduction, we start with the elementary example of the hydrogen atom. In the standard case of three
dimensions, a solution of the Schrödinger equation requires to determine the eigenfunctions and eigenvalues of the operator
H̃[r−1, 3] = −∇2 − 2/(aB r), where aB is the Bohr radius. There is a continuous spectrum of scattering states at positive energies
and a discrete spectrum −Ry/n2 of bound states with Ry = ~2/(2m a2

B) as the characteristic energy scale (m is the reduced
mass). Now, something quite surprising happens in four dimensions, where Gauss’ law ∇E = ρ(x) → e4 δ(x) leads to an
inverse square attractive interaction V(x) = −e2

4/(2π
2 r2) between two opposite point charges ±e4. Introducing a dimensionless

equivalent ãB = 2π2~2/(m e2
4) of the Bohr radius, the Schrödinger operator H̃[r−2, 4] = −∇2 − 2/(ãB r2) is now scale invariant:

under a rescaling x → bx of lengths by a continuous parameter b, the operator changes just by a factor 1/b2. For every
solution ψE(x) of the stationary Schrödinger equation with energy E, there is thus a solution ψE(x/b) with energy E/b2. Since
b is continuous, this implies that the hydrogen atom in four dimensions and - more generally - the operator H̃[r−2, d] in any
dimension d does not have a discrete spectrum ! In fact, it turns out that this is not the full story: the result only holds if the
strength κ = 2/ãB is below a critical value κ < κc = (d − 2)2/4 beyond which the continuous scale symmetry is replaced by a
discrete one [214, 215]. In the case of the hydrogen atom in four dimensions, there are thus no bound states at all if ãB > 2,
i.e. when the reduced mass is below a limit m < π2~2/e2

4 = mc for a given value of the charge. In the case m > mc, an anomaly
appears and there is an infinite number of bound states (classically, this corresponds to a fall into the center). In particular, the
energy is then bounded below only if one introduces a finite lower cutoff r ≥ rp i.e. an effective proton radius. Fortunately, this
problem does not show up in three dimensions, however a Hamiltonian of the type H̃[r−2, 3] with an angular dependent strength
κ ∼ p cos θ describes the interaction between a charge and a dipole. The resulting spectrum turns out to be scale invariant
without any bound states only for sufficiently small values of the dipole moment. Specifically, for an electron interacting with a
polar molecule, the appearance of bound states requires the electric dipole moment to be larger than about two Debye [216, 217].

From the point of view in QFT, single-particle quantum mechanics corresponds to a zero-dimensional situation. In this case,
scale invariance is present if the classical action S =

∫
dt L remains unchanged under a rescaling x→ bx and t → b2t of lengths

and time. An extension of this to the larger symmetry group associated with conformal invariance, where b → b(x) acquires a
spatial dependence, is possible in field theory, where the action S =

∫
L involves an integration over spatial variables x and – in

the case of electrodynamics or genuine QFT-problems – also time. In the context of statistical physics, scale invariance appears
right at the critical point of a continuous phase transition, where the coefficient m in the quadratic contribution to the effective
potential Veff[φ] ∼ m φ2 in the order parameter φ vanishes. In analogy with high-energy physics, this is called a massless theory.

Figure 1: We see a graphical distinction between scale invariance and conformal invariance in d =

2. Our perception is approximately invariant under scale transformation but not invariant under

conformal transformation. Do you think conformal transformation keeps the “same shape”?

To look for a non-perturbative evidence, we will study the holographic argument. This is the

second aim of our lectures. Holographic principle is by far the most profound but conjectural principle

that connects non-gravitational quantum physics and the corresponding (quantum) gravity. It has a

beautiful concrete realization known as AdS/CFT correspondence, and we have culminating evidence

that it is true. Our idea is to explore the hidden side of the quantum field theories from the analysis

in gravitational backgrounds. According to the AdS/CFT correspondence, the classical gravity will

describe a certain strongly coupled limit of the dual quantum field theories, and it is expected that it

provides non-perturbative understanding of them.

As I mentioned in the black hole example, gravitational systems show their own symmetry en-

hancement mechanism. We conjecture that the consistency of the quantum gravity is encoded in the

consistency of the renormalization group flow through the holographic equivalence, and vice versa.

The c-function associated with the renormalization group flow can be viewed as “entropy” of the

gravitational system, which should be monotonically decreasing along the evolution. Along the same

6

Generically, such points exhibit not only scale but also conformal invari-
ance. The associated symmetry is an extension of the simple examples of
scale invariance discussed above, where the rescaling factor b(x) acquires
an arbitrary spatial dependence and, moreover, also local rotations R(x) are
incorporated. Schematically, this is indicated in the Figure on the left, taken
from Ref. [209]. On a formal level, conformal transformations may be defined
by the fact that they change the trivial metric tensor of an Euclidean geometry
(or Minkowski, where δµν → ηµν) to a new metric of the form gµν(x) = b2(x) δµν
by a so-called Weyl transformation. Expressing the associated change of
coordinates x µ → x µ + ε ξ µ(x) in infinitesimal form, there are four possible
types of transformations (in the special case of two dimensions, there is in
fact an infinite number of them associated with an arbitrary analytic function
ξ(z) of the complex variable z = x+iy). They may be expressed in the form [218]

δgµν(x) = ε (∂µξ ν + ∂νξ µ) = δb2(x) δµν → ξ µ(x) = a µ + b µ
ν x ν + c x µ + dν

(
δ µν x2 − 2x µx ν

)
. (117)

The first two terms describe translations by a vector a µ and rotations, which are generated by an antisymmetric tensor b µν. In
both cases, the metric does not change at all, that is δb2(x) ≡ 0. The contribution c x µ corresponds to scale transformations
with a constant rescaling factor δb2 = 2εc. The genuine conformal transformations, for which δb2(x) = −4ε d µx µ is spatially
varying, are associated with the last term, which involves d additional parameters dν. Quite generally, by Noether’s theorem,
invariance of the action S under continuous transformations generated by some vector ξ µ(x) gives rise to conservation laws
∂µJ µ = 0. The associated currents J µ may be expressed in terms of the different so-called Killing vectors ξ ν and the stress-
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energy tensor θ µν in the form J µ = ξ ν θ
µν. Each of the four contributions in Eq. (117) thus leads to separate conservation laws.

In particular, invariance under translations by a constant vector a µ implies conservation of momentum, which is equivalent to
a vanishing divergence ∂µθ µν = 0 of the stress-energy tensor. Similarly, the contribution b µ

ν x ν associated with rotations leads
to angular momentum conservation. In order to determine the conservation laws associated with invariance under conformal
transformations, it is convenient to use the fundamental definition of the stress-energy tensor θ µν of a field theory through the
change of the action S under a small change δgµν of the metric [218]

δS =
1
2

∫
x
θ µν(x) δgµν(x) + . . . −−−−−−−→

conformal

1
2

∫
x
θ µµ(x) δb2(x) = 0 → θ µµ(x) ≡ 0 . (118)

Invariance of the action under a Weyl transformation with a spatially varying rescaling factor b(x) thus requires the stress-energy
tensor to be traceless θ µµ(x) ≡ 0. The argument also shows the difference between conformal and scale invariance. In the latter
case, we only need that the action remains unchanged under a rescaling of the coordinates by a constant δb2 = 2εc. A sufficient
condition for δS = 0 in this case is that the trace θ µµ(x) = ∂µV µ of the stress-energy tensor can be written as the divergence of
a local, so-called virial current V µ(x). Two elementary examples which elucidate the difference between scale and conformal
invariance are provided by the electromagnetic field in vacuum and the theory of elastic continua. In electrodynamics, the
familiar vector potential Aµ(x) is a massless field without any fine tuning of the parameters to some critical point. The associated
action

Sem =
1
2

∫
d4x

(
E2 −B2) = −

1
4

∫
d4x

(
∂µAν − ∂νAµ)(∂µAν − ∂νAµ

)
−−→
GR
−

1
4

∫
d4x
√
−g gµνgσρ FµσFνρ (119)

is invariant under conformal transformations in 3 + 1 dimensions. Indeed, since g = det gµν is multiplied by a factor b8(x), the
combination

√
−g gµνgσρ → b4(x) b−2(x) b−2(x)

√
−g gµνgσρ remains unchanged under Weyl transformations 24. Physically, scale

invariance in electrodynamics is a consequence of the fact that photons are massless. The possibility to extend this to conformal
invariance was realized by Weyl in 1918. An important observation which will reappear in a different form in non-relativistic
many-body physics is that conformal transformations can be expressed as the combination of an inversion x µ → x µ/x2, a
translation by a vector d µ and a second inversion. Indeed, these three consecutive transformations can be written in infinitesimal
form by noting that

x µ −−→
Inv

x µ

x2 −−−−→Trans

x µ

x2 + d µ −−→
Inv

x µ
x2 + d µ(

x µ
x2 + d µ

) ( x µ
x2 + d µ

) =
x µ + d µ x2(

1 + 2 d µx µ + d µd µ x2) = x µ + dν
(
δ µν x2 − 2x µx ν

)
+ . . . . (120)

The genuine conformal transformations associated with the last term in Eq. (117) thus arise from two inversions with a small
translation in between. Concerning the conserved currents J µ = ξ ν θ

µν, the contribution ξ ν = cx ν associated with pure scale
transformations leads to the condition θ µµ(x) ≡ 0 of a traceless stress-energy tensor mentioned above. For the specific case of
electrodynamics, this conservation law expresses the relation εem + T M

ii = 0 between the energy density εem = (E2 + B2)/2
and the trace of the Maxwell stress tensor T M

i j , which appears in the law of momentum conservation ∂t Si − c2 ∂ j T M
i j = 0

(S = cE ∧ B is the Poynting vector). Note that the identity holds for arbitrary space and time dependent configurations of
the electromagnetic field. In a thermal equilibrium state, it implies the well known relation εem(T ) = 3prad(T ) between the
energy density and the radiation pressure. The presence of conformal invariance gives rise to four additional conservation laws
which are connected with the contribution proportional to the four-vector d µ in Eq. (117), where δ µν → η µν is replaced by the
Minkowski metric. Unfortunately, the subject of conformal currents in electrodynamics and the physical interpetation of their
conservation is hardly discussed in the standard literature.

A simple criterion that allows to distinguish conformally invariant theories for vector fields φµ(x) from those which are only
scale invariant is that the tensor structure in the associated two-point functions 〈φµ(x) φν(y)〉 ∼ Iµν(x − y)/(x − y)2∆ is completely
fixed by the dimensionless factor Iµν(x) = δµν − 2x̂µ x̂ν which appears in the Jacobian ∂x′µ/∂xν = Iµν(x)/x2 of the inversion
x′µ = xµ/x2 [210]. This criterion turns out to be violated in the theory of elastic continua, whose deformation field u µ(x) is again
a massless vector field. In the notation of Landau/Lifschitz Volume VII, the free energy density associated with finite strain in
an elastic continuum gives rise to an effective Lagrange density L and Euclidean action

Sel =

∫
dd xL with L =

λ

2
(uν ν)2 + µ uµν u µν =

K
2

(uν ν)2 + µ ũ µν ũ µν . (121)

24 Note that in curved spacetime, the covariant curl DµAν − DνAµ = ∂µAν − ∂νAµ is identical to the ordinary one and therefore the electromagnetic field tensor
Fµν with two lower indices does not depend on the metric [218]. Moreover, conformal invariance evidently only holds in 3 + 1-dimensions.
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Here, uµν = (∂µuν + ∂νuµ)/2 is the symmetric and dimensionless strain tensor, with ũµν its traceless part. The coefficients λ and
µ are the Lamé coefficients, where µ is the shear and K = λ + 2µ/d = 1/κT the compression modulus. Both must be positive
for thermodynamic stability, while λ may take negative values. For the issue of scale and conformal invariance, only the ratio
µ/K matters. We may thus take µ > 0 as the characteristic scale for the free energy density (note that by its very definition, any
elastic medium has a finite shear modulus) and trade the compression modulus K by the dimensionless Poisson ratio

σ = −
uxx

uzz
=

λ

(d − 1) λ + 2µ
=

d K − 2µ
d(d − 1) K + 2µ

∈ (−1,
1

d − 1
) . (122)

It determines the relative transverse contraction uxx < 0 (provided that σ > 0 !) induced by a uniform, homogeneous deformation
uzz > 0 along the z-direction (see Landau/Lifshitz VII, Section I.5). In particular, for infinite bulk compressibility κT , which
corresponds to K = 0, the Poisson ratio is σ(K = 0) = −1, while the opposite limit of an incompressible medium is described by
σ(K = ∞) = 1/(d − 1). In contrast to electrodynamics, it turns out that generically, the theory is only scale but not conformally
invariant. On a qualitative level, this may be understood by noting that in an elastic medium the sound velocities for longitudinal
and transverse modes differ because compression and shear involve two independent elastic constants. In order to see in explicit
form that scale invariance does not extend to conformal invariance here, we consider the correlation function 〈uµ(x) uν(0)〉eq in
thermal equilibrium in the classical limit. Since the action Sel ∼

∑
q u µ(q)Dµν(q)u ν(−q) is a quadratic form in momentum space,

with Dµν(q) = (λ + µ) qµqν + µ q2δµν the dynamical matrix of the elastic continuum, this correlation function follows from the
equipartition theorem. In real space, the fact that D(q) ∼ q2 leads to a two-point function in d = 3

〈uµ(q) uν(−q)〉eq = kBT (D)−1
µν (q) → 〈uµ(x) uν(0)〉eq =

kBT
µ · 4π |x|

[
3 − 4σ

4(1 − σ)
δµν +

1
4(1 − σ)

x̂µ x̂ν

]
(123)

which decays with a simple power law ∼ 1/r and thus is clearly scale invariant. However in the physically allowed range
−1 < σ < 1/2 of the Poisson ratio, the anisotropic tensor structure is apparently not consistent with the generic behavior
〈uµ(x) uµ(0)〉 ∼

(
δµν − 2x̂µ x̂ν

)
/x2∆ of a two-point function in position space for conformally invariant vector fields. Such a

form only appears for σ = 7/8 which is unphysical, however, since the stability conditions µ,K > 0 restrict the Poisson ratio
in three dimensions to σ < 1/2. A rather special situation appears in two dimensions, where the longitudinal and transverse
sound velocites coincide for a medium with infinite compressibility K = 0. In this limit, Eq. (121) gives rise to a conformal
field theory, as was noted by Riva and Cardy [219]. Indeed, this also holds in the physically more relevant limit K → ∞ of an
incompressible medium, where the longitudinal sound velocity is infinite and only a transverse sound mode remains.

Scale and conformal invariance in non-relativistic many-body physics The conformal transformations in statistical physics
and in relativistic theories like electrodynamics differ substantially from those in a non-relativistic context, where space and time
appear in an asymmetric manner. This is obvious already from the one-particle Schrödinger equation i~ ∂tψ = −(~2/2m)∇2ψ
which is invariant under homogeneous scale transformations x → bx if time is rescaled according to t → b2t. A system-
atic study of the invariance group of non-relativistic single-particle quantum mechanics and of field theories has been given
by Niederer [220] and by Hagen [221]. They have shown that for free particles the Galilei group can always be extended by two
additional generators which are associated with homogeneous scale transformations and a so-called expansion, properly defined
in Eq. (126) below. Out of the four conformal transformations of a relativistic field theory in 3 + 1 dimensions, there is thus
only a single one which remains a symmetry in the non-relativistic limit. For a discussion of scale and conformal invariance in
non-relativistic many-body physics and, in particular, its consequences for time-dependent problems, we follow an approach due
to Son and Wingate [107]. They study how a complex scalar field ψ(x) and a general metric gi j(x) with determinant g = det gi j
changes under infinitesimal transformations xi → xi + ε ξi(x) and t → t + ε ξ0(x) of the spatial coordinates xi and also of time
t (here, similar to the case of electrodynamics above, x stands for both space and time coordinates). As the example of trans-
forming to a rotating frame shows, such transformations may give rise to gauge fields which may have both spatial and temporal
components Ai and A0. In the absence of any interactions, the most general form of the action is [107]

S0 =

∫
dt

∫
dd x
√

g
[
i~ψ∗

(
∂tψ + iA0ψ

)
−
~2

2m
gi j(∂iψ

∗ − iAiψ
∗) (∂ jψ + iA jψ

)]
. (124)

Now, for an arbitrary choice of the functions ξi(x) and ξ0(x), it is always possible to find a new set of fields ψ′, g′i j, A′0, A′i such
that S 0 remains invariant. This just expresses the freedom to choose any set of coordinates and time that appear convenient
without changing the physics. The underlying symmetries follow from the requirement that the associated transformations leave
the original metric gi j = δi j unchanged and, moreover, do not introduce finite gauge fields. In analogy to the Weyl transformation
above, this condition determines a restricted set of possible transformations by

δgi j(x) = ε
(
∂iξ j + ∂ jξ i − ∂tξ

0 δi j

)
≡ 0 → ξ i(x) = a i + b i

j x j + c x i + 3i t − d0t xi and ξ0(x) = a0 + 2ct − d0 t2 . (125)
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The first four terms in ξ i(x) describe translations and rotations in space, a homogeneous scale transformation and Galilei trans-
formations, respectively. Similarly, the first two terms in ξ0(x) are associated with translations in time and the homogeneous
scale transformation, whose effect on the metric is now absorbed by a rescaling of time rather than a finite δb2 = 2εc as in
Eq. (117). The last term with a single scalar parameter d0 is the special conformal transformation, whose finite version is(

t,x
)
→

( t
1 + d0t

,
x

1 + d0t

)
. (126)

It is formally equivalent to a Galilei transformation with a spatially varying velocity field 3(x)=−d0x. Physically, x′=x/(1+d0t)
is the coordinate for a comoving observer in a fluid which expands according to a Hubble flow 3H(x) = d0x

25. The special
conformal transformation (126) is thus sometimes called an expansion. Similar to the relativistic case discussed in Eq. (120), this
transformation can be expressed as the combination of two inversions with an intermediate translation of the time coordinate.
Indeed, as observed by Niederer [220], defining a non-relativistic analog of the inversion by Σ (t,x) =

(
−1/t,x/t

)
, the sequence

(t,x) −→
Σ

(
−1/t,x/t

)
−−−−→
Trans

(
−1/t − d0,x/t

)
−−→
Σ−1

( t
1 + d0t

,
x

1 + d0t

)
(127)

gives rise to the expansion (126) with a parameter d0 which formally arises from the intermediate translation of the inverse
time. Note that in contrast to the euclidean or relativistic inversion in (120), the square Σ2(t,x) =

(
t,−x

)
corresponds to a

parity transformation rather than the identity, which is reached only with Σ4 = Id. The appearance of a time dependence
in the shift vector ξ i(x) for both Galilei transformations and the expansion implies that the corresponding symmetries are
realized with a projective representation. Indeed, as shown by Son and Wingate [107], the condition of a vanishing change
~ δAi = −∂iα + m ∂tξi = 0 in the spatial components of the gauge field fixes the phase factor ψ→ ψ exp {iα/~} required to leave
S 0 invariant. For Galilei transformations, this gives the standard transformation law with α = m 3 · x up to linear order in the
velocity while α = −(m/2) d0x

2 in the case of the expansion. For homogeneous scale transformations, the phase α vanishes and
the action is invariant under x→ bx and t → b2 t provided the fields are rescaled in their canonical form ψ→ ψ b−d/2.

For non-interacting particles, the Galilei group can thus always be extended by two further elements, namely homogeneous
scale transformations with a constant rescaling factor b and the special conformal transformation (126). Now, the crucial
question is whether these symmetries can still survive in the presence of interactions, where the Lagrange density is no longer
quadratic as in Eq. (124). As indicated by the hydrogen atom in 4D above, a straightforward example is provided by inverse
square interactions ∼ 1/|x|2 which – at the many-body level – give rise to a proper thermodynamic limit only in one dimension.
This case has been studied in considerable detail in the context of the integrable Calagero-Sutherland-Moser model or the
related Haldane-Shastry spin chain but unfortunately no physical realization of these models is known so far. By contrast, it
turns out that ultracold gases provide a number of concrete examples for scale invariant many-body systems: in one dimension,
it is the Tonks-Girardeau gas of impenetrable Bosons, which is related to non-interacting Fermions (see e.g. Ref. [49] for a
detailed discussion in the context of ultracold gases). As noted in Ref. [171], scale invariance in one dimension is also present in
two-component Fermi gases with a zero-range interaction g1δ(x) in the limits g1 → ±∞ of both infinite repulsion or attraction.
An example in two dimensions which was suggested by Pitaevskii and Rosch [211] is provided by a zero range interaction
ḡ2 δ

(2)(x) for an arbitrary value of the coupling strength ḡ2. This realization turns out to be a subtle one due to the fact that a
delta function in 2D needs to be properly regularized to give rise to a finite scattering amplitude. The regularization leads to a
so-called anomaly that will be discussed in more detail below. In three dimensions, the standard example of a scale invariant
many-body problem is the unitary two-component Fermi gas, which has no anomaly. The additional symmetry at infinite
scattering length was noted independently by Werner and Castin [212] and by Son and Wingate [107]. Finally, a number of
further scale and conformally invariant non-relativistic many-body problems might be realized with ultracold gases in mixed
dimensions, as was pointed out by Nishida and Tan [223].

In order to show that the symmetries of a non-interacting many-body system extend to the case of zero range interactions at
infinite scattering length in d = 3 or at infinite strength g1 in d = 1, it is convenient to go back to first quantization. As noted
by Nishida and Son [213] and by Castin and Werner [224], the interactions in this limit are fully accounted for by keeping the
non-interacting Hamiltonian but restricting the set of possible many-body wave functions to a subclass D(H) of those in the
standard Hilbert space which is defined by

ψ ∈ D(H) if ψ(x1 . . .xN) → const · |xi − x j|
2−d + O

(
|xi − x j|

4−d )
for |xi − x j| → 0 (d , 2) . (128)

The crucial observation is now that for such a generalized unitary system, the many-body version (128) of the Bethe-Peierls
boundary condition is scale invariant. Indeed, for an arbitrary many-body wave function ψ ∈ D(H), the rescaled function

25 In the context of ultracold gases, such flow patterns arise in the hydrodynamic expansion of a unitary Fermi gas from an isotropic trap. For a discussion of
such scaling flows see the chapters by Werner and Castin and by Schäfer and Chafin in Ref. [222].
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unitary quantum gases Bose repulsive Fermi attractive Fermi

one dimension Tonks-Girardeau gas, µ = εeff
F �� - Fermionization, µ = 4 εF TG gas of dimers, µeff = εF/4

three dimensions stable only for nλ3
T . 1 unstable repulsive branch of FBR unitary Fermi gas, µ ' 0.37 εF

ψb(x1 . . .xN) = ψ(x1/b . . . xN/b)/bdN/2 is again inD(H) for all b > 0. The preceeding argument is applicable both for Bosons
and Fermions where, in the latter case, two coordinates can of course be close only for different spin components. In particular,
for two-component Fermi gases in one dimension, the many-body version (128) of the Bethe-Peierls boundary condition gives
rise to two physically different limits depending on whether infinite interaction strength is approached from either the repulsive
or the attractive side. This differs fundamentally from the situation in 3D, where the two-body bound state energy vanishes at
infinite scattering length and – at least in equilibrium – the limits a → ±∞ lead to the same ground state. To understand the
different behavior in one dimension, we consider atoms which are tightly confined to individual ’quantum wires’ by a strong
optical lattice. A strictly 1D description is then applicable provided that only the lowest eigenstate of the quantized motion in
the transverse direction is occupied. For a harmonic confinement with radial frequency ω⊥/2π and associated oscillator length
`⊥ =

√
~/mω⊥, this requires εF � ~ω⊥ or - equivalently - n1`⊥ � 1, where n1 ≡ N/L is the density at total particle number

N = N� + N�. The low energy scattering properties in such a geometry have been discussed by Olshanii [225]. They can be
described by an effective delta function interaction g1δ(x) whose strength and scattering amplitude f (k) are given by

g1(a) = −
2~2

m a1(a)
=

2~ω⊥a
1 − Aa/`⊥

↔ f (k) =
−1

1 + ika1(a)
with a1(a) = −

`⊥
2

a
+ A `⊥ . (129)

Here, A = −ζ(1/2)/
√

2 ' 1.0326 is a numerical constant. As expected, an attractive 3D scattering length a < 0 gives rise to a
negative interaction strength g1 < 0 which is associated with a positive value of the effective 1D scattering length a1. For positive
scattering lengths a > 0, in turn, there is a confinement induced resonance (CIR) at `⊥/a = A ' 1.0326 where a1 approaches zero
while g1 jumps from −∞ to +∞, similar to a standard Feshbach resonance in 3D. For g1 > 0, the short-range potential g1δ(x)
no longer has a bound state. It is still present, however, with finite radial trapping. Indeed, as shown by Bergeman et al. [226],
the exact solution of the two-body scattering problem in a tightly confined geometry always exhibits precisely one bound state,
whatever the 3D scattering length a. Remarkably, both the binding energy ε̃b = 0.606 ~ω⊥ and g1 remain finite at a Feshbach
resonance a = ±∞, a prediction that has been verified experimentally by Moritz et al. [227]. Near the CIR at g1 = ±∞, the
exact bound-state energy ε̃b = 2~ω⊥ is much larger than the Fermi energy and the dimers in this regime are thus essentially
unbreakable Bosons. As shown by Fuchs et al. [228] and by Tokatly [229], the attractive Fermi gas in the limit a1 → 0+ defines
a scale invariant Tonks-Girardeau gas of dimers which form the strong coupling limit of the so-called Luther-Emery liquid in one
dimension. Its effective chemical potential µeff = εF/4 is a factor four smaller than that of the non-interacting two-component
Fermi gas at the same density because the formation of tightly bound pairs effectively reduces the Fermi momentum by a factor
two. The opposite behavior is found in the repulsive limit a1 → 0− of the integrable Gaudin - Yang model [230, 231] 26, where
even Fermions with opposite spin cannot be at the same point in space. The ground state thus behaves like a non-interacting
single-component gas with an effectively doubled Fermi wave vector kF = πn1 and chemical potential µ = 4εF . In fact, this
state turns out to be degenerate with a fully ferromagnetic one, as discussed in some detail in Ref. [171]. In three dimensions,
the two-body bound state at infinite scattering length lies at zero energy rather than being separated by 2~ω⊥ from the states in
the continuum in the case of the confinement induced resonance. Both limits a→ ±∞ of attraction or repulsion thus give rise to
the stable unitary Fermi gas, which is a superfluid of repulsively interacting pairs [232]. In analogy to the limit g1 → ∞ in one
dimension, one may however also consider following the repulsive branch of the Feshbach resonance and formally eliminate
the two-body bound state at negative energy −~2/ma2 of two Fermions with opposite spin, which exists for a > 0. This limit
defines a scale invariant repulsive Fermi gas in 3D. The associated many-body problem has been studied intensively following
experiments by Jo et al. [233] which indicated ferromagnetic order of the Stoner type above a critical value kFa |c ' 1.9. While
the observations turned out to be consistent with formation of pairs rather than a ferromagnetic instability [234], the theoretical
problem of determining the ratio µ/εF of the repulsive Fermi gas in the limit kFa � 1 with two-body bound states projected out
is still open. In particular, saturated ferromagnetism on the repulsive branch of the Feshbach resonance is ruled out even in the
absence of a decay to the lower branch if µ/εF < 22/3 = 1.5874 [171]. For Bosons in d = 3, the zero range interaction model with
infinite scattering length gives rise to a Hamiltonian which is unbounded below. Indeed, as discussed in Lecture I, the unitary
Bose gas exhibits N-body bound states for arbitrary N ≥ 3 and it can in practice be realized in a gaseous effective equilibrium
configuration only in the non-degenerate regime nλ3

T . 1. For a well defined ground state, however, one needs a finite range
repulsion as exemplified by superfluid 4He, which is a nearly unitary Bose liquid whose equilibrium density n̄σ3 = 0.364 at
vanishing pressure is set by the length scale σ of the repulsion at short distances.

26 The exact solution of this model has been found independently by É. Brézin and J. Zinn-Justin but has been written up only as an internal report at Saclay.
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In order to determine the non-relativistic analog of the vanishing θ µµ(x) ≡ 0 of the trace of the stress-energy tensor for scale
invariant relativistic systems derived in Eq. (118), we consider the law of momentum conservation ∂t ĝi + ∂ j Π̂i j = 0 within a
many-body formulation. For rotation invariant short range interactions with a potential V(r), a microscopic expression for the
associated stress tensor operator Π̂i j has been derived by Martin and Schwinger [235]. Its trace

Π̂ii(R) =
~2

m

[(
∇ψ̂†

)
·
(
∇ψ̂

)
−

d
4
∇2(ψ̂†ψ̂)] − 1

2

∫
x
ψ̂†(R + x/2) ψ̂†(R − x/2) r ∂rV(r) ψ̂(R − x/2) ψ̂(R + x/2) → 2 ε̂(R) (130)

turns out to coincide with the operator ε̂(R) of the local energy density up to a factor of two for the particular case of scale
invariant interactions, where r ∂rV(r) ≡ −2 V(r). It is important to note that Eq. (130) is an operator identity which is valid for
arbitrary, even time dependent situations, similar to the relation εem + T M

ii = 0 between the energy density and the trace of the
Maxwell stress tensor in electrodynamics. The fact that the energy density in (130) appears with a factor two is a consequence
of the rescaling of Ĥ with 1/b2 instead of 1/b in the relativistic case. In thermal equilibrium, 〈Π̂ii〉 = d · p is proportional to the
pressure. Scale invariance thus implies that the equation of state of a non-relativistic many-body system in d dimensions obeys
p = 2 ε/d, formally identical to that in the non-interacting case. For the example of a unitary Fermi gas in 3D, this relation,
which holds at arbitrary temperature and independent of the precise state, has been derived first by Ho [236] based on simple
dimensional analysis at infinite scattering length. More generally, it is a special case of the exact relation

p =
2
3
ε +

~2

24πma
C2 +

2~2

3m
C3 (Bosons, 3D) (131)

which generalizes the Tan pressure relation [237] for two-component Fermi gases with zero-range interactions. Evidently, for
Bosons, a finite value of the three-body contact density C3, which – according to Eq. (87) – accounts for the dependence of
the thermodynamic functions on the three-body parameter κ∗, gives rise to a violation of scale invariance even at infinite or
at vanishing scattering length. An example for the latter case is the 3D Bose fluid at a = 0 and finite three-body scattering
hypervolume D discussed in Lecture I, whose equation of state (31) leads to p = 2 ε rather than p = 2 ε/3.

The argument above for scale invariance requires interactions which are homogeneous of degree −2, like an inverse square po-
tential or a delta function ḡ2δ

(2)(x) in two dimensions. A formal proof that the operator identity 2 ε̂ = Π̂ii also holds for zero range
interactions in one or in three dimensions at fine-tuned values a1 = 0 or a = ±∞ of the respective scattering lengths is nontrivial.
In one dimension, its validity relies on the fact that the interaction contribution Π̂int(R) → ε̂int(R) = −(~2/4m) a1 Ĉ

1d
2 (R) → 0

to the stress tensor vanishes in the limit a1 → 0 because the corresponding contact density operator is finite there. The
energy density thus eventually arises only from the kinetic contribution in Eq. (130), which always enters with a factor
two. The fact that the energy density in a Tonks-Girardeau gas is of purely kinetic origin has been verified experimentally
through the observation by Kinoshita et al. [238] that the axial expansion energy saturates with increasing strength of the
transverse confinement. A different situation arises in 3D, where only the sum of the kinetic and the interaction energy is
well defined in the zero range limit. For a proof of the operator identity 2 ε̂ = Π̂ii at infinite scattering length in this case see [213].

A more detailed understanding of scale and conformal invariance in non-relativistic many-body problems and the underlying
conservation laws is provided by considering the algebra of the associated operators. In the Heisenberg representation, the
generator D̂(t) of scale transformations with a constant rescaling factor b = e−λ is defined by the transformation law [213]

exp {−iλ D̂(t)} ψ̂(t,x) exp {iλ D̂(t)} = eλ d/2 ψ̂(e2λt, eλx) and exp {−iλD̂} Ĥ exp {iλD̂} −−−−−−→
scale inv.

e2λ Ĥ (132)

of the time dependent field operator or the Hamiltonian. It gives rise to a symmetry provided the latter is reproduced up to a
factor 1/b2. Scale invariant many-body Hamiltonians are thus characterized by the commutation relation i [Ĥ, D̂] ≡ 2 Ĥ. Note
the contrast to standard symmetries like rotation invariance, where the angular momentum operator as the generator of rotations
commutes with Ĥ. Here, it is only the action S which is invariant, not the Hamiltonian itself. Nevertheless, as a continuous
symmetry, scale invariance gives rise to a local conservation law of the form ∂t ρ̂D +div ĵD = 0. The associated dilatation density
and dilatation current density operators ρ̂D and ĵD have been determined by Hagen [221]. In an infinitesimal transformation
λ → 0, the generator D̂(t) changes coordinates by x→ (1 − λ)x and time by t→ (1 − 2λ) t. The change of time implies that
D̂(t) = D̂ − 2t Ĥ/~ carries an explicit time dependence. In local form, the operator D̂(t) =

∫
ρ̂D can be expressed as the spatial

integral of a dilatation density ρ̂D = (x · ĝ − 2t ε̂)/~ which involves the momentum density operator ĝ and that of the energy
density ε̂. The expression for ρ̂D fixes the dilatation current density operator ĵD =

(
x Π̂ − 2t Ŝε

)
/~ in the conservation law

∂t ρ̂D + div ĵD = 0 up to a divergence-less contribution. Here, as noted above, the stress tensor operator Π̂ is defined by the local
form ∂t ĝi + ∂ j Π̂i j = 0 of momentum conservation while the energy current density Ŝε enters in the corresponding conservation
law ∂t ε̂ + div Ŝε = 0. It is now straightforward to see that the conservation law associated with dilatations is obeyed in addition
to these two generally valid relations if and only if the operator identity 2 ε̂ = Π̂ii for scale invariant many-body systems is valid.
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In a similar manner, the generator Ĉ(t) of the special conformal transformation (126) is defined by the transformation law

exp {−id0Ĉ(t)/~} ψ̂(t,x) exp {id0Ĉ(t)/~} =
( 1
1 + d0t

)d/2
exp

(
i

d0 mx2

2~(1 + d0t)

)
ψ̂

( t
1 + d0t

,
x

1 + d0t

)
. (133)

It can be written in the form Ĉ(t) = Ĉ − ~t D̂ + t2 Ĥ, where Ĉ = (1/2)
∫
x2 ρ̂ is the second moment of the mass density ρ̂. The

resulting commutation relations are i [D̂, Ĉ] = 2Ĉ and i [Ĥ, Ĉ] = ~2 D̂. Again, there is a local conservation law ∂t ρ̂C + div ĵC = 0
with a conformal density ρ̂C = (1/2)x2 ρ̂− tx · ĝ + t2 ε̂ and an associated current ĵC = (1/2)x2 ĝ − tx Π̂ + t2 Ŝε. The validity of
this conservation law is a direct consequence of mass, energy and momentum conservation, together with the condition 2 ε̂ = Π̂ii
for scale invariance. For complex scalar fields, non-relativistic conformal invariance therefore necessarily follows from the
combination of Galilei and scale invariance and no further condition is required [221]. The unusual situation for vector fields
like the elastic continuum discussed above which are only scale - but not conformally invariant therefore does not appear.

Before turning to the implications of scale and conformal invariance for dynamical properties in the following section, we
briefly discuss their relevance for measurements of the equation of state of ultracold gases. In particular, it turns out that
scale invariance allows to infer the complete set of thermodynamic functions from the density profile n(x) in a harmonic trap
with potential V(x). This relies on the local density approximation, where a change dV translates to a corrresponding change
dµ = −dV in the local chemical potential. The thermodynamic relation dp = n dµ therefore determines the pressure of the gas
from an integration p(µ) =

∫ µ

−∞
dµ′n(µ′) =

∫ ∞
V dV ′n(V ′) of the density profile from a given value V = µ of the external potential

to the edge of the trap, where the density vanishes. In turn, the compressibility n2κ(µ) = −dn/dV requires to differentiate n(V)
once. Now, as noted by Van Houcke et al. [239] in the context of the unitary Fermi gas in 3D, in the presence of scale invariance
the two observables pressure p and compressibility κ are sufficient to fully determine all thermodynamic functions. Indeed,
in a scale invariant system, both the normalized pressure p̃ = p/p(0) and the compressibility κ̃ = κ/κ(0) 27 only depend on a
single parameter which may either be taken as the dimensionless phase space density D = nλd

T or – in the case of Fermi gases
– the equivalent ratio θ = T/TF . In particular, this parameter may be eliminated from κ̃ and p̃, thus giving rise to a universal
function κ̃( p̃) which uniquely connects compressibility and pressure. This crucial step and the associated Eq. (134) below, which
allows a precise determination of temperature in an ultracold gas from the measured relation κ(p), is in fact a special case of a
concept discussed in §160 of the textbook ’Vorlesungen über Thermodynamik’ by Max Planck in 1897, where he shows how to
determine the absolute temperature T (τ) as a function of some experimentally accessible parameter τ from a measurement on a
system with an unknown equation of state.

On a formal level, the single parameter nature of the thermodynamic functions may be derived as a consequence of universality
associated with the quantum phase transition out of the vacuum state at µ < 0 to a finite density gas at µ > 0. This point of view
has been discussed by Nikolic and Sachdev [241] for the Fermi gas near unitarity and by Rancon and Dupuis [242] for dilute
Bose gases in two and three dimensions. Specifically, it relies on the existence of a fixed point with infinite correlation length at
vanishing chemical potential, similar to the points on the line µ = 0 , g > 0 in Fig. 7 on the left. The fixed points are associated
with only a few relevant perturbations. For Bose gases in 2D, it turns out that the only relevant one is µ itself since the flow of
the coupling constant ḡ2 can be neglected. The assumption that the interactions in 2D enter only as a fixed external parameter
is very well obeyed in the accessible regime of temperatures, as will be discussed in detail in the section on anomalies below.
In the unitary Fermi gas in 3D, the fixed point at µ = 0 and infinite scattering length has three relevant perturbations which are
µ, a finite deviation (1/a) , 0 from unitarity and a possible difference 2h = µ� − µ� of the chemical potentials of both spin-
components [241]. Both for the balanced unitary Fermi gas and for Bose gases in 2D, the thermodynamic properties are therefore
characterized by a universal functionD = fn (βµ) of the single dimensionless variable βµ. This parameter may be eliminated in
favor of a direct relation between compressibility and pressure by using the fact that the internal energy U = d pV/2 in a scale
invariant system is simply proportional to the pressure. Following Planck’s concept, the general thermodynamic relation

T
(
∂p
∂T

)
V

= p +

(
∂U
∂V

)
T
−−−−→
s−inv.

T
dp̃
dT

=
d + 2

2

(
p̃ −

1
κ̃

)
→ ln

(
T ( p̃1)
T ( p̃0)

)
=

2
d + 2

∫ p̃1

p̃0

dp̃
p̃ − 1/κ̃( p̃)

(134)

then determines the temperature T ( p̃) with respect to some reference value T (p̃0) from the measured function κ̃(p̃). In practice,
T ( p̃0) is fixed by the equation of state near the edge of the cloud, where p(T ) is known from the virial expansion. Note that
the temperature of the trapped gas is constant while p̃ increases monotonically away from the trap center. What is obtained
by inverting the relation T ( p̃) from Eq. (134) is the normalized pressure p̃ as a function of temperature in a homogeneous system.

27 For Fermions at unitarity, p(0) and κ(0) are the pressure and compressibility of the non-interacting gas. For Bose gases in 2D, a convenient choice is provided
by the characteristic scale p(0) = 1/2κ(0) = ~2n2

2/m of the zero point pressure at density n2. This leads to X−1 = p̃ and X1 = κ̃/2 in the notation of Ref. [240].



54

rubidium gas. Our experimental preparation follows along
the lines detailed in [14,17]. We start with a 3D gas of 87Rb
atoms, confined in their F ¼ mF ¼ 2 state in a magnetic
trap. To create a 2D system, we shine an off-resonant blue-
detuned laser beam on the atoms, with an intensity node in
the plane z ¼ 0. The resulting potential provides a strong
confinement perpendicular to this plane, with oscillation
frequency ωz=2π ¼ 1.9ð2Þ kHz, which decreases at most
by 5% over typical distribution radii. This corresponds to
the interaction strength ~g ¼

ffiffiffiffiffiffi
8π

p
a=lz ≈ 0.1, where a is the

3D scattering length and lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
[18]. The energy

ℏωz is comparable to the thermal energy kBT, which
ensures that most of the atoms occupy the ground state
of the potential along z (see [14] and [19]). The magnetic
trap provides a harmonic confinement in the xy plane, with
mean oscillation frequency ωr=2π ¼ 20.6ð1Þ Hz. In situ
density distributions of our clouds are measured via
absorption imaging with a probe beam perpendicular to
the atomic plane. For the analysis presented below, we used
a data set of 80 samples, with temperatures ranging from
30 nK to 150 nK and atom numbers from 25 000 to
120 000.
In Fig. 2 we show typical density distributions of 2D

atomic clouds, together with the corresponding function
n½VðrÞ%. The cloud (a) exhibits a significant thermal
fraction, contrarily to cloud (b), which is essentially in
the Thomas-Fermi regime. The latter illustrates the power
of this fit-free method since it can be incorporated as such

in our determination of the EoS. On the other hand, it
would be discarded in a conventional approach, owing to
the impossibility of assigning it a temperature.
Though both choices of variables (X−1, X1) and (X1, X2)

are, in principle, possible, the latter requires the exper-
imental evaluation of a second-order derivative, which
often suffers from a poor signal-to-noise ratio. By contrast,
the choice (X−1, X1), also adopted in [4] when writing the
EoS in terms of pressure and compressibility, appears
particularly robust [23]. For each image, we perform an
azimuthal average and compute a set of ≈70 data points
(X−1, X1), where the low (high) values of X−1 correspond to
the high (low) density regions of the image.
In a first step, we combine all sets obtained from images

acquired at various temperatures and various atom numbers
to test the scale invariance. As explained above, each
individual measurement should sit on the same universal
curve in the (X−1, X1) plane, provided the interaction
strength ~g is constant. We show in the inset of Fig. 1 the
repartition of data points in the (X−1, X1) plane, which fall
as expected around a single curve. In the main panel we
plot the corresponding average curve, which provides the
EoS of our gas [24]. In order to reexpress this EoS in terms
of the more traditional variables α and D, we now need to
apply the transformations of Eqs. (4) and (5). However,
these transformations must be adapted to account for
possible imperfections in the calibration of the detectivity
of our imaging setup. Indeed, as in most cold atom
experiments, we only measure the density up to a global

FIG. 1 (color online). Determination of the EoS with variables
X−1 and X1, along with known limits. The simple cases of the
ideal Bose gas (Boltzmann gas) are shown as a blue dashed
(dotted) line. The known limits of the EoS of the weakly
interacting 2D Bose gas are indicated by a black point for the
Thomas-Fermi limit and by a black solid line for the Hartree-
Fock mean-field theory. The red line results from the averaging
over all the separate intensity profiles, with the error bars
corresponding to the standard error introduced by the averaging
procedure. The data shown here contain ∼100 different values of
X−1. Inset: Distribution of measured values of X−1 and X1. The
gray level indicates the number of individual data points falling in
each pixel.

(a) (b)

(c)

FIG. 2 (color online). (a) and (b): Density distributions of 2D
atomic samples of 87Rb corresponding to a partially degenerate
(a) and a strongly degenerate cloud (b). (c): Corresponding
function n½VðrÞ% resulting from azimuthal averaging. The dis-
tributions are obtained with high intensity imaging.
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FIG. 16: Compressibility as function of pressure for two examples of a scale invariant quantum fluid. The Figure on the left shows the unitary
Fermi gas in 3D where the transition to the superfluid phase near p̃c ' 0.5 is accompanied by a singular behavior of the compressibility. The
data from Ku et al. [109] agree quite well with the theoretical prediction from Haussmann et al. [243] without any adjustable parameter. The
corresponding results for a Bose gas in 2D obtained by Desbuquois et al. [240] are shown on the right, where the red curve displays X1 = κ̃/2
as a function of X−1 = p̃. Here, the transition to the superfluid phase at p̃c ' 0.2 leaves no detectable signature in the equation of state.

Experimentally, scale invariance in the equation of state has been verified both for the unitary Fermigas in 3D by Ku et al. [109]
and for Bose gases in two dimensions by the groups at ENS [240] and in Chicago [244]. The measured universal function
κ̃( p̃) for the unitary Fermi gas is shown in Fig. 16. It covers the relevant range from the non-degenerate regime p̃ = 4 to
the superfluid transition at p̃c ' 0.5 and down to the limiting value p̃min = ξs set by the finite ground state pressure of the
gas. Due to the attractive interactions, this pressure is below that of a non-interacting Fermi gas with the same density n by a
universal factor ξs ' 0.37 which is called the Bertsch parameter. It may be extracted from the limit κ̃( p̃min) = 1/ξs ' 2.70 of the
dimensionless compressibility at the minimum value of the pressure, since κ̃ → 1/p̃ as T → 0. This relation is a consequence
of Eq. (134) by noting that the thermal expansion coefficient βV = (∂p/∂T )V → 2 cV (T )/d – which, for scale invariant systems,
is directly proportional to the specific heat cV (T ) per volume – must vanish. In the case of the Bose gas in 2D, scale invariance
is well obeyed in the accessible regime of temperatures, however the function κ̃( p̃) depends on the dimensionless strength
g̃2 =

√
8π a/`z ' 0.1 of the interaction. This is apparent in the limit of zero temperature, where p̃ → g̃2/2 and κ̃ → 2/g̃2

are near the theoretical values obtained from a Thomas-Fermi description of a perfect condensate, which is indicated by the
black dot in Fig. 16. The superfluid transition of the homogeneous Bose fluid in 2D is of the Berezinskii-Kosterlitz-Thouless
(BKT) type. It is characterized by a universal jump of the superfluid density from zero to a finite value ns(Tc) = 4/λ2

Tc
right at

Tc [245–247]. However, this leaves no sharp feature in the thermodynamics, consistent with the observed smooth dependence
of the compressibility on pressure in the harmonically trapped gas.

Dynamics in scale invariant ultracold gases In the following, we will discuss some of the consequences of scale and conformal
invariance for dynamical properties. The most striking among those is the fact that, in a scale invariant system, any solution
of the Schrödinger equation in free space can be transformed into one in the presence of an isotropic harmonic trap with an
arbitrary time-dependent frequency ω(t). This transformation has originally been discovered for free particles by Niederer [248]
and has been extended to the many-body problem with scale invariant interactions by Pitaevskii and Rosch [211] and by Castin
[249]. Following Ref. [250], it may be derived from the invariance of the action (124) under a transformation xi → λ(t) xi and
t → f −1(t) with ḟ (t) = 1/λ2(t) of coordinates and time with a completely general rescaling factor λ(t). In addition, a finite gauge
transformation ψ → ψ exp {iα/~} with α = (mx2/2) λ̇/λ is performed. With A0 = Ai = 0 in free space, these transformations
leave the metric gi j = δi j invariant, however they give rise to a non-vanishing time component ~A0 = mω2(t)x2/2 of the gauge
field which represents a harmonic trapping potential with frequency ω2(t) = −λ̈/λ. The full transformation of the field operator
and the resulting one for the many-body wave function ψ(X , t) in a time-dependent harmonic trap (where X = {x1 . . .xN}

denotes the complete set of coordinates) has the form

ψ′(x, t) =
1

λd/2(t)
exp

[
imλ̇(t)
2~λ(t)

x2
]
ψ
(
x/λ(t), f (t)

)
→ ψ(X , t) =

eiθ(t)

λdN/2(t)
exp

[
imλ̇(t)
2~λ(t)

X2
]
ψ(X/λ(t), 0) . (135)

Here, in the second form of the relation, it is assumed that the harmonic trap is already present in the initial state at time t = 0
with a finite frequency ωin , 0. The prime on the wave function is therefore omitted, however the relation ω2(t) = −λ̈/λ which
connects the rescaling factor λ(t) from a free-space situation to the frequency of the trapping potential is now changed to a
nonlinear equation

λ̈(t) =
ω2

in

λ3(t)
− ω2(t)λ(t) with λ(0) = 1 and λ̇(0) = 0 . (136)
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In addition, there is a phase θ(t) which arises from a shift of the time coordinate f (t) in the first equation to zero. For an initial
stationary state in the harmonic trap with energy E, its time derivative is determined by ~θ̇ = −E/λ2(t). An example where
Eq. (136) can be solved analytically is provided by a sudden change of the trap frequency from ωin at t ≤ 0 to a different constant
value ωfin for t > 0. In this case, the density distribution

n(x, t) =
1

λd(t)
n
( x

λ(t)
, t = 0

)
with λ(t) =

√
cos2 (ωfint) +

(
ωin

ωfin

)2

sin2 (ωfint) (137)

evolves from its initial form by a simple rescaling x → x/λ(t). The frequency spectrum of the factor λ(t) only contains
integer multiples ωn = n · 2ωfin of twice the trap frequency which reflects the existence of an infinite ladder of excited
states for scale invariant many-body systems in an isotropic and time-independent trap that will be derived below. As a
straightforward consequence of Eq. (137), the expectation value Epot(t) = ω2

fin 〈Ĉ〉(t) = Epot(0) · λ2(t) of the potential energy,
which is determined by the generator Ĉ of the special conformal transformation (126), oscillates purely sinusoidally with
period T/2, where T = 2π/ωfin is the natural period of the harmonic trap. Experimentally, this has been observed at ENS in
the time evolution of the transverse mean-square radius R2

x(t) + R2
y(t) of a gas in a cigar-shaped trap, which oscillates with

frequency 2ω⊥ after exciting a transverse breathing mode [251]. In a much cleaner, truly 2D setup, a related experiment
has been performed recently by Saint-Jalm et al. [252], where the dynamics of essentially arbitrary initial configurations in
an isotropic trap could be studied, e.g. the square shaped density shown in Fig. 17 below. The resulting energy Epot(t) is
nicely periodic despite the fact that the full density n(x, t) does not exhibit a simple time dependence. In the special case of
ωfin = 0, where the trapping potential is suddenly removed completely, Eq. (137) gives rise to a ballistic expansion with a
rescaling factor λ(t) = (1 + ω2

int2)1/2 and a mean-square radius 〈x2〉(t) = λ2(t) 〈x2〉(0) which grows quadratically in time. A
rich structure in the dynamics, involving parametric resonance and the stabilization of anti-trapped configurations, appear for
scale invariant systems in a harmonic trap in the presence of external periodic driving, which has been discussed by Moroz [253].

The existence of an infinite sequence of excited eigenstates of scale invariant many-body systems in an isotropic trap was
predicted by Pitaevskii and Rosch [211] for the case of Bose gases in 2D. It is based on a hidden SO(2,1) symmetry which is in
fact present both in free space and in the presence of an isotropic trap. Indeed, as first realized by Niederer [220] and by Hagen
[221], the generators D̂ and Ĉ of dilatations and the special conformal transformation (126) together with a scale invariant
Hamiltonian Ĥ form a closed SO(2,1) subalgebra of the full Schrödinger group. In an isotropic trap with a time independent
frequency ω, the symmetry gives rise to an equidistant ladder of exact eigenstates. This may be derived in a purely algebraic
manner by noting that the associated Hamiltonian can be written in the form

Ĥω = Ĥ + ω2 Ĉ with Ĉ =
1
2

∫
x

x2 ρ̂(x) . (138)

Using the commutators i [Ĥ, Ĉ] = ~2D̂ and i [D̂, Ĉ] = 2Ĉ stated above, it is straightforward to show that the operators defined by

L̂± =
Ĥ

2~ω
−
ω

2~
Ĉ ±

i
2

D̂ = L̂1 ± iL̂2 and L̂3 = Ĥω/2~ω (139)

behave like the generators L̂1,2 of Lorentz boosts in two directions and of rotations L̂3 in the associated plane. Indeed, they obey

[L̂1, L̂2] = −i L̂3 , [L̂2, L̂3] = i L̂1 , [L̂3, L̂1] = i L̂2 , (140)

which is the algebra associated with the Lorentz group in 2 + 1 dimensions or, equivalently, the group SU(1,1) of complex
two-by-two matrices with unit determinant which leave the form |z1|

2 − |z2|
2 invariant. The relation [Ĥω, L̂±] = ± 2~ω L̂± allows

to generate a tower of new eigenstates with excitation energy 2n~ω from an arbitrary eigenstate |ψE〉 of Ĥω by repeating

Ĥω(L̂+ |ψE〉) = (L̂+Ĥω + 2~ωL̂+) |ψE〉 = (E + 2~ω) (L̂+ |ψE〉) (141)

n times. Similarly, the operator L̂− lowers the energy by 2~ω. Since the spectrum of the Hamiltonian is bounded below, the exact
ground state with Ĥω|0〉 = E0|0〉 obeys L̂− |0〉 = 0. Scale invariance thus implies the existence of an infinite number of excited
states above E0 at multiples of twice the trap frequency. For a more detailed understanding of the full spectrum, we consider
the representations of the group SO(2,1) or, more precisely, its universal covering group SU(1, 1) which have been discussed
by Bargmann [254]. As a non-compact Lie group, all unitary representations of the algebra (140) are infinite dimensional. The
requirement that the spectrum of L̂3 = Ĥω/2~ω is bounded below, uniquely fixes the representations. Following the notation in
Ref. [254], they are denoted by D+(k) where the possible values k > 0 are defined via the Casimir operator

Q̂ = L̂2
3 − L̂2

1 − L̂2
2 =

(
Ĥω/2~ω

)2
−

1
2

{
L̂+, L̂−

}
= k(k − 1) → Q̂ |0〉 = k0(k0 − 1) |0〉 with k0 = E0/(2~ω) . (142)
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plane [27], creating a box potential on the atoms. The cloud
fills uniformly this box potential, and it is evaporatively
cooled by adjusting the height of thewalls of the box. For all
data presented here, we keep the temperature low enough to
operate deep in the superfluid regime with T=Tc < 0.3,
where Tc is the critical temperature for the Berezinskii-
Kosterlitz-Thouless transition. At this stage, the atoms are
prepared in the F ¼ 1, mF ¼ 0 hyperfine (ground) state,
which is insensitive to magnetic field.
Once the gas reaches equilibrium in the 2D box, we

suddenly switch off the confinement in the xy plane and
simultaneously transfer the atoms to the field-sensitive state
F ¼ 1, mF ¼ −1 using two consecutive microwave tran-
sitions. Most of the experiments are performed in the
presence of a magnetic field that provides the internal state
F ¼ 1, mF ¼ −1 with an isotropic harmonic confinement
in the xy plane, with ω=2π around 19.5 Hz. We estimate the
anisotropy of the potential to be ≲2%. We let the cloud
evolve in the harmonic potential for an adjustable time
before making an in situmeasurement of the spatial density
nðrÞ ¼ NjψðrÞj2 by absorption imaging.
The measurement of nðrÞ gives access to both the

interaction energy (2) and the potential energy in the
harmonic trap

Epot ¼
N
2
mω2

Z
r2jψðrÞj2d2r: ð3Þ

Since the gas is an isolated system, we expect the total
energy Etot ¼ Ekin þ Eint þ Epot to be conserved during the
evolution, where the kinetic energy Ekin reads

Ekin ¼
Nℏ2

2m

Z
j∇ψ j2d2r: ð4Þ

The SO(2,1) symmetry for a 2D harmonically trapped
gas brings a remarkable result: Ekin þ Eint and Epot should
oscillate sinusoidally at frequency 2ω [15]. More precisely,
using the 2D Gross-Pitaevskii equation, one obtains the
relations

dEpot

dt
¼ −

dðEkin þ EintÞ
dt

¼ ωW; ð5Þ

dW
dt

¼ 2ωðEkin þ Eint − EpotÞ; ð6Þ

where we define W ¼ ωm
R
r · vnd2r and the velocity field

vðrÞ ¼ ðℏ=mÞIm½ψ&ðrÞ∇ψðrÞ'=jψðrÞj2. Initially, the gas is
prepared in a steady state in the box potential so that v ¼ 0;
hence, Wð0Þ is also null. Therefore, the potential energy
evolves as

EpotðtÞ ¼
1

2
Etot þ ΔE cosð2ωtÞ; ð7Þ

where ΔE ¼ 1
2 ½Epotð0Þ − Ekinð0Þ − Eintð0Þ' can be positive

or negative. A similar result holds for the sum Ekin þ Eint
(with ΔE replaced by −ΔE) but not for the individual
energies Ekin or Eint.
We show in Fig. 1(a) the evolution of the potential

energy per particle for an initially uniformly filled
square. Although the density distribution is not periodic
[see Fig. 1(b)], the potential energy Epot evolves periodi-
cally and is well fitted by a cosine function with a period
that matches the 2ω prediction and the expected zero initial
phase. For a better adjustment of the data, we add a (small)
negative linear function to the fitting cosine. Its role is
likely to account for the residual evaporation rate of atoms
from the trap (approximately 0.1 s−1).
This simple dynamics can be viewed as a generalization

of the existence of the undamped breathing mode at
frequency 2ω that we mention in the Introduction
[14,15]. We emphasize that this result is a consequence
of the SO(2,1) symmetry and does not hold for the Gross-
Pitaevskii equation in 1D or 3D.
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FIG. 1. Time evolution of the potential energy per particle of a 2D
gas of 87Rb atoms in an isotropic harmonic potential of frequencyω
for a square of side length 27.6ð5Þ μm with 4.1ð2Þ × 104 atoms.
(a) Evolution of the potential energy per particle. Each point is an
average of seven to ten realizations, and the error bars indicate the
standard deviation of these different realizations. The frequency of
the trap is measured with the oscillation of the center of mass:
ω=2π ¼ 19.3ð1Þ Hz.The oscillations ofEpot are fittedwith a cosine
function and an additional linear slope (continuous line). This slope
is −0.25ð4Þ Hz=ms and accounts for the loss of particles from the
trap. The fitted frequency is 38.5(1) Hz, which is compatible with
ω=π, as predicted by the SO(2,1) symmetry of the gas. (b) Density
distribution of an initially uniform gas after the evolution in a
harmonic potential at timesωt ¼ 0, π, 2π, 3π, 4π, corresponding to
the first periods of the potential energy indicated by the labels from1
to 5. The horizontal black lines represent 10 μm.
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periodic with period T=2≡ π=ω for an arbitrary initial state
ψðr; 0Þ [see Eq. (7)]. Of course, the existence of this
periodicity does not put a strong constraint on the evolution
of ψðr; tÞ itself. Because of the nonlinear character of the
Gross-Pitaevskii equation, the evolution of ψ is not
expected to be periodic, as illustrated in Fig. 1(b) for a
square initial shape. When looking experimentally or
numerically at various initial shapes like uniformly filled
squares, pentagons, or hexagons, we indeed observe that
even though EpotðjT=2Þ ¼ Epotð0Þ for integer values of j,
the shapes nðrÞ ¼ NjψðrÞj2 at those times are notably
different from the initial ones. We find two exceptions to
this statement, which are the cases of an initial equilateral
triangle and a disk. This section is devoted to the study of
these very particular states that we call “breathers”.
In the present context of a fluid described by the Gross-

Pitaevskii equation, we define a breather as a wave function
ψðr; tÞ that undergoes a periodic evolution in an isotropic
harmonic trap of frequency ω (for a generalization to
different settings, see, e.g., Refs. [22,33]). According to
this definition, the simplest example of a breather is a
steady-state ψSðrÞ of the Gross-Pitaevskii equation, e.g.,
the ground state. Other breathers are obtained by super-
posing ψS with one eigenmode of the Bogoliubov–de
Gennes equations resulting from the linearization of the
Gross-Pitaeveskii equation around ψS. In principle (with
the exception of the breathing mode [15]), the population of
this mode should be vanishingly small to avoid damping
via nonlinear mixing. Extending this scheme to the super-
position of several modes in order to generate more
complex types of breathers seems difficult. Indeed, the

eigenmode frequencies are, in general, noncommensurable
with each other; therefore, the periodicity of the motion
cannot occur as soon as several modes are simultaneously
excited [34]. Note that for a negative interaction coefficient
g̃ in 1D, a bright soliton forms a stable steady state of the
Gross-Pitaevskii equation (even for ω → 0) and thus also
matches our definition. In that particular 1D case, a richer
configuration exhibiting explicitly the required time perio-
dicity is the Kuznetsov-Ma breather, which is obtained by
superposing a bright soliton and a constant background
(see, e.g., Ref. [37] and references therein).
Here, we are interested in 2D breathers that go well

beyond a single-mode excitation, and we start our study
with the uniform triangular shape. In this case, for experi-
ments performed with a gas in the Thomas-Fermi regime,
we find that the evolution of the shape is periodic with
period T=2 within the precision of the measurement. As an
illustration, we show in Fig. 5(a) four images taken
between t ¼ 0 and T=2. The scalar product ðnð0ÞjnðtÞÞ
between the initial distribution and the one measured at
times T=2, T, 3T=2, and 2T shown in Fig. 5(b) is indeed
very close to 1. We can reproduce the same result for
various initial atom numbers.
We did not find an analytical proof of this remarkable

result, but we can confirm it numerically by simulating the
evolution of a wave function ψðr; tÞ with the Gross-
Pitaevskii equation [38]. We show in Fig. 6(a) a few
snapshots of the calculated density distribution and in
Fig. 6(b) the evolution of the modulus of the (usual) scalar
product jhψð0ÞjψðtÞij between the wave functions at times
0 and t. The calculation is performed on a square grid of

(a) (c)

(d)(b)

)
(

)
(

FIG. 5. (a) Density distributions of an initially triangular-shaped cloud at t=T ¼ 0, t=T ¼ 0.08, t=T ≈ 1=4, and t=T ≈ 1=2. The first
and last distributions are close to each other. (b) Scalar product between the initial density distribution of a triangular-shaped cloud (red
square) and the density distributions during its evolution in the harmonic trap. The first point is fixed at 1. The dashed lines indicate
where t=T is a multiple of 1=2. The shape seems to be periodic of period T=2. (c) Density distributions of an initially disk-shaped cloud
at t=T ¼ 0, t=T ≈ 2=7, t=T ≈ 1, and t=T ≈ 2. The first two and the last distributions are close to each other. (d) Scalar product between
the initial density distribution of a disk-shaped cloud (red square) and the density distributions during its evolution in the harmonic trap.
The first point is fixed at 1. The dashed lines indicate where t=T is a multiple of 2=7. The shape seems to be periodic of period 2=7. In (a)
and (c), the horizontal black lines represent 10 μm. In (b) and (d), the black arrows indicate the point corresponding to density
distributions shown in (a) and (c), respectively. The error bars represent the statistical error of the measurement.
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FIG. 17: Dynamics of two different initial configurations of a two-dimensional Bose gas in an isotropic trap with frequency ω. In the left
Figure the time evolution of a initially square shaped gas is shown. While the density distribution at times ωt = 0, π, 2π, 3π, 4π shows no
special features, the potential energy is perfectly periodic with frequency 2ω. Remarkably, the initial triangular shape shown on the right
displays perfect revivals at times t = n · T/2 for n = 1 . . . 4, where T = 2π/ω. Both Figures are taken from Ref. [252].

Quite generally, the spectrum of the operator L̂3 in the representation D+(k) is of the form k + n, with n = 0, 1, 2, . . .. For
the specific case k0 = E0/2~ω, this reproduces the equidistant ladder of breathing mode excitations with energy n · 2~ω
above the ground state |0〉. Superficially, the algebraic approach thus appears to reduce any scale invariant many-body
problem in an isotropic trap to a set of harmonic oscillators. Not surprisingly, this is an illusion for two different reasons:
first of all, the representation k0 associated with the exact ground state only accounts for a subset of all states which share
the property of vanishing angular momentum with the ground state |0〉. Indeed, in the trivial case of a single particle where
E(0)

0 (N = 1) = d ~ω/2, the complete set of eigenstates is generated by representations belonging to k(0)
l = (d/4) + l/2 with an

arbitrary value l = 0, 1, 2 . . . of the angular momentum [255] 28. As a result, there is an infinite sequence of equidistant ladders
rather than a single one. Second, the many-body nature of the operators L̂ j does not allow to directly connect the eigenfunctions
of a given representation of the SU(1,1) algebra to explicit many-body wave functions. In particular, it is only the dynamics of
the operators L̂ j which exhibit a simple periodicity.

In the following, we will discuss the symmetries which are necessary for an understanding of a quite surprising observation
in the experiments by Saint-Jalm et al. [252] mentioned above. As shown in Fig. 17 on the right, the time evolution of the full
density distribution turns out to be perfectly periodic with period T/2 for certain special initial configurations like an equilateral
triangle. The occurence of such breathers has been proposed to be analogous to spin-echoes on the familiar Bloch sphere for
SU(2) by Lv et al. [256]. Specifically, they consider the generalized coherent states for the group SU(1,1) which have been
determined by Perelemov [257]. For a given representation D+(k) with a quite general value k > 0 associated with the Casimir
operator (142), they are characterized by a complex number z within the unit disc |z| < 1. In terms of the eigenstates |k, n〉 of L̂3,
they are of the form [257]

|k, z〉 =
(
1 − |z|2

)k
∞∑

n=0

√
Γ(2k + n)

Γ(n + 1) Γ(2k)
zn |k, n〉 . (143)

The expectation values of the generators in these states are

〈k, z|L̂1|k, z〉 = k ·
2 Re z
1 − |z|2

, 〈k, z|L̂2|k, z〉 = k ·
2 Im z
1 − |z|2

and 〈k, z|L̂3|k, z〉 = k ·
1 + |z|2

1 − |z|2
. (144)

They have the important property of being single-valued for an arbitrary representation D+(k). Now, a crucial advantage of
using coherent states is that the time evolution operator Û(t = T/2) = exp (−i 2πL̂3) over half the natural period T = 2π/ω
of the oscillator acts like a rotation by 2π in the Poincaré - disc |z| < 1. As will be shown below, the expectation values
of the operators L̂ j therefore have period T/2 for an arbitrary initial state despite the fact that the associated time evolution
Û(T/2) = exp (−i 2πL̂3) → exp (−i 2πk) in a given representation D+(k) gives rise to a phase factor that distinguishes different
k’s. This may be seen by noting that the ground state energy E0(N, g̃2) of N Bosons in the harmonic trap in units of ~ω varies

28 In one dimension, only two representations with k0 = 1/4 and k = 3/4 are necessary, which account for the even and the odd-parity levels, see Ref. [255].
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continuously with the dimensionless coupling constant g̃2. The associated value k0 = E0/2~ω is therefore a real number, not
restricted to integer or half-integer values, which exhaust the complete set k(0)

l = (l + 1)/2 of representations in the trivial single-
particle limit N = 1. Indeed, it is precisely the appearance of arbitrary real values of k which distinguishes the representations
of the universal covering group SU(1, 1) from that of the Lorentz group SO(2,1), where k only assumes integer or half-integer
values [254]. In order to show that the global observables associated with the group generators exhibit period T/2, we decompose
a general many-body initial state |ψ〉(t = 0) =

∑
{k} |ψk〉 in terms of the discrete set {k} of all irreducible representations. With

ck(z) = 〈k, z |ψ〉, the standard resolution of the identity in terms of coherent states [257] shows that

|ψk〉 =
2k − 1
π

∫
|z|<1

d2z
(1 − |z|2)2 ck(z) |k, z〉 → 〈ψ(0)|L̂ j|ψ(0)〉 =

∑
{k}

2k − 1
π

∫
|z|<1

d2z
(1 − |z|2)2 |ck(z)|2 〈k, z|L̂ j|k, z〉 . (145)

Since the matrix elements in Eq. (144) are single-valued for arbitrary k, the expectation values 〈L̂ j〉 are evidently invariant under
a rotation of z by 2π, which describes the time evolution of the coherent states over a time t = T/2. Thus, the observables L̂ j or
linear combinations thereof evolve with period T/2 for arbitrary initial states despite the generically multi-valued nature of the
representations D+(k). An example that was mentioned above is the potential energy Epot(t) = ω2〈Ĉ〉(t), which is represented
by the generator Ĉ = ~ (L̂3 − L̂1)/ω of the special conformal transformations (due to energy conservation, a nontrivial time
evolution appears, of course, only in L̂1,2). For many-body observables which cannot be expressed as linear combinations of the
SO(2,1) generators, however, no simple periodicity is expected. Indeed, if the operators L̂ j in (145) are replaced by the local
density operator n̂(x) = ψ̂†(x)ψ̂(x), the matrix elements 〈k, z|n̂(x)|k, z〉 will in general not be invariant under 2π - rotations of z.
The observation shown in Fig. 17 that for the special initial condition of a triangular shape, the full density exhibits revivals at
multiples of T/2 is therefore not a consequence of the SU(1,1) algebra (140), which only constrains the time evolution of the
global observables L̂ j. A clue towards a theoretical understanding of these revivals has recently been provided by Shi et al. [258].
It is based on the equivalence of a time-dependent Gross-Pitaevskii (GP) description with a classical Vlasov equation [259]

∂t ft +
p

m
∇x ft − ∇xVeff[ ft] · ∇p ft = 0 where ft(x,p) =

∫
ddy

(2π~)d exp (ip · y/~) φ̄t(x + y/2) φt(x − y/2) (146)

for the Wigner function ft(x,p) associated with a coherent state which follows from the solution φt(x) of the time-dependent
GP equation. More precisely, as discussed e.g. by Fröhlich et al. [260], this equivalence holds in the formal limit ~ → 0, where
the difference Vmf(x + y/2) − Vmf(x − y/2) → y · ∇xVmf(x) of the mean-field contribution Vmf(x, t) = g nt(x) to the total
effective potential Veff(x, t) = V(x) + Vmf(x, t) is determined by the gradient of the local density nt(x) =

∫
p

ft(x,p) = |φt(x|2.
In this limit, any initial configuration with a positive Wigner function evolves into one where ft(x,p) remains positive for all
times t > 0, a property which is not guaranteed by GP dynamics in general. Note also that Eq. (146) describes a collisionless
situation characteristic for superfluid hydrodynamics. In contrast to a Boltzmann equation, therefore, both energy and entropy
are conserved. The equation can formally be rewritten in hydrodynamic form with a momentum density gt(x) = nt(x)〈p〉t(x)
which obeys a local conservation law ∂t g + div Π = (∂tg)trap [143]. The associated stress tensor Π is obtained from the one in
Eq. (130) above for the genuine many-body problem by simply replacing field operators ψ̂(x), ψ̂†(x) → φ(x), φ̄(x) by the GP
wave function or its complex conjugate, as expected for a coherent state. Its trace

ΠGP
ii (R) =

~2

m
∇R φ · ∇R φ̄ + d ·

gd

2
|φ(R)|4 −−−→

d=2
2 εGP(R) (147)

obeys the condition of scale invariance discussed in Eq. (130) for the special case of two dimensions, where the connection
pGP(n,T = 0) ∼ n2 between the ground state pressure and density within GP coincides with the dependence p(n,T = 0) ∼ n1+2/d

which follows from the relation p = 2ε/d for scale invariant many-body systems in general. Here, the second equality in (147)
relies on the assumption that g2 does not depend on density. This is valid in a weakly confined situation, as will be discussed in
detail in the following section. A further subtle point that should be emphasized is that – despite formal appearance – the gradient
and quartic terms in Eq. (147) do not provide a separation of the microscopic energy density into a kinetic and an interaction part.
In fact, as discussed by Lieb, Seiringer and Yngvason [261, 262] and mentioned also in connection with Eq. (152) below, such
a separation is impossible for zero range interactions. For an understanding of why an initial triangle with a flat density shows
revivals after multiples of T/2, a crucial insight by Shi et al. [258] is the observation that the gradient of the mean-field potential
Vmf(x, t) may be assumed to vanish not only at t = 0 but for all times up to t = T/4, where the triangle has turned upside down,
see Fig. 17. As a result, the solution of the Vlasov equation (146) is obtained from the initial distribution f0(x,p) upon replacing
x,p → x(t),p(t) by the single particle dynamics in the external harmonic oscillator potential. The second observation, which
singles out the triangle from other initial configurations like the square shown on the left side in Fig. 17 is that, for equilateral
triangles, the overlap between two triangles of any size which are displaced by an arbitrary vector is again an equilateral triangle.
This property allows an explicit solution of the Vlasov equation for an initial Wigner function which is proportional to the
indicator function 4L(x) of an equilateral triangle with side length L and its complement OpF (p) in momentum space, whose
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characteristic scale pF will be discussed below. Indeed, under the free time evolution x(t) = x cosωt − (p/mω) sinωt and
p(t) = p cosωt + mωx sinωt in a harmonic trap, the product 4L(x(t))OpF (p(t)) can be expressed as a product of two triangles
in momentum space which are shifted and rescaled in size. The fact that their overlap is again a triangle therefore allows to
represent the Wigner function

f0(x,p) =
4n̄
√

3p2
F

4L(x)OpF (p) → ft(x,p) =
4n̄
√

3p2
F

4L(x(t))OpF (p(t)) =
4n̄
√

3p2
F

OpF (t)(p − p̄(x, t)) (148)

in the form of a single indicator function in momentum space. Its side length pF(t) and mean position p̄(x, t) are uniquely
determined up to the maximum time t = T/4, where the solution describes an inverted triangle in position space with uniform
particle and vanishing momentum density g(x,T/4) ≡ 0. The exact revival of the initial distribution at t = T/2 may then be
inferred from the fact that the free oscillator dynamics leads to a density n(x,T/4 + δt) = n(x,T/4− δt) which is invariant under
a reversal of time at t = T/4. More precisely, as discussed by Olshanii et al. [263], connecting the two solutions at t = T/4
requires to properly deal with the singularities encountered at the sharp edges of the distribution, where the Thomas-Fermi
dynamics described by the Vlasov equation becomes invalid. Now, apparently, the arguments above are independent of the
choice made for pF and they also do not rely on the scale invariance condition (147). In fact, the strength g2 of the interactions in
this approach is determined only a posteriori by connecting it to the momentum scale pF in the form g2 = p2

F/(24m n̄) [258]. In
particular, by choosing p2

F ∼ ~
2n̄ to depend on density like the Fermi momentum of a non-interacting Fermi gas, the interaction

contribution to the trace of the GP stress tensor (147) scales like n̄2, as expected for a scale invariant GP functional in 2D. For
the validity of Eq. (148), however, an arbitrary choice for pF is possible. Moreover, in the Thomas-Fermi limit, the dynamics
of the 2D Bose gas follows by balancing the inward force due to the harmonic trap with the interaction contribution to the
divergence div Π int of the stress tensor while the kinetic contribution is irrelevant. In the solution by Shi et al. [258], div Π int

is replaced by the gradient of an effective Fermi pressure, a procedure which gives rise to a scale invariant equation of state
in any dimension. A deeper understanding of the experimental observations, which are perfectly reproduced by a numerical
solution not only at the Gross-Pitaevskii level but also for the classical N-body problem with scale invariant interactions [252],
is therefore still an open challenge. It is possible that the revivals seen in the time evolution of the density are connected with
the decomposition of special conformal transformations in terms of two inversions and a translation discussed in Eq. (127).

Broken scale invariance and anomalies in two dimensions Beyond the rather special case of one dimension, the two standard
examples for scale invariant many-body systems are the unitary Fermi gas in 3D and both Bose or two-component Fermi gases
in 2D. Apparently, the latter case appears more rich, in particular since zero range interactions V(x) = ḡ2 δ(x) in 2D seem to be
scale invariant without the necessity for any fine tuning of the interaction strength ḡ2. Moreover, in contrast to the situation in 3D,
it is not difficult to realize an isotropic harmonic trap. As discussed above, this allows to directly observe the consequences of
scale and conformal invariance in the dynamics which is formally related to the fact that the generator Ĉ of the special conformal
transformation (126) appears as the trapping part in the many-body Hamiltonian (138). A careful analysis of scale invariance in
two dimensions shows, however, that it is strictly valid only in the trivial limit of vanishing interactions. For an understanding of
this caveat and its fortunately often negligible consequences, it is convenient to consider an elementary criterion for the existence
of scale invariance i [Ĥ, D̂] = 2Ĥ in a many-body system due to Holstein [264]. The argument relies on the observation that scale
invariance survives in the presence of interactions provided that the associated phase shifts become independent of momentum
and thus do not involve any intrinsic length scale. For low energy scattering of ultracold atoms in 3D, where only s-wave
scattering survives, the standard expansion k cot δ0(k) → −1/a + rek2/2 + . . . shows that this condition is obeyed at infinite
scattering length 1/a = 0. Indeed, since the effective range correction is negligible in the ultracold limit, no intrinsic length
scale remains in the phase shift δ0(k) = π/2 − rek/2 + . . .. Similarly, in 1D, the phase shift from cot δ(k) = ka1 + . . . which
appears in the backscattering amplitude f (k) = −

(
1 + i cot δ(k)

)−1 of Eq. (129) approaches δ(k → 0) = π/2 at low energies. A
rather peculiar behavior is found in two dimensions where the scattering of an incoming plane wave exp (ik · x) gives rise to an
outgoing cylindrical wave. Asymptotically, this can be expressed in the form 29

ψk(x)→ eik·x −

√
i

8π
f (k, θ)

eikr

√
kr

where f (k, θ)→ f0(k) =
4

− cot δ0(k) + i
−−−→
k→0

4π
2 ln(1/ka2) + iπ

. (149)

At low energy, the associated dimensionless scattering amplitude f (k, θ) becomes independent of the scattering angle θ and
exhibits a logarithmic dependence on momentum, which defines the 2D scattering length a2. For any finite value a2 , 0,
the resulting s-wave phase shift δ0(k) → −π/[2 ln (1/ka2)] therefore never looses its dependence on k and scale invariance is
violated. On a formal level, this arises from the fact that a delta function in 2D does not give rise to a finite low energy scattering

29 The definition of the scattering amplitude f (k, θ) follows the convention in Refs. [49, 265]. It differs by a factor −1/
√

8π from the one used by Adhikari [266].
Note that f (k) vanishes logarithmically as k → 0 but the total scattering cross section σtot = − Im f (k, θ = 0)/k → | f0(k)|2/4k diverges in the low energy limit.
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amplitude unless its strength ḡ2 → ḡ2(Λ) is made cutoff dependent, see Eq. (151) below. Fortunately, however, the violation
of scale invariance is unobservable in the weak-confinement limit, where both the effective range ' `vdW and the 3D scattering
length a are considerably smaller than the transverse confinement length `z. The two-particle scattering problem is therefore of
a 3D nature. Its truncation to the lowest transverse eigenstate allows to express the 2D scattering length a2 in terms of its 3D
counterpart a in the form [49, 265]

a2(a) = `z

√
π

B
exp

(
−

√
π

2
`z

a

)
with B = 0.905 . . . (150)

Note that a2 is always positive, which implies that there is a two-body bound state for arbitrary values of the 3D scattering
length. Formally, the bound state arises from the pole of f0(k) at k = i/ab

2, however the associated scattering length ab
2 coincides

with a2 from Eq. (150) only for small negative 3D scattering lengths −`z/a � 1 [49]. In the generic opposite case where
0 < a � `z, the 2D scattering length is exponentially small. The exponential factor in (150) can then be separated off in
− cot δ0(k) = (2/π) ln (1/ka2) → 4/g̃2 � 1, leaving a negligible momentum dependent correction ∼ ln (1/k`z). As a result, the
s-wave scattering amplitude f0(k) → g̃2 =

√
8π a/`z is finite and real, equivalent to a constant phase shift δ0(k) → −g̃2/4 at low

energies. In the standard range 0 < a � `z of scattering lengths, the fact that the 2D delta function is homogeneous with degree
−2 therefore indeed leads to an effectively scale invariant many-body Hamiltonian. In particular, as discussed above, there is an
undamped breathing mode at 2ω and an equation of state nλ2

T = fn(βµ) |g̃2 which obeys a single parameter scaling. This simple
description breaks down when the momentum dependence of the phase shift, which drives δ0(k) = −π/[2 ln (1/ka2)] to zero
eventually, can not be neglected. Now, at a given temperature T , the characteristic momenta k ' 1/λT scale inversely with the
associated thermal length λT . The appparent scale invariance is thus violated when ln (λT /a2) can no longer be replaced by a
temperature independent constant. Using the result (150) for the 2D scattering length, this leads to ln(λT /`z) ' `z/a which, in
the weak-confinement limit `z � a, requires exponentially small temperatures that are far beyond reach.

A quantitative discussion of this problem has been given by Rancon and Dupuis [242], both in two and the rather different
case of three dimensions. Quite generally, the density equation of state of dilute gases with zero range interactions can be written
in the form nλd

T = fn(βµ, ud(T )). The associated universal scaling function fn(x, y) depends on temperature both via x = βµ and
also via y = ud(T ), which describes the effects of interactions. The associated parameter ud(T ) = ud(κ = 1/λT ) is determined
by the renormalized value of the bare dimensionless strength ud(Λ) = (2mS d/~

2) Λd−2ḡd(Λ) of the zero range interactions at a
momentum scale κ � Λ which is set by the inverse of the thermal length λT (2S 2 = 1/π and 2S 3 = 1/π2 in d = 2 or d = 3
are numerical factors). Now, as derived by Fisher and Hohenberg [267], the momentum dependence of the coupling constant
u2(κ) in two dimensions obeys the flow equation du2/dl = −u2

2/2. By integrating this between a UV cutoff Λ at l = 0 down to a
momentum scale κ = Λ e−l, one obtains an inverse logarithmic dependence

u2(κ) =
u2(Λ)

1 +
u2(Λ)

2 ln (Λ/κ)
→

2
ln (1/(κa2))

for ḡ2(Λ) = −
2π~2

m ln (Λa2)
(151)

of the coupling constant. It is independent of the short distance scale Λ ' 1/`vdW if the bare strength ḡ2(Λ) of the delta
function interaction is choosen appropriately. Consistent with the qualitative discussion above, u2(T ) → g̃2/π can be
replaced by a temperature independent constant in the weak confinement limit unless the temperature reaches values where
λT ' `z exp (`z/a). The equation of state is then effectively like the one for the scale invariant non-interacting system with
βµ as a single relevant variable, while g̃2 only appears as a fixed external parameter. To see deviations from single parameter
scaling requires exponentially small temperatures. This may be viewed as a low energy counterpart of asymptotic freedom,
where the strength αs(κ) of the strong interactions approaches zero for momenta κ much larger than the QCD scale ΛQCD
(defined by αs(ΛQCD) ' 1), following an inverse logarithmic dependence as in Eq. (151) with a2 → 1/ΛQCD [207]. An
exponentially small 2D scattering length a2 thus corresponds to a large value of the QCD scale ΛQCD. In three dimensions, the
flow equation du3/dl = −u3 − u2

3/2 has again u∗ = 0 as a fixed point but the approach is linear. Thus, u3(T ) ∼ a/λT leads to an
equation of state nλ3

T = fn(βµ, a/λT ) which has the form expected from simple dimensional analysis. It is reduced to a scale
invariant form with a single temperature dependent variable βµ only at fine tuned values a = 0 or 1/a = 0 of the scattering length.

The experimental consequences of the violation of scale invariance in 2D beyond the weak confinement limit have been
discussed first by Olshanii et al. [268] and by Hofmann [269] for Bose or two-component Fermi gases. On a formal level, the
basic operator relation i [Ĥ, D̂] = 2 Ĥ turns out to be replaced by i [Ĥ, D̂] = 2 Ĥ + ∂ Ĥ/∂ ln a2, a relation that was originally
derived within a quantum hydrodynamic approach [268]. Any dependence of the Hamiltonian on the 2D scattering length
therefore necessarily destroys scale invariance. The additional term is an example of an anomaly, where quantum fluctuations
break a symmetry of the classical Lagrangian. The concept has its origin in QFT, the most notable example being the Adler-Bell-
Jackiw anomaly which gives rise to a finite amplitude for the decay π0 → γ+γ of a neutral pion into two γ’s [207]. In the context
of AMO physics, the standard example is the Efimov effect, where the appearance of an infinite number of trimers right at the
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classical limit in a slightly anisotropic trap oscillates at this
average up to a correction on the order of less than 0.1%
[31,36]. The insensitivity of the breathing mode frequency to
small anisotropies is in agreement with calculations at zero
temperature [21].
The measured breathing mode is very weakly damped

with damping rates ΓB on the order of ΓB=ωR ≈ 0.003. The
latter coincide with the background damping rate of a
noninteracting cloud, confirming that, apart from technical
limitations, the breathing mode is undamped. The only
exception to this is the very strongly interacting region
around ln ðkFa2DÞ ¼ 0, where we observe significantly
larger, yet still small, damping rates of up to ΓB=ωB ≈
0.01. This is a first indication of a broken SO(2,1)
symmetry in the strongly interacting degenerate gas.
The measured average breathing and dipole frequencies

as a function of the magnetic offset field are shown in
Fig. 2. In the strongly interacting region around the
Feshbach resonance at B0 ¼ 832 G we find a significant
shift of the breathing mode to frequencies above twice the
dipole frequency (blue shaded area). In the weakly inter-
acting BEC and BCS limits the shift disappears and
the scale-invariant result ωB ¼ 2ωD ≡ 2ωR is restored.
The data point at B ¼ 700 G is shown grayed out due
to the significant heating rates we observe this far in the
BEC limit. Following Ref. [17], the observed frequency
shift necessarily implies that scale invariance is broken in
the strongly interacting region. As we will discuss in the
following, the only conclusive explanation for the signifi-
cant shift above 2ωR is the presence of the quantum
anomaly. All other relevant effects which explicitly break

the SO(2,1) symmetry result in a reduced breathing mode
frequency instead.
To enhance our confidence in using the dipole mode

measurement as reference, we fit a model for our trap
frequency ωRðB; σÞ to the measured dipole frequencies ωD.
By its dependence on the offset field B and the cloud width
σ, our model incorporates the magnetic field dependence
and the anharmonicity of our total confinement, respec-
tively. Two free parameters of the model are determined
from the fit.
Our model explains the measured dipole mode frequen-

cies remarkably well (orange solid line). We note that the
origin of the visible scatter of the dipole frequencies on top
of their statistical errors is just given by the fluctuations in
particle numbers of different data points. These fluctuations
translate into small frequency shifts through an anharmonic
correction term that is proportional to the cloud width σ
squared. The overall effect of the anharmonicity can be
estimated by a comparison to the same model while keeping
the cloud size σ0 fixed. We choose σ0 ¼ 65 μm such that it
matches with the measured cloud size in the BCS limit.
The black solid line shows the resulting frequencies in the
absence of anharmonic corrections. The effective trap
frequency is shifted by the anharmonicity by around 2%
in the BEC regime compared to the BCS regime (red shaded
area). In the same range interactions reduce the cloud size
from σ ¼ 65 μm to σ ¼ 44 μm in the BEC limit.
To exclude any further contributions of our trapping

potential experimentally, we have performed measurements
with two different spin mixtures. The difference in their
Feshbach resonance positions leads to different values
for ln ðkFa2DÞ at the same magnetic field B. We find no
significant effect of the mixture on the measured anomalous
shift (see Fig. 3), confirming that all magnetic field
dependencies of the potential were treated properly.
As a final test, we compare the model to measurements

in a noninteracting single spin component Fermi gas. Here,
the anomalous frequency shift is absent and only systematic
shifts from anisotropy or anharmonicity remain. Both
breathing and dipole frequencies and their dependence
on magnetic field and cloud width are very well explained
by our model without any additional deviations and we
observe no significant violation of scale invariance [31].
In Fig. 3 we show the relative frequency of the breathing

mode ωB=ωR as a function of the interaction parameter
ln ðkFa2DÞ. We observe an anomalous shift towards
higher frequencies up to a maximum of 1.3% around
ln ðkFa2DÞ ¼ 1. The maximum position coincides with
the region where we have found a many-body paired state
in the normal phase of our system in a previous measure-
ment [37] and is in agreement with zero temperature
calculations [21,22] based on a quantum Monte Carlo
simulation of the equation of state [38]. These predict an
anomalous shift of up to 10% with a maximum at
ln ðkFa2DÞ ≈ −0.5 (Fig. 3 inset).

FIG. 2. Measured average breathing and dipole frequencies
versus magnetic offset fieldB. Statistical errors are on the order of
the symbol size. The dipole frequencies were scaled by a factor of
2 to facilitate the comparison to the breathing mode. We fit a
model ωRðB; σÞ for our trap frequencies to the dipole frequency
measurements (solid orange line). The solid black line shows the
same model for a fixed cloud size.
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FIG. 18: The left Figure, taken from Ref. [270], shows the breathing mode frequency (blue dots) in a two-component Fermi gas of 6Li in 2D.
The shift with respect to twice the dipole mode frequency ωdip = ω (red dots) exhibits a maximum near the Feshbach resonance at B0 = 832 G.
The right Figure shows the RF spectrum associated with the continuum of bound-free transitions from Ref. [271]. Both the smooth onset at
the threshold ω = Ed for breaking a molecule and the asymptotic dependence 1/(ω2 ln2ω) agree well the theory prediction [272].

threshold for the existence of a two-body bound state breaks the scale invariance associated with the 1/R2 - effective interaction
of three particles in terms of the associated hyper-radius R [214, 215]. The physical meaning of the additional contribution to
the commutator i [Ĥ, D̂] is elucidated by noting that the 2D version of the Tan adiabatic theorem (76) connects its expectation
value ∂ 〈Ĥ〉/∂ ln a2 = ~2 C2/(4πm) to the integrated two-body contact. Based on the microscopic expression (130) for the trace
of the stress tensor, the violation of scale invariance in 2D may thus be formulated in terms of local operators in the form 30

Π̂ii(R) = 2 ε̂(R) +
~2

4πm
Ĉ2(R) → i [Ĥ, D̂] = 2 Ĥ +

~2

4πm
Ĉ2 . (152)

In a thermal equilibrium state, the expectation value of the trace Π̂ii of the stress tensor in 2D gives twice the pressure. As a
result, Eq. (152) immediately implies

p = ε +
~2

8πm
C2 (Bosons, 2D) (153)

which is the 2D version of the Tan pressure relation (131). Since there is no Efimov effect in 2D, the introduction of a three-body
parameter κ∗ and the associated three-body contact density C3 as in Eq. (131) is unnecessary. Scale invariance in 2D requires
C2 to vanish, which is strictly true only for non-interacting particles. For finite interactions, the breathing mode frequency
ωB = 2ω + δω is thus expected to deviate from its ideal value. The shift δω at T = 0 has been determined by Hofmann [269]
for two-component Fermi gases, where the scattering length can be changed over a wide range using Feshbach resonances. In
terms of the dimensionless interaction parameter η = ln (kFa2), one obtains a blue-shift with a maximum value δω/ω ' 0.2
near η = 0. For weak interactions, the shift vanishes like δω/ω → 1/4η2 in the Fermi gas or BCS regime η � 1 and like
δω/ω→ −1/4η in the opposite BEC limit η � −1 [269].

Experimentally, this has been tested by Vogt et al. [273], who found that the breathing mode frequency stays close to the scale
invariant value 2ω over a rather wide range of the coupling constant ln (kFa2). More recent measurements by Holten et al. [270]
which are shown in Fig. 18 have indeed observed the predicted blue-shift. As expected, the maximum appears near the Feshbach
resonance, where η ' 1. In quantitative terms, the effect turns out to be about an order of magnitude smaller than predicted from
the zero temperature calculation. A possible explanation of this discrepancy relies on an observation due to Taylor and Randeria
[274]. Using sum rules, they have shown that the breathing mode frequency stays near 2ω provided the deviation

K − 2 p = ρ

(
∂p
∂ρ

)
s
− 2 p =

~2

4πm

[
C2 +

a2

2

(
∂C2

∂a2

)
s

]
(154)

of the isentropic bulk modulus K from its value K(0) = 2p in a scale-invariant system is small. This is indeed the case because
the two contributions on the right hand side of Eq. (154) largely cancel. A quite different option to test the deviations from

30 The case of two-component Fermi gases differs by a factor two, giving rise to a prefactor ~2/(4πm) in Eq. (153), see [269]. Note that in contrast to the situation
in 1D, the local energy density operator ε̂(R) cannot be split into a kinetic and an interaction part since ḡd(Λ) depends on the cutoff Λ for dimensions d ≥ 2.
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scale invariance in 2D gases is provided by the RF spectrum in the presence of a non-vanishing final state interaction. This
has been measured again with 6Li atoms by Sommer et al. [271]. At the 3D Feshbach resonance, the binding energy of a
two-body bound state is Ed = 0.244 ~ωz [49]. For the parameters used in the experiment, this is about six times the Fermi
energy. The confined, resonant Fermi gas at these low densities is therefore essentially in the BEC limit, with a dimensionless
coupling constant ln (kFa2) ' −0.55. In the presence of final state interactions, the dissociation spectrum exhibits a smooth
onset ∼ 1/ ln2[(ω − Ed)] near the threshold ω = Ed, quite different from the jump due to the 2D density of states expected from
Wigner’s threshold law [272]. Moreover, the violation of scale invariance leads to a decay ∼ 1/(ω2 ln2ω) of the RF spectrum for
large frequencies which is faster than the 1/ω2 - tail obtained from a simple dimensional analysis. As shown in Fig. 18, both
features are consistent with the measured data. More recently, the effects of broken scale invariance have been observed in a
rather direct form in the real time dynamics of 2D Fermi gases by Murthy et al. [275]. The experiment relies on the extension of
Eq. (137) to the time-dependent momentum distribution

n(k, t) = λ2(t)
∫

d2x f
(
x, λ(t) (k + mλ̇(t)x/~), t = 0

)
(155)

which follows from the exact mapping (135) of the many-body wave function between free space and a time-dependent
harmonic trap ( f (x,k, t) is the Wigner function). By measuring n(k, t) at the inner and outer turning points of a breathing mode
cycle, where λ̇(t) = 0, deviations from the simple scaling (137) of the associated density show up at intermediate values of
ln(kFa2) with maximum deviation by a factor ' 0.8 near ln(kFa2) ' 1.3 [275].

Finally, we mention an analog of the anomalous contribution in Eq. (153) due to the breaking of scale invariance which was
effectively discovered by Fierz [276] in the context of quantum fluids with hard-sphere interactions. Similar to the many-body
version (128) of the Bethe-Peierls boundary condition for unitary gases, the effect of interactions in this case is fully accounted
for by requiring that the many-body wave function ψ(x1 . . .xN) vanishes when the distance |xi − x j| ≤ σ between any two
coordinates is below the hard-sphere diameter σ. Now, at the two-body level, the associated wave function ψ0(r)→ (|x|−σ)+ . . .
exhibits a discontinuity in its first derivative at contact r = σ. This leads to a power law decay ψ0(q) → −4πσ sin (qσ)/q3 of its
Fourier transform at large momentum, modulated with an oscillating factor sin (qσ). The consequences of this behavior for the
quantum fluid at finite density n become apparent by defining a hard-sphere analog CHS of the two-body contact density C2 for
zero-range interactions by the relation

n2g(2)(r → σ+) =
CHS

16π2

(
1 −

r
σ

)2
+ . . . = n2 g′′(σ)

2
(r − σ)2 + . . . . (156)

Using the short-distance factorization arguments in Lecture III, both the momentum distribution and the static structure factor

lim
qσ�1

n(q) = CHS

(
sin (qσ)

q3

)2

and lim
qσ�1

S (q) = 1 −
CHS

2πnσ
cos (qσ)

q4 + . . . (157)

of quantum hard-sphere fluids in 3D exhibit a power law decay with an oscillating amplitude. Its strength is determined by the
curvature g′′(σ) = 2CHS/(4πnσ)2 of the pair distribution function at contact which appears as an anomalous contribution in the
3D virial theorem

pHS =
2
3
ε +

π~2n2σ3

3m
g′′(σ) (158)

that was derived by Fierz in 1957 [276]. Note that in the case of hard spheres, the full energy density in the first term of the
virial theorem may be replaced by the kinetic energy contribution εkin = 〈Ĥ0〉/V . Indeed, the quantum hard-sphere system
has no interaction energy at all. Yet, it is of course very different from a non-interacting system. The additional contribution
proportional to g′′(σ) in Eq. (158) accounts for that. Similar to the correction involving the two-body contact in Eq. (153), it
is an effective anomaly which reflects the fact that the finite hard-sphere diameter σ breaks scale invariance. In the low-density
limit nσ3 � 1, one has CHS → (4πn)2 as a simple consequence of the leading order result g(2)(r) → (1 − r/σ)2 derived by Lee,
Huang and Yang [153]. This result is equivalent to the mean-field expression C2 → (4πna)2 for the two-body contact density
of a dilute BEC since the scattering length aHS = σ of hard spheres is just the associated diameter σ. More generally, it turns
out that the Tan result (85) for the leading power law decay of the momentum distribution is a special case of Eq. (157) which is
obtained by taking the limit σ → 0 with a fixed value of σ2 CHS → C2. An interesting issue arises in the classical limit, where
the virial theorem for hard spheres can be expressed in the form [19]

pcl
HS =

2
3
εcl

kin

[
1 +

2π
3

nσ3g(2)
cl (σ)

]
, (159)

with 2εcl
kin/3 = n kBT by the equipartition theorem. The classical hard-sphere fluid thus has a finite value of the pair distribution

function g(2)
cl (σ) right at contact which describes the interaction contribution to the pressure. In fact, it even takes its maximum

value there [19]. It is an open problem to see how the result (159) emerges as a classical limit of the Fierz relation (158).
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show that measurement of hr2i ¼ hx2 þ y2 þ z2i enables a
precision measurement of the bulk viscosity without
creating a spherical trap and tests local thermal equilibrium
during expansion.
In the experiments, we employ an optically trapped

cloud of 6Li atoms in a 50-50 mixture of the two lowest
hyperfine states, which is cooled by evaporation [13] to
temperatures in the normal fluid regime between T=TFI ¼
0.2 to 0.6, where kBTFI ¼ EF and EF is the Fermi
temperature of an ideal Fermi gas at the trap center [14].
We determine ~E≡ hr ·∇Ui0 from the trapped cloud profile
and use it as an interaction-independent initial energy scale
[14]. The cloud is released from an anisotropic trap with a
1∶2.7∶33 aspect ratio. Two independent images, Fig. 1, are
obtained using two CCD cameras and two simultaneous,
orthogonally propagating probe beam pulses, which each
interact with a different hyperfine state. In this way, the
cloud profile is measured as a function of time after release
in all three dimensions.
We relate the acceleration of the mean square cloud

radius to the conformal symmetry breaking pressure Δp
and the bulk viscosity ζB, using the hydrodynamic equation
for the velocity field v (including pressure and viscous
forces) and the continuity equation for the density n, which
are consistent with energy conservation. Without assuming
a scaling solution, we find that a single-component fluid
comprising N atoms of mass m obeys [14]

d2

dt2
mhr2i
2

¼ hr · ∇Uopti0 þ
3

N

Z
d3r ½Δp − Δp0$

−
3

N

Z
d3r ζB∇ · v; (1)

where the subscript (0) denotes the condition at t ¼ 0, just
after the optical trap is extinguished and ζB is the local bulk
viscosity. For brevity, we include only the optical trap
potential Uopt in Eq. (1), which need not be harmonic.
However, for the analysis of our precision measurements,
we also include the small potential energy arising from the
finite curvature of the bias magnetic field [14]. As hr2i is a
scalar, the contribution of the shear viscosity pressure
tensor vanishes, since it is traceless.
The aspect ratio σx=σy of the cloud is measured at the 6Li

Feshbach resonance at 834 G [15,16] as a function of time
after release to establish that the flow is hydrodynamic and
to determine the shear viscosity. Figure 2 shows data for
~E=EF ¼ 0.66, 0.89, 1.17, 1.46. The hydrodynamic expan-
sion data at 834 G is compared to that of a noninteracting
gas taken at 528 G where aS ¼ 0 and ~E=EF ¼ 1.78. For the
noninteracting gas, which expands ballistically, the aspect
ratio saturates to unity. In contrast, for the resonantly
interacting cloud, σx=σy increases to approximately 1.5
over the time range shown, clearly demonstrating that the
cloud expands hydrodynamically. The shear viscosity
increases with increasing energy (see Fig. 5), slowing
down the rate at which the aspect ratio increases with time.
For a resonantly interacting cloud, important questions

are whether Δp ¼ p − ð2=3ÞE remains zero during expan-
sion and if the expansion is scale invariant. The bulk
viscosity ζB is predicted to vanish in the scale-invariant
regime [17–20], consistent with the bulk viscosity fre-
quency sum rule, which vanishes when Δp ¼ 0 [21]. If
these conditions hold, Eq. (1) yields

hr2i ¼ hr2i0 þ
t2

m
hr · ∇Uopti0; (2)

which corresponds to ballistic expansion of the mean
square cloud size (in the same way as a noninteracting
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FIG. 2 (color online). Transverse aspect ratio σx=σy versus time
after release showing elliptic hydrodynamic flow: Top to bottom,
resonantly interacting gas at 834 G, ~E ¼ 0.66EF, ~E ¼ 0.89EF,
~E ¼ 1.17EF, ~E ¼ 1.46EF, ballistic (noninteracting) gas at 528 G,
~E ¼ 1.78EF. Top four solid curves: Hydrodynamic theory with
the shear viscosity as the only fit parameter. Lower solid curve:
Ballistic theory with no free parameters. Error bars denote
statistical fluctuations in the aspect ratio.
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FIG. 3 (color online). Scale invariant expansion of a resonantly
interacting Fermi gas. Experimental values of τ2ðtÞ≡m½hr2i −
hr2i0$=hr · ∇Ui0 versus time t after release, for the same data as
in Fig. 2 (including noninteracting gas data) collapse onto a single
curve, demonstrating universal t2 scaling. Dashed curve
τ2ðtÞ ¼ t2, as predicted by Eq. (2) [22].
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gas), even though the individual cloud radii expand
hydrodynamically and exhibit elliptic flow, as shown in
Fig. 2 for the transverse aspect ratio.
Scale invariance of the expanding gas is now directly

tested by determining τ2ðtÞ≡m½hr2i − hr2i0$=hr ·∇Uopti0
from the measured cloud radii and the trap parameters [14].
By construction, τ2ðtÞ will be independent of the initial
cloud size and should obey τ2ðtÞ ¼ t2, according to Eq. (2),
if the system is scale invariant. Figure 3 shows the
experimental values of τ2ðtÞ versus t for the same data
as used in Fig. 2, including the noninteracting gas data. In
contrast to the aspect ratio versus time data of Fig. 2, which
varies substantially with energy due to the shear viscosity,
the combined τ2ðtÞ data fall on a t2 curve with χ2 ¼ 1.1
using no free parameters. This is consistent with Δp ¼ 0
and scale invariant expansion, which suggests that the
equation of state p ¼ ð2=3ÞE and, hence, local thermody-
namic equilibrium, are maintained in the hydrodynamic
expansion. Further, these results directly demonstrate that
scale invariance is not destroyed by shear viscosity, which
therefore may be amenable to study in Fermi gases by scale
invariant (conformal) field theory methods [8].
We investigate the breaking of scale invariance for the

expanding gas at finite scattering length by tuning the bias
magnetic field above and below the Feshbach resonance.
Figure 4 shows τ2ðtÞ data for ~E≃ 1.0EF. Compared to the
resonant case, we see qualitatively that the cloud expands
more rapidly when the scattering length is negative
1=ðkFIaSÞ ¼ −0.59 and more slowly when the scattering
length is positive, 1=ðkFIaSÞ ¼ þ0.61, where kFI ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
=ℏ. This behavior is a signature of the ½Δp −

Δp0$ term in Eq. (1), where jΔpðtÞj ≤ jΔpð0Þj for any time
t after release and Δp has the same sign as the scattering
length.

To estimate Δp − Δp0 in Eq. (1), we employ for
simplicity a high-temperature, second virial coefficient
approximation [23]. We retain only the translational
degrees of freedom and ignore the contribution from
changes in the molecular population, which require
three-body collisions that occur with low probability during
the expansion time scale. In Δp, the translational temper-
ature is evaluated using an adiabatic approximation, so that
ΔpðtÞ is then a known function of time and is odd in 1=aS
[14]. We find that estimating Δp in this way yields
satisfactory agreement with the data of Fig. 4, even for
relatively low energies ~E=EF ≃ 1. The reasonable fits
suggests that two-body interactions are dominant for
1=ðkFIaSÞ≃'0.6. The expansion at finite 1=aS is energy
dependent, since Δp approaches zero as the energy is
increased [14].
We present a new precision measurement of the shear

viscosity at resonance, which serves as a reference for the
bulk viscosity measurement described below. This is
accomplished by measuring the transverse aspect ratio
as a function of time after release, Fig. 2. The shear
viscosity pressure tensor slows the flow in the rapidly
expanding, initially narrow, x direction and increases the
speed in the more slowly expanding y direction. As the
initial transverse aspect ratio is 1∶2.7 for our trap, elliptic
flow is observed for relatively short expansion times with
high signal to background ratio, enabling high sensitivity to
the shear viscosity, even at the lowest energies, which were
not accessible in our previous expansion measurements
[6,7]. We fit the data of Fig. 2 for a resonantly interacting
gas at 834 G, using a general, energy-conserving,
hydrodynamic model [6,7], valid in the scale-invariant
regime where Δp ¼ 0. At resonance, the shear viscosity
η takes the form η ¼ αSℏn, where n is the total density of
atoms and αS is a dimensionless function of the local
reduced temperature. The trap-averaged shear viscosity
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FIG. 4 (color online). Conformal symmetry breaking in the
expansion for a Fermi gas near a Feshbach resonance. The data
are the experimental values of τ2ðtÞ≡m½hr2i − hr2i0$=hr ·∇Ui0
for ~E=EF ≃ 1.0, versus time t after release. Solid curves are the
predictions using Eq. (1) with ζB ¼ 0, where the pressure change
Δp is approximated using the second virial coefficient without
any free parameters [14]. Top: 1=ðkFIaSÞ ¼ −0.59; Center:
1=ðkFIaSÞ ¼ 0; Bottom: 1=ðkFIaSÞ ¼ þ0.61.
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FIG. 5 (color online). Measurement of bulk and shear viscosity
for a scale-invariant Fermi gas: Blue (top): Trap-averaged shear
viscosity coefficient

R
d3rη=ðNℏÞ≡ ᾱS versus energy ~E=EF.

Red (bottom): Trap-averaged bulk viscosity coefficientR
d3rζB=ðNℏÞ≡ ᾱB versus energy. Bars denote statistical error.

(Dashed curves added to guide the eye.)
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FIG. 19: The left Figure shows the time evolution of the aspect ratio in a Fermi gas after removing the trap with an initial anisotropy
1/2.7 ' 0.37. The lowest curve at a = 0 exhibits purely ballistic expansion while the four upper ones are for a unitary gas at different average
energies Ẽ/EF per particle. They display hydrodynamic flow, where the inversion of the aspect ratio is slowed down by a finite shear viscosity.
The trap-averaged values of the shear (blue) and bulk (red) viscosities are shown in the right. Both Figures are taken from Elliott et al. [277].

Bulk viscosity and contact correlations An important application of scale and conformal invariance in ultracold gases that will
be touched only briefly in this final section concerns the issue of transport coefficients. A standard example are the shear and
bulk viscosity η and ζ which appear in the stress tensor

〈Π̂i j〉 = pδi j + ρ3i3 j − η

(
∂i3 j + ∂ j3i −

2
3
δi j · divv

)
− ζ δi j · divv (160)

of a Newtonian fluid in the presence of small but non-vanishing gradients in the velocity field v(x). It was shown by Son [278],
that the bulk viscosity ζ(T ) ≡ 0 of a conformally invariant fluid vanishes at arbitrary temperature 31. Physically, this implies
that there is no entropy production ṡ = ζ/T · (divv)2 ≡ 0 in a uniform expansion like the Hubble flow, where divv is nonzero.
Experimentally, the prediction of a vanishing bulk viscosity ζ has been tested for the unitary Fermi gas by Elliott et al. [277].
As shown in Fig. 19, a hydrodynamic model for the time evolution of the aspect ratio during expansion from an anisotropic
trap allows to extract the averaged values of both the shear and bulk viscosity, the latter being consistent with ζ(T ) ≡ 0. By
contrast, the shear viscosity is always finite, even in a superfluid. Remarkably, it exhibits a minimum value ηmin ' 0.37 ~n in
the unitary Fermi gas slightly below the superfluid transition [281] which is closely connected with the conjecture by Kovtun,
Son and Starinets [282] that the ratio η/s ≥ ~/(4πkB) between the shear viscosity and the entropy density s is bounded below by
universal constants of nature for any fluid. For a detailed discussion of this topic see the reviews [281, 283].

In the following, we will restrict the attention to the connection between broken scale invariance and a finite bulk viscosity
discussed by Dusling and Schäfer [284] and more recently by Enss [285], Hofmann [286] and by Fujii and Nishida [287]. On
a microscopic level, both the shear and bulk viscosities follow from the retarded correlation functions of the stress tensor Πi j
according to a Kubo formula

χi j,kl(q = 0, ω) =
i
~

∫
dt

∫
dd x eiωt θ(t)

〈
[Π̂i j(x, t), Π̂kl(0, 0)]

〉
→ Re η(ω) =

Im χxy,xy(ω)
ω

and Re ζ(ω) =
Im χii,ii(ω)

d2ω
(161)

where d = 2, 3 is the dimension. An explicit evaluation of these correlators has so far only be achieved for the shear and bulk
viscosity in the normal state of the unitary Fermi gas [285, 288] or within a leading order virial expansion [284–287]. A special
situation arises for the bulk viscosity which vanishes identically for scale invariant systems. Formally, this follows by observing
that the operator

∫
x

Π̂ii(x, t) → 2 Ĥ which enters the commutator determining the frequency dependent bulk viscosity ζ(ω) is
then just the conserved Hamiltonian which commutes with its value at t = 0. A more precise formulation must take into account
the fact that for conserved or, more generally, non-ergodic variables, the Kubo relaxation function φ(z) = (χ(z)−χT)/iz exhibits a
singularity of the form π [χT−χ(z = 0)] δ(ω) due to the finite difference between the thermodynamic and the static susceptibility.
This has been discussed by Fujii and Nishida [287], who extend Eq. (152) to define a local pressure operator p̂(x) in general
dimension d in the form (here written for Bosons, where an additional factor 2 appears in the denominator of the term ∼ Ĉ2)

p̂(x) =
2
d
ε̂(x) +

~2

2d Ωd−1m ad−2 Ĉ2(x) = p̂eq + δ p̂(x) (Ωd−1 = 2π, 4π in d = 2, 3) . (162)

31 In a superfluid, there are actually three different bulk viscosities ζ1,2,3 [279, 280]. The combination of scale and conformal invariance requires two of them to
vanish. In particular, ζ2 ≡ 0, which is the one which takes the role of the standard bulk viscosity in the normal fluid.
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Since the contribution from the energy density vanishes, the real part of the frequency dependent bulk viscosity Re ζ(ω) =

Re φζ(z = ω + i0) can be obtained from the relaxation function [285, 287] 32

φζ(z) =

(
~2

2d Ωd−1m ad−2

)2 ∫ ∞

0
dt eizt

∫
dd x

(
Ĉ2(x, t) | Ĉ2(0, 0)

)
(163)

of the contact densities. A finite bulk viscosity therefore only appears due to the deviation p − 2ε/d of the pressure from scale
invariance. In particular, for unitary gases in 3D, Eq. (163) immediately shows that ζ(ω) ≡ 0 vanishes not only at ω = 0 but in
fact at all frequencies due to the vanishing prefactor (1/a)2 = 0. Analytical results for the bulk viscosity have been derived in
leading order of a virial expansion [284–287]. Here we just quote the result in two dimensions

ζ2D(ω = 0) =
~ n · 2π nλ2

T[
ln2(kBT/2εb) + π2

]2 (164)

obtained by Enss [285]. It has the remarkable feature that interactions only enter through the logarithmic term in the denominator
which involves the two-body bound state energy εb = ~2/m(ab

2)2. The dominant dependence on density and temperature,
however, is completely fixed by dimensional analysis. Indeed, the units of viscosity are ~ n and it is also known from the kinetic
theory of fluids that the bulk viscosity in single component gases only arises at order n2 [19]. As a result, the leading order
temperature dependence necessarily involves the factor λ2

T ∼ 1/T . It is an open challenge to measure bulk viscosities in dilute
gases, even in the regime of only moderate values of the phase space density, where concrete theoretical predictions are available.

A possible option to determine the bulk viscosity has been proposed by Fujii and Nishida [289]. They consider a situation
where the scattering length a(x) = a(x, t) may be changed spatially or in time. In a regime of local thermodynamic equilibrium,
the relation (162) still holds, with p̂eq → p(x) as the local pressure which enters the hydrodynamic equations of motion. A finite
bulk viscosity then leads to a deviation

C2(x) − C2,eq(x) = (2mΩd−1/~
2) ad−2(x) πdiss

ii (x) → (2mΩd−1/~
2) d2ad−3(t) ζ(t) · ȧ(t) (165)

of the contact density from its instantaneous, local equilibrium value which is determined by the dissipative contributions to
the trace of the stress tensor. In particular, for a slow and spatially homogeneous change of the scattering length, this can be
expressed by the product of an instantaneous value ζ(t) of the bulk viscosity times the rate ȧ(t) of change in the scattering length.
Neglecting corrections of order ȧ3, the associated change in the local energy and entropy density are of the form [289]

ε̇(t) =
~2 C2,eq(t)

2mΩd−1ad−1(t)
ȧ(t) + T (t) ṡ(t) with T (t) ṡ(t) = d2 ζ(t)

a2(t)
ȧ2(t) = d2 (

∂ta−1)2a2(t)ζ(t) . (166)

Note that due to a2ζ → const, a temporal modulation of the inverse scattering length around zero gives rise to a non-vanishing
entropy production even in the scale invariant unitary gas. Alternatively, the viscosity and related transport coefficients like the
thermal conductivity may be extracted from the damping of sound modes. This has recently been achieved for the unitary Fermi
gas in a box type configuration by Patel et al. [290], which allows a precise measurement of the dispersion ωq = csq − iDsq2/2.
Since ζ ≡ 0 at infinite scattering length, the associated sound diffusion constant Ds = (4/3)Dη + LP · DT only contains the
kinematic viscosity Dη = η/(mn) mentioned above and the thermal diffusion constant DT , which enters with the Landau-Placzek
ratio LP = cp/cV − 1 as a prefactor. The results provide support for the concept of quantum limited diffusion constants in
scale invariant systems [281, 283]. Specifically, the lower bound Dη|min ' 0.37 ~/m for the kinematic viscosity is considerably
smaller than the value DT |min ' 4.2 ~/m obtained for the thermal diffusion constant [291].

32 Note that our notation for the Mori-product
(
Â(t)| Â

)
=

∫ β
0 dα 〈δÂ(t)δÂ(t = i~α)〉eq with δÂ = Â − 〈δÂ〉 differs from the one in Refs. [280, 287] by a factor β.
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[119] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Phys. Rev. Lett. 122,



66

130405 (2019).
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[274] E. Taylor and M. Randeria, Phys. Rev. Lett. 109, 135301 (2012).
[275] P. A. Murthy, N. Defenu, L. Bayha, M. Holten, P. M. Preiss, T. Enss, and S. Jochim, Science 365, 268 (2019).
[276] M. Fierz, Phys. Rev. 106, 412 (1957).
[277] E. Elliott, J. A. Joseph, and J. E. Thomas, Phys. Rev. Lett. 112, 040405 (2014).
[278] D. T. Son, Phys. Rev. Lett. 98, 020604 (2007).
[279] P. C. Hohenberg and P. C. Martin, Annals of Physics 34, 291 (1965).
[280] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, Frontiers in Physics (W. A. Benjamin, Advanced

Book Program, Reading, Massachusetts, 1975).
[281] W. Zwerger, in Quantum matter at ultralow temperatures, Proceedings of the International School of Physics Enrico Fermi, Course

191, Varenna, 7-15 July 2014, edited by M. Inguscio, W. Ketterle, S. Stringari, and G. Roati (IOS Press, Amsterdam, 2016), pp. 63–135.
[282] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005).
[283] T. Enss and J. H. Thywissen, Annu. Rev. Condens. Matter Phys. 10, 85 (2019).
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APPENDIX: SUPERFLUIDITY AND DISSIPATIONLESS CURRENTS

In this Appendix, the existence of persistent currents in neutral superfluids or the Meissner effect in superconductors will be
derived in rather general terms within a formulation which is based on the existence of a new thermodynamic variable associated
with broken gauge invariance. We start by defining neutral or charged superfluids (= superconductors) by

A superfluid/superconductor is a system which supports dissipationless mass/electric currents in an equilibrium state.

An example is superfluid 4He in a slowly rotating bucket, where part (or all at T = 0) of the fluid stays at rest in the
Lab-frame. The fact that this state with non-classical rotational inertia ISF = Icl ρn(T )/ρ < Icl is reached independent of whether
one starts from a fluid at rest and then slowly rotates the container or if a fully co-rotating fluid in the normal state is cooled
to temperatures below Tc shows that it is a true equilibrium state (see G.B. Hess and W.M. Fairbank, PRL 19, 216 (1967)).
For superconductors, lifetimes of persistent currents in a closed ring have been estimated to be beyond 1015 years ! In order
to understand on a thermodynamic level what is the property which allows dissipationless particle currents, we start from an
analogy and claim that

Any system with a finite shear modulus allows dissipationless transport of angular (or transverse) momentum currents.

To show this, consider the torsion of a cylindrical rod of length L and radius R which is twisted by a finite angle θ =
∫

z dϕ/dz
due a pair of external forces at z = L which exert an external torque Next = 2RFextez (see Figure). The rod is clamped at z = 0
such that the local rotation angle ϕ(z) with respect to the undistorted rod obeys ϕ(z = 0) ≡ 0. Note that any system with a finite
shear modulus µ will withstand the torque in a static and therefore equilibrium configuration, it does not need to be a crystalline
solid. What is necessary, however, is a broken symmetry with respect to rotations about the z-axis: clamping the surface of the
rod at z = 0 is thus sufficient to constrain the angle difference at large lengths in the sense limL→∞〈exp[i(ϕ(L) − ϕ(0))]〉 , 0.

The displacement field for a finite, constant twist τ = dϕ/dz along the rod is
u = τ ( −yz, xz, 0 ). It gives rise to a strain tensor

u =
τ

2


0 0 −y
0 0 x
−y x 0

 = ut

which has Tr[u] = divu = 0 and thus describes a pure shear deformation ut with
no change in volume.

The associated elastic free energy density is fel[u] = µTr[(ut)2] = µ τ2r2/2. Integration over the volume of the cylinder gives
the total elastic free energy

Fel =

∫ 2π

0
dϕ

∫ L

0
dz

∫ R

0
rdr

1
2
τ2µr2 =

1
2

∫ L

0
dz

(
dϕ
dz

)2

2πµ
∫ R

0
r3dr︸          ︷︷          ︸

=C

=
C
2

∫
z

(
dϕ
dz

)2

with a torsional stiffness coefficient C = (π/2) µ ·R4 which is linearly proportional to the shear modulus µ. In order to determine
the twist induced by the external torque, the work Next dθ done in changing the total twist angle θ by a small amount must be
equal to the associated change dFel = C(θ/L) dθ in the elastic free energy. This leads to θ/L = Next/C or τ = Next/C. To
prove that the internal elastic forces which appear at a finite twist transmit dissipationless angular momentum currents along
the z-direction which precisely cancel the effect of the external torque and thus give rise to a static configuration despite the
non-vanishing external force, one needs the stress tensor. In the case of pure shear, it reads

σ = σt = 2µ ut = µτ


0 0 −y
0 0 x
−y x 0

 .
On any cross section z = const with normal vector ez, the resulting internal force per area is thus −σez = −µτr eϕ. This is an
azimuthal internal force per area which tries to untwist the rod back to its undistorted configuration. It is associated with an
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internal angular momentum current density jint = r ∧ (−σez) = −µτr2ez along the negative z-direction. The resulting rate of
change of total angular momentum precisely cancels the external torque because

Nint =
dLint

dt
=

∫
jint d f = −

∫ 2π

0
dϕ

∫ R

0
rdr µτr2ez = −τC ez = −

dFel

dθ
ez = −Next

where d f = rdrdϕ denotes an integration over the area of the cross section.

In the following, we will show that dissipationless transport of particles in superfluids can be understood in a manner which
is completely analogous to the situation of a rod with a finite torsion. The twist τ = dϕ/dz in the latter case plays the role
of a non-vanishing gradient Qz → ∇ϕ of the global U(1) phase which is associated with the conservation of particle number.
Moreover, the torsional stiffness per area C/A = µR2/2 → γ is replaced by a phase rigidity parameter γ which defines a non-
vanishing superfluid mass (or number) density ρs = mns by γ = ~2ρs/m2. This description is extended in a straightforward
manner to superconductors by introducing a rigidity with respect to finite twists of the phase ϕ2 of pairs of particles together
with the requirement of electromagnetic gauge invariance, which itself is never broken. For a precise thermodynamic definition
of the superfluid stiffness ρs in an interacting many-body system we start from a microscopic Hamiltonian

Ĥ =
~2

2m

∫
x
∇ψ̂†(x)∇ψ̂(x) +

1
2

∫
x

∫
x′

V(x − x′) ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x) (167)

of interacting, charge neutral Bosons expressed in terms of field operators ψ̂(x). Because it commutes with the total particle
number [Ĥ, N̂] = 0, this Hamiltonian is invariant under a global U(1) gauge transformation

ψ̂(x)→ e−iϕN̂ ψ̂(x) eiϕN̂ = eiϕ ψ̂(x) . (168)

As a result, the free energy F = −κBT ln Z is independent of the angle ϕ ∈ (−π, π). This is no longer true, however, if
ϕ → ϕ(x) is choosen to depend on position x, i.e. the global U(1) is extended to a local gauge transformation. Indeed,
while the interaction term in (167) is unchanged even under local gauge transformations, the kinetic energy is apparently not
invariant! The exact many-body wavefunctions and corresponding energies will thus change under the local gauge transformation
ψ̂(x) → exp iϕ(x) ψ̂(x) but they remain invariant if ϕ(x) is spatially constant. The change in free energy which results from a
local U(1) gauge transformation can thus only depend on derivatives of the phase, i.e. on the vector ∇ϕ(x), the scalar ∇2ϕ(x) or
higher order derivatives. Since ϕ(x) and −ϕ(x) are equivalent, only the square of these variables can appear. For slowly varying
ϕ(x), the leading order term in the change of free energy associated with finite phase twists is thus expected to be of the form

∆F[ϕ(x)] =
γ

2

∫
x

(∇ϕ(x))2 + . . . =
ρs

2

∫
x
v2

s + . . . with γ =
~2ρs

m2 and vs =
~

m
∇ϕ(x) . (169)

The positive rigidity parameter γ - which is called the ’helicity modulus’ in the statistical physics literature - is an intensive
variable. It is non-vanishing only in the superfluid phase and plays a role analogous to the shear modulus of a solid. States with
finite rigidity spontaneously break the global gauge invariance (168) and - in three dimensions - exhibit off-diagonal long range
order as defined by Eq. (1) due to lim|x|→∞〈exp{iϕ̂(x)} exp{−iϕ̂(0)}〉 , 0 33. From a thermodynamic point of view, the transition
to the superfluid phase is associated with the appearance of the superfluid velocity vs as a new thermodynamic variable and an
associated rigidity parameter ρs, similar to the transverse strain tensor ut and the shear modulus which distinguish the normal
fluid and the solid phase, see Table I. Formally, the superfluid mass current density j(m)

s is the thermodynamic variable conjugate
to vs. It can thus be obtained from a functional derivative

j(m)
s (x) =

δF[vs]
δvs(x)

= ρs vs(x) + . . .

(
cf. σt(x) =

δFel[u]
δut(x)

= 2µ ut(x) + . . .

)
of the equilibrium free energy with respect to the superfluid velocity. States with non-vanishing particle currents j(m)

s are
therefore non-dissipative, similar to the transverse momentum currents associated with σt , 0 in a solid with a finite shear
deformation. The thermodynamic definition of superfluidity via Eq. (169) does - of course - not answer the question what
are necessary or sufficient requirements on the microscopic level to obtain a finite stiffness γ with respect to local gauge
transformations. A largely trivial observation can be made, however, which states that γ , 0 can never occur in a many-body

33 For a discussion of the subtle connection between the rigidity parameter γ which defines the superfluid density ns and the condensate density n0, which
appears in the definition of ODLRO in Eq. (1), see the Appendix in the review by Bloch et al. [49].
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TABLE I: Thermodynamic description of solids and superfluids

solid superfluid

new th.dyn. variable ut vs

free energy Fel[ut] =
∫

x
fel(ut) F[vs] =

∫
x

f (vs)
conjugate variable σt = ∂ fel/∂ut j(m)

s = ∂ f /∂vs

rigidity fel = µ · Tr[(ut)2] + . . . f (vs) = ρsv
2
s /2 + . . .

system which is described by classical statistical mechanics The argument is a simple variant of the one which leads to the
Bohr-van-Leeuwen theorem on the absence of magnetism in classical statistical physics, where the kinetic and interaction
energy parts of the total Hamiltonian commute. The partition function and free energy are therefore fully determined by the
configuration integral, which only involves Hint. Since the latter is invariant under arbitrary local gauge transformations, the
classical free energy cannot depend on ϕ(x) at all, implying γcl ≡ 0. A non-trivial issue is whether the mass m which connects
a finite phase twist ∇ϕ with the superfluid velocity might be a renormalized one due to interactions. Now, as long as Galilei
invariance is not broken e.g. by an external random potential, m must indeed be the bare mass of the Bosons since vs must
transform like a velocity, see M. Liu, Physical Review Letters 81, 3223 (1998).

The extension to charged superconductors in which pairs of Fermions condense is straightforward. In close analogy to (169),
a spatially dependent two-particle phase ϕ2(x) associated with the product of two field operators is now assumed to lead to a
change of the free energy in the form (in cgs units)

∆F[ϕ2(x),A(x)] =
γ

2

∫
x

(
∇ϕ2(x) +

2e
~c

A(x)
)2

+
1

8π

∫
x

(rotA(x))2 =
ρs

2

∫
x
v2

s +
1

8π

∫
x

(rotA(x))2 (170)

This is invariant under static electromagnetic gauge transformations

A(x)→ A′(x) = A(x) + ∇χ(x) (171)

which are accompanied by a phase change ϕ(x) → ϕ′(x) = ϕ(x) − e χ(x)/(~c) of the field operators ψ̂σ(x) for particles
with charge −e. A change of the vector potential by ∇χ(x) therefore changes the two-particle phase by ϕ2(x) → ϕ2(x) −
2e χ(x)/(~c), leaving invariant the combination ∇ϕ2(x) + 2eA(x)/(~c) 34. The gauge invariant superfluid velocity vs, as the
new thermodynamic variable in superconductors, and the associated stiffness or superfluid density for pairs are now defined via

vs =
~

2m

(
∇ϕ2(x) +

2e
~c

A(x)
)

and ρs = γ ·
(2m)2

~2 , (172)

in complete analogy with (169). An immediate consequence of the free energy (170) is that the lowest energy, untwisted state of
a superconductor has vs ≡ 0 in its bulk. The vector potential A(x) = −~c∇ϕ2(x)/(2e) is thus a pure gauge which immediately
implies the Meissner effect B ≡ 0. More precisely, using B · rot δA = div (δA ∧B) + δA · rotB, the condition that the first
order change in free energy

δF =

∫
x

[
~

2m
2e
~c

j(m)
s · δA(x) +

1
4π

B · rot δA(x)
]

+ O(δA)2)

with respect to variations δA(x) of the vector potential vanishes, gives rise to Ampère’s law

rotB =
4π
c

js(x) with js(x) = −
2e
2m

j(m)
s (x) = −ens

~

2m

(
∇ϕ2 +

2e
~c

A(x)
)
.

Here, following conventional notation, the superfluid number density has been defined as ns = ρs/m. Thus, ns is the density of
single electrons which appear in the superfluid response, twice that of the ’pair-density’ ρs/2m. The expression for the electric
current density immediately implies the second London equation

rot js(x) = −
nse2

mc
B(x) (L2) (173)

34 In a paper in Progress of Theoretical Physics Supplement No. 86 p. 43 (1986), S. Weinberg shows that the existence of a finite stiffness with respect to
gradients of the two-particle phase arises as a consequence of the fact that in superconductors the global U(1) gauge symmetry associated with number
conservation is broken down to a remaining discrete Z2 group, i.e. the multiplication of field operators with a global factor ±1.
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which, together with the condition of stationarity div js(x) ≡ 0, uniquely fixes the superfluid current density for any given B(x).
Combined with Ampère’s law and rot rot B = −∇2B, the magnetic field inside a superconductor obeys ∇2B = B/λ2

L. A
magnetic field parallel to the surface of a superconductor in the half space x > 0 thus decays exponentially ∼ exp−x/λL on the
scale of the London penetration depth λL which is defined by

1
λ2

L

=
4πnse2

mc2 =

(ωp,s

c

)2
or

1
λ2

L

= 16π
e2

~c
·
γ

~c
' 0.37

γ

~c
. (174)

For clean systems, where ns is essentially the full conduction electron density, the London penetration depth is just the ratio of
the velocity of light and the standard plasma frequency. It is thus a factor c/3F ' 102 larger than the Thomas Fermi screening
length. An important point, which should be emphasized, is evident from the second form of Eq. (174): apart from universal
constants of nature, the London penetration depth is a direct measure of the phase rigidity parameter γ, unaffected by the problem
of how to define an effective number density or mass in realistic superconductors: as pointed out by de Gennes [292], it is only
the ratio ns/m = 4γ/~2 which is physically meaningful in this context (note that due to vs = ~[∇ϕ2 + 2e/(~c)A]/(2m) there
is a factor four compared to the relation between ns and the stiffness γ in Eq. (23) for Bose superfluids with mass m instead of 2m).

The second London equation only covers static properties like the Meissner effect. It does not, however, adress the issue of
perfect conductivity. At first sight, an equation which determines the time derivative of the superfluid current density seems to
require information beyond equilibrium free energies. Fortunately, this is not the case. Indeed, the crucial point is to realize
that the two-particle phase ~ϕ2, which becomes a relevant thermodynamic variable in the superconducting state, is canonically
conjugate to the density of pairs. Its covariant time derivative 35

~ ∂tϕ2 − 2eΦ = −
∂ f

(ρs/2m)
= −µpair

defines a chemical potential of pairs of electrons. Using the free energy density (170), one finds µpair = mv2
s , which vanishes

in the bulk of a superconductor in equilibrium. The scalar potential Φeq = ~∂tϕ2/(2e) is then a pure gauge, implying E =

−∇Φ − ∂tA/c = −2m ∂tvs/(2e) = 0, as expected in a perfect conductor. More generally, in a time dependent, inhomogeneous
situation, the time derivative

∂t js(x, t) =
ens

2m
∇µpair,el(x, t) →

e2ns

m
E(x, t) (L1) (175)

of the gauge invariant superfluid current density js = −ens
(
∇(~ϕ2) + 2eA/c

)
/(2m) can be expressed in terms of the gradient

∇µpair,el = ∇µpair + 2eE of the electrochemical potential of pairs, which reduces to 2eE if µpair is spatially constant. Eq. (175)
is the first London equation and expresses the property of perfect conductivity. Both sides of the equation are even under time
reversal, as is necessary for non-dissipative transport. This should be contrasted with the associated result j(x) = σ∇µel(x)/e for
dc-currents in a normal metal, which relates the driving force ∇µel(x) with the current density itself and not its time derivative.
The arguments which lead to the first London equation can also be used to derive the Josephson relation. Indeed, defining a
gauge invariant phase difference ∆ϕ12 =

∫ 2
1

(
∇ϕ2 + 2eA/(~c)

)
· ds between two points inside a superconductor or also across a

junction between two superconductors, Eq. (175) shows that its time derivative

~
d
dt

∆ϕ12 =

∫ 2

1

(
∇(~ ∂tϕ2) +

2e
c
∂tA︸                   ︷︷                   ︸

−∇µpair,el

)
· ds = 2e V12 with 2eV12 = −

∫ 2

1
∇µpair,el · ds (176)

is determined by the gauge invariant voltage difference V12 between these two points. This equation is a consequence of electro-
magnetic gauge invariance and is thus exact, allowing to define the voltage standard via the ac-Josephson effect. Note that the
exactness of the Josephson relation is compleletly unaffected by the non-equilibrium dynamics of the superfluid density itself,
which obeys a dissipative time-dependent Ginzburg-Landau equation. Eq. (176) also connects finite voltage differences within
superconductors or chemical potential differences ∆µ12 = h dNV/dt in neutral superfluids with the rate at which vortices cross
the line connecting the points 1 and 2, see P.W. Anderson in Reviews of Modern Physics 38, 298 (1966).

35 Both the left and the right hand side of this equation are invariant under time dependent gauge transformations A′ = A + ∇χ , Φ′ = Φ − ∂tχ/c. Indeed,
ϕ′2 = ϕ2 − 2e χ/(~c) implies that ~ ∂tϕ2 − 2e Φ = ~ ∂tϕ

′
2 − 2e Φ′.
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