High Throughput Connectomics

Nir Shavit
MIT, Tel-Aviv University, and Neural Magic Inc

The Cray 1 SuperComputer
1/10 of a second
Brain: White and Grey

White Matter

Grey Matter

White and Grey

Grey

White
1/10 of a second

About 20 neurons fire in sequence

Network of neurons has “ridiculous” levels of parallelism

My Goal: Understanding this parallelism
Connectome = Brain Graph

- **Fly:** 100 thousand neurons (nodes) x 100 synapses (per node) = 10 Million edges
- **Mouse Cortex:** 4 million neurons (nodes) x 10 thousand synapses (per node) = 40 Billion edges
- **Human Cortex:** 30 billion neurons (nodes) x 10 thousand synapses (per node) = 300 Trillion edges

Implications for Machine Learning

- **Common wisdom:** Deep learning is compute intensive like brain – need special accelerator hardware like GPUs or TPUs ...

A Fully connected neural network

- **Our cortex is very sparse:** ...understanding its structure will be key to efficient ML as we move forward to mimicking brains...
Mapping a Connectome

Automatic Tape-collection Mechanism for Ultramicrotomes

Lossless, Nondestructive, Sturdy sections

Ken Hayworth and Richard Schalek
1K-12K sections per day

Ultrathin tissue section being collected

Plastic embedded tissue block

Diamond knife with water-filled boat

Ken Hayworth and Richard Schalek

Brain on tape
10,300 sections => >100 TB

100 TB BLOCK OF BRAIN (THALAMUS)
A few years ago this took several years to collect...

Past: Full EM based connectome of nematode C. Elegans 302 Neurons 7500 synapses in 10 years (Brenner et al in 1986)

Today: single multibeam microscope will image 1 cubic mm in a matter of months

The Bottleneck: Reconstruction of the connectome from the EM images
“Really Big” Data

10k μm³
10 TByte

1 mm³
2 PByte

500 mm³
1 EByte

1.4 M mm³
1 Zbyte

Walmart Database
~2.5 Petabytes

Rodent

Human

1 Zbyte all info stored in world

Our current target

Our next target

curated human reconstruction of ~1500 cubic micron cylinders surrounding two nearby apical dendrit
all axons

daniel berger

glia

daniel berger
This human reconstruction of ~1500 Microns (~100,000th of the 100TB “grain of salt”) took 4 years.

“Traditional” Automated Reconstruction Pipeline

Machine Learning requires orders of magnitude more computation than other parts.
Pipeline run on .473 TByte Kasthuri et al. Dataset.

On standard 72 core machine ~4 hours/TB (only 2x slower than Multi-Beam Microscope)

Traditional Agglomerating Pipeline: Great reconstructions but still too many errors

Matveev et al
Santurkar et al
Try to do what neurobiologists do...

• **First**: Skeletonization

• **Then**: Expansion of objects

(Unlike existing automated pipelines that create expanded objects and then agglomerate them)

Skeletonization

• **Human**:
 • Neurobiologist skeletonizes objects perfectly
 • By picking one seed per object per slice

• **Automatic**:
 • To Date: Primarily by shrinking a dense segmentation
 • **New Approach**: learn to pick one seed per object based on EM and skeletonization of prior slices

E. *C. elegans* manual seeding from Samuel and Zhen Labs.
Mask Extend: Mimic Human Tracing of a Single Neurite

Start from a manually picked seed

Use CNN on XNN, our proprietary multicore CPU based ML execution engine.

Mask Extend: Mimic Human Tracing of a Single Neurite

Classification: For each pixel, does it belong to the partially reconstructed object?

Independently (similar idea) by Januszewski et al. They use a much more powerful flood-fill network and no membrane predictions.
Corrects UNET CNN results on RAT ECS dataset from state-of-the-art “traditional” Pipeline

*Volume from 405 upward is estimated ~77,500 cubic microns
Whole volume by repeated Mask Extends....
MultiMask [ICML’19]

Imagine we can learn how to segment all neurons in next slice based on the partial segmentation of prior slice.

![MultiMask Diagram](image)

Classifying Unknown Classes

MaskExtend: successfully classifies pixels as belonging or not to single neuron

MultiMask: clusters pixels into a-priori unknown number of neurons. Even neighbor can change from section to section.
The 3C Algorithm

Image in original label space

Image in product space

The 3C Algorithm

Input

Output

χ1
χ2
χ3
χ4
χ5

Decompose

Compose

NLW A1 A2 A3 A4 Memb argmax
Multi Mask

Expansion of MultiMask skeletons from mouse Kasthuri et al dataset

Good News: Very Few Errors

Bad News: The Errors are Harder
Spit Errors

Mainly objects along the XY plane...

We are working on a localized solution
Merge Errors

Object 11

Merge Errors

Merge errors are due to MultiMask

Merge error detection requires context

Extends to object 2
Galileo’s Telescope and the future of Connectomics

The MIT Computational Connectomics Group

Alex Matveev Yaron Meirovitch David Budden David Rolnick Tim Kaler

Rajeev Parvathala Hayk Saribekyan Lu Mi Shibani Santurkar Justin kopinsky