

Chaire Galaxies et Cosmologie

Les galaxies durant l'époque de la réionisation

Françoise Combes

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Les principales questions

→ Taux de formation d'étoiles, et contribution à la réionisation?
Fraction de rayonnement UV qui s'échappe?

➔ Propriété du gaz moléculaire pour former des étoiles Accrétion de gaz, et expulsion par rétro-action?

Etoiles massives exceptionnelles et PopIII
 Dynamique et masse des galaxies à grand z

→ Rôle des trous noirs et noyaux actifs dans la réionisation

Oesch+2018

Formation d'étoiles de l'Univers jeune

Où chercher les galaxies?

Les zones ionisées sont clairsemées au hasard Taille caractéristique \sim 30Mpc (12') 1° ~150cMpc à z=7

Contrôlées par les halos de matière Noire

HUDF ~3' 1 degré CANDELS ~20'

La réionisation arrive tard

La détection du fossé de Gunn-Peterson dans le spectre des quasars à z~6 montre que la réionisaton a lieu tardivement (Fan et al 2002)

Confirmé par Planck Et aussi la chute du nombre d'émetteurs Lyα (LAE) au-delà de z~7

La série de Lyman de l'atome H

Fluctuations spatiales/temporelles

On peut lire l'histoire de la réionisation sur chaque ligne de visée
➔ Très différente d'une ligne à une autre

Becker et al 2015

Épaisseur optique efficace τeff, sur 50 cMpc/h

Reconstruction du spectre des QSO

Epaisseur optique τ_{eff} croissante

Grande dispersion des mesures, qui montre les fluctuations spatiales et temporelles. En grisé léger le modèle (68%, 95%) *Grisé épais: 20% supplémentaire d'incertitude*

Eilers et al 2018

Simulations: UVB, Température

Les fluctuations étalent la réionisation

Pour un champ UV uniforme, → réionisation brutale

Réionisation retardée

Réionisation à moitié à z=7.5 et terminée à z=5.3, avec

des poches de HI assez grandes, devrait être visible en HI-21cm

Kulkarni et al 2019

SFR pour rendre compte des observations

Simulations, avec le taux de formation d'étoiles SFRD +AGN Nécessaires pour rendre compte des Quasars (et forêt Ly α) et aussi des émetteurs Ly α + épaisseur optique de Planck

Émissivité ionisante HM12 (Haardt & Madau 12), SFR Oesch 2014,18 Fraction ionisée QHII (à z=7, disparition des émetteurs Lyα)

Kulkarni et al 2019

Galaxies découvertes avec cassure Lyman

Comment sélectionner les galaxies très lointaines? Champs profonds HUDF >3000 galaxies/ '2

Technique photométrique utilisant la cassure Au-delà de 912 Å: Absorption HI sur la ligne de visée →LBG « Lyman-break galaxies »

La photométrie suffit, permettant des milliers de galaxies en simultané

La technique de la cassure Lyman

Selection des galaxies lointaines par leurs couleurs

Steidel et al 1998

Généralisation z-drop, J-drop, H-drop

Pour identifier les galaxies à z>7 parmi les milliers d'autres Généralisation de la technique Lyman break

12 galaxies identifiées à z>7 SFR 1.3 M_o/an

Bunker et al 2010

Définition de la pente β

Pente dans l'UV, entre 1260 et 2580Å

Résultats avec Hubble

Le taux de formation d'étoiles: SFR (z=7) = SFR(z=3)/10**Ces galaxies sont insuffisantes pour réioniser** Sauf si fraction échappement fesc > 0.5 Ou bien l'univers est plus homogène que les simulations Ou encore étoiles PopIII, IMF biaisé vers les étoiles massives

Ou alors l'ionisation provient de galaxies encore plus petites →JWST (6.5m, 0.6-27µm) devrait être lancé en Mars 2021 par Ariane vers L2, durée ~10ans des moteurs Refroidi mécaniquement

Bunker et al 2010

Fonction de luminosité

Objets de plus en plus rares, quelle que soit la technique \rightarrow JWST?

-3

-4

Déclin rapide des galaxies z~8-10

Recensement tous champs HST, chute d'un facteur 10 entre z=8 et 10

Densité de formation d'étoiles

Dérivation de SFR, prenant en compte jusqu'à MUV=-17, soit SFR > $0.3 M_{\odot}$ /yr, LBG, + détections ALMA Pas de starburst \rightarrow coupure soudaine entre z=8 et 10

Objet surprenant à z=11.1

400Myr après le Big-Bang Oesch et al 2016

L'objet le plus brillant à z> 6 Détecté dans un survey de 0.2°² seulement

Cet objet ferait une distorsion dans la fonction de luminosité Oesch+16, 10^{-2} Le progrès attendra ^{10⁻³} le JWST 10⁻⁻⁻ 6 1 10^{-5'} z ~ 10 GN-z1 **B15** Extrap 10^{-6'} -- B15 Fit 10^{-7} -20 -22 -21 -18 -23 -19 -17 -16 M_{UV}

Statistiques sur 2000 émetteurs Ly α (LAE)

Projet sur le télescope Subaru z=5.7-6.6 (Ouchi et al 2017) Biais de b=4.1, les LAE suivent les sur-densités, et sont rassemblés dans les poches ionisées (encore plus, car les photons s'échappent!) Mesure de xHI = 0.15 à z=6.6 dans les halos massifs

Ionisation vs redshift

Meilleur modèle xHI =0.5 à z=7.3Mais n'ajuste pas l'agglomération et les surdensités des LAE Inoue et al 2018

Ouchi et al 2017

7

9

Redshift

11

5

Diverses possibilités

MACS J1149+2223, z=0.55 Croix d'Einstein d'une SN à z=1.49

μ=20

Les galaxies les plus faibles proviennent de lentilles

Images multiples? Rareté des sources près de ligne critique

Modélisation pour reconstruire les sources à partir des images

Biais de sélection

Rétablir le volume et en déduire la fonction de Luminosité

Atek et al 2018

Brillances de surface conservées, surfaces augmentées

Différents modèles

Le facteur d'amplification varie, mais aussi la surface considérée

CATS Diego et al Sharon et al effective volume [10³Mpc³] Keeton et al. 2 0 -20 -14 -18 -16 M_{AB} 0 φ(m) [Mpc⁻³ Mag⁻¹] This Work -5 Bouwens et al. (2017) Livermore et al. (2017) -6 -22 -20 -18 -16 -14 -12 MAB

Atek et al 2018

4 modèles du plan source

Spectre de 4 galaxies à z~7

Le spectre reconstitué **→** fraction xHI

Fraction d'émetteurs Ly α EW > 25Å croît avec z

→ Seuls les émetteurs puissants subsistent

 $X_{Ly\alpha,25}$

Diffusion résonante avant réionisation

Les émetteurs sont dans des poches ionisées

La transmission du flux Ly α dépend de <xHI> en volume, mais aussi de l'offset en vitesse, dû à la diffusion résonante Simuler aussi l'auto-protection (self-shielding) — default

xHI=0.5, ligne grisée

Davies et al 2018

Choudhury et al 2015

Les galaxies massives, forts émetteurs de UV sont privilégiées

Poches ionisées plus grandes, Distance au HI neutre dHI plus grande

Les galaxies UV massives sont moins absorbées en Lyα

 $P(EW>25\text{\AA})=$ probabilité de forte émission Ly α relative au continuum

En fonction de la couleur = magnitude

Paradoxalement, on détecte les galaxies plus massives à grand z, Car xHI est plus élevé

 \rightarrow Détermination de xHI=0.76 à z=8

Mason et al 2018

Histoire cosmique de la formation d'étoiles

Fraction de gaz? Efficacité de la formation?

Specific SFR = sSFR= SFR/M* M* =10^{9.4}-10¹⁰ M_{\odot}

Madau & Dickinson 2014

Avantage du domaine millimétrique à grand z

Correction K négative: exemple de Arp 220

Télescope gravitationnel

Les lentilles accroissent la taille d'une galaxie, en maintenant sa densité de surface

Le Boulet

Image d'un amas en mm → seulement les galaxies du fond seront vues

Filtrage des galaxies de l'amas

Découverte avec Herschel

En utilisant les lentilles gravitationnelles Herschel observe tous les amas proches

Derrière Abell 773 à z=0.22, et derrière une galaxie à z=0.63, lentille principale Combes et al 2012

Redshift découvert avec IRAM (z=5.243)

Amplification par un facteur ~11

Une galaxie hyperlumineuse L~ 10^{13} L_{\odot}, et M_{H2}~6 10¹⁰ M_{\odot}, Après correction de l'amplification

Continuum à 300GHz ~1mm, ou 160 μ dans le réferentiel au repos, avec Les interferometres SMA et IRAM \rightarrow Anneau d'Einstein

IRAM et SMA: raie de [CII] 158µm

Modèle de lentille, comparé aux observations continuum

composante bleue composante rouge

Recherches avec ALMA

En gris: NIR avec HST, VLT, SOAR Vieira et al 2013 (23/26 detected) 10 z > 4Rouge=ALMA contours 870 µm, 2min, 0.5" Redshifts à partir des spectres ALMA

Quasar à z=7.1: J1120+0641

SDP.81, at z=3.042

Longues bases → 30mas de résolution Correspond à 50-100pc pour la galaxie à z=3 (gain x 3-4 dû à lentille)

Masse dans 1.5kpc, 3 10^{10} M_{\odot}, presque entièrement du gaz! 5 groupes différents ont publié sur cet objet! 9 articles

ALMA Partnership 2015

Comptages de sources

Comptage des galaxies submm Coupure à S(850µ) ~7 mJy (Simpson et al 2015)

+ 60% Multiplicité (interactions)

UDS286

UDS156

UDS306

0

Galaxies pendant la réionisation

Raie CII dans les galaxies LBG à z=6.8-7.1, avec ALMA (1.3mm) SFR = 5-15 M_{\odot}/yr

Contours CII Offset par Rapport à l'optique Lya/UV de 4kpc Feedback? Pas de FIR faible Z?

Maiolino et al 2015

Détection par [CII] à grand z

Premières tentatives avec les galaxies Ly α infructueuses (Himiko) Galaxies sélectionnées en infrarouge $\rightarrow z=6.81-6.85$ Plus de poussière, de métallicité

Smit et al 2018

Dynamique et formation d'étoiles

Masse dynamique dans 2kpc, très incertaine

Lentille Gravitationnelle – HST-FF

Carte d'amplification pour Abell 2744

[OIII]88µm

364

Détection d'une fusion de deux galaxies à z=6.9

SFR=2900 M_{\odot} /yr Mgaz = 2.7 10¹¹ M_{\odot} Mhalo = 4 10¹¹ M_{\odot}

SPT survey, suivi avec $ALMA - D_{12} = 8 kpc$

Marrone et al 2017

Evolution de la poussière

Lentille: amplification =2, z=6.9 L_{UV} seulement 2% de la formation d'étoiles 98% obscurci par la poussière

Marrone et al 2017

Evolution du gaz moléculaire

Evolution des masses de halos

 $\delta \rho / \rho = 200$ Densité moyenne $\langle \rho \rangle(z)$

SPT survey= 10% du ciel

Marrone et al 2017

Evolution cosmique de H₂/HI

L'évolution de HI est déduite des absorbants DLA, à forte densité de colonne « Damped Lyman Alpha » (absorption saturée)

Evolution cosmique de H₂

Decarli et al 2014, 16: Observations profondes de HDF-N, 3mm Liu et al 2019, A³Cosmos, automatic mining in ALMA archive

Comparaison avec les modèles semi-analytiques (Popping 2019)

Résumé

Plusieurs méthodes permettent d'explorer les galaxies pendant la réionisation

Les quasars et leur émission Lyα
 (fossé de Gunn-Peterson, prairie et forêt Lyα)
 La technique de la cassure Lyman (LBG)
 permet de tracer la function de luminosité versus z
 Les émetteurs Lyα, LAE
 ALMA: les raies de CO, [CII]
 Réionisation tardive: xHI=0.5 à z=7.5, 0 à z=5.3
 Incertitude sur la capacité des galaxies de réioniser (nombre incertain, lentilles gravitationnelles)

