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Symétries conventionnelles et non 
dans l’espace cible

• Emergence of field-theoretic symmetries
• The stringy version of KK
• Target-space duality for closed strings



19 mars 2010 G. Veneziano Cours XII 2

Field-theoretic symmetries from QST

We have already remarked that the effective action satisfies 
some local spacetime symmetries. In particular it is invariant 
under GCT in spacetime (the principle underlying GR) and 
under gauge transformations of the B field.
What is the reason for these symmetries to emerge? No one 
had put them in: we only imposed Lorentz invariance in flat 
spacetime. However, a graviton (a photon for open strings) 
emerged from quantization and GCT-invariance looks 
necessary for describing its interactions. 
Even more simply, the B-field gauge transformation changed 
the 2D-action by a total derivative.
Can we understand the emergence of these symmetries at a 
deeper level? A formal argument goes as follows. 



S = −T

2

∫
d2ξ
√
−γγαβ(ξ)∂αXµ(ξ)∂βXν(ξ)Gµν(X(ξ))

Z(Gµν) =
∫

[dXµ] . . . e−S(Xµ,Gµν) =
∫

[dXµ] . . . e−S(Y µ,G′
µν)

=
∫

[dY µ] . . . e−S(Y µ,G′
µν) = Z(G′

µν)
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 Consider, for example, the string action in a Gμν background:

It is invariant under a GCT of Xμ( Xμ--> Yμ(X)) accompanied 
by the corresponding GCT of Gμν, Gμν--> G’μν. What 
matters in the quantum theory is the functional integral over 
Xμ at fixed Gμν, seen as a functional of the latter.
If the integration measure is itself invariant under X-->Y(X) 
then the functional integral is invariant under G-->G’ since:



δXµ = 0 ; δPµ = (Λµ,ν − Λν,µ)X ′ν

δXµ = ξµ(X) ; δPµ = − ∂ξν

∂Xµ
Pν
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This is even easier to see using a Hamiltonian path integral 
where one integrates over X and P. A GCT is a particular 
canonical transformation. In infinitesimal form:

The gauge transformation of B (B--> B + dΛ) is also 
associated with a canonical transformation:

For open strings, symmetry of the effective action under 
spacetime gauge transformations (corresponding to the 
global symmetry introduced via Chan-Paton factors) formally
follows from a similar canonical transformation. 

If the Liouville measure dXdP is invariant (it is classically 
under ANY CT) then invariance of Z(G,B) again follows. 

It is easy to check that the constraints are invariant under 
these transformations provided G, B are also transformed. 



Xµ → Xµ + ξµ
ρσ(X)γαβ∂αXρ∂βXσ
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However, there is no general rule that classical canonical 
transformations become quantum symmetries, meaning that 
there is a unitary transformation associated with them. More 
often than not the integration measure is not invariant (if 
defined in such a way as to give finite results) and one has 
“anomalies”. The question of what is the full symmetry group 
underlying QST is still unanswered although the huge 
degeneracy of states in QST hints towards a huge symmetry.
Consider for instance the “stringy” GCT transformation:

Is this a symmetry of string theory? It would imply relations 
among scattering of particles of different mass and spin. It 
turns out to be difficult to check this claim...
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So far, the symmetries we have discussed are common to 
QFT and QST, except that in QFT they are imposed from 
the start in order to describe massless spinning particles 
while in QST they “emerge” (since the massless spinning 
particles are also “emergent”).
There are, however, new local symmetries in string theory 
that have no field-theoretic equivalent. Many of them appear 
to be related to compactification of the extra dimensions.

We have already mentioned that gauge symmetries can 
emerge in QFT from the Kaluza-Klein (KK) mechanism when 
some of the spacetime dimensions are taken to be compact. 
What happens to the KK mechanism in QST?



S =
1

2κ2
5

∫
d5x
√
−g5 R5 ⇒

πR

κ2
5

∫
d4x
√
−g4 eσ

[
R4 −

e2σ

4
FµνFµν

]

l2P ≡ 16πG =
l35

2πρ
; α4 =

l2P
ρ2

; ρ ≡ eσR
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KK in QFT 
(one toroidal dimension)

In the original KK theory the extra dimension of space is a
circle of radius R. The e.m. potential Aμ becomes, essentially,
the gμ5 component of the 5-dimensional metric, while g55

plays the role of a scalar field associated with the proper
radius of the circle (the “radion”). More precisely, by writing
the 5D metric as 

ds2
5 = gµνdxµdxν + e2σ(dx5 + Aµdxµ)2 we find

giving



x5 ≡ x5 + 2πmR ; p5 = n
!
R

; q = n
lP
R

;

m2
4 = m2

5 + p2
5 = m2

5 + n2

(
!
R

)2
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R

(X1 ,X2 ,X3 ,T )!

q=0!
q=+1!

X
5
!

NB. Typically, charged particles have masses O(1/R) but 
there can be “zero modes”.
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The stringy version of KK 
(5 = compact dimension)

In string theory, for a generic value of R, the gauge symmetry 
is actually U(1)xU(1). The reason is that both Gμ5  and Bμ5   
give rise to gauge bosons. General covariance and invariance 
under gauge transformations of B both become ordinary gauge 
transformations when the GCT (or B-gauge) parameter is 
chosen to be independent of the x5 coordinate.
In a QFT context we can add by hand a B-field and get the 
extra U(1) gauge invariance. The problem is to find what the 
charge wrt this new U(1) means.
While for the U(1) coming from G we can identify the charge 
with the momentum in the 5th dimension, for the U(1) of B we 
cannot find a 5-dimensional meaning for its associated charge.
In string theory (where the B-field is inevitable) we will have 
instead a very nice interpretation. Let us see how.



X ′
µδXµ(σ = 0) = X ′

µδXµ(σ = π) ; (no sum over µ)
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Recall the boundary conditions for the closed bosonic string 
in flat space and in the ON gauge:

Strict periodicity of X5 clearly satisfies the b.c. However, 
since now the points X5 and X5 + 2π m R are identified, 
there is nothing wrong with imposing, instead, 
X5 (σ=π) = X5 (σ=0) + 2π w R. 

It simply means that the closed string winds around the 
compact direction w-times! Note that winding is a 
topological property of closed strings which has no analogue 
for points or open strings.
And, of course, winding costs energy because of the string 
tension.
The new boundary condition is easily implemented in the 
general solution by adding a “winding term”. 



X5(σ, τ) = q5 + 2nα′
!
R

τ + 2wRσ

+
i

2
√

2α′
∞∑

n=1

[
an,5√

n
e−2in(τ−σ) −

a†n,5√
n

e2in(τ−σ)

]

+
i

2
√

2α′
∞∑

n=1

[
ãn,5√

n
e−2in(τ+σ) −

ã†n,5√
n

e2in(τ+σ)

]
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X
5
!

Xi,T

w=1 w=2
w= -1

2R

NB: neither point particles, nor open strings can wind!



L0 = 1 ⇒ M2 =
(

!n

R
+

wR

α′

)2

+
4
α′ (N − 1)

L̃0 = 1 ⇒ M2 =
(

!n

R
− wR

α′

)2

+
4
α′ (Ñ − 1)

M2 =
n2

R2
+

w2R2

α′2 +
2
α′ (N + Ñ − 2) ; N − Ñ + nw = 0

N = Ñ = 1 ; n = w = 0 ; i.e. a†1µã†1ν |0〉
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For the closed bosonic string the mass shell conditions 
are:

Let us find which of the string states have zero mass. For a 
generic R it is quite clear that the only zero-mass states are 
given by:

In the absence of compactification these are just (D-2)2 

physical states: a graviton, a dilaton, an antisymmetric tensor.



∂+Xµ∂−X5 − ∂+X5∂−Xµ = ∂−(X5∂+Xµ)− ∂+(X5∂−Xµ)

N = Ñ = 1 ; n = w = 0 ; i.e. a†1µã†1ν |0〉
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With compactification these (D-2)2 massless states split 
into a graviton, a dilaton, an antisymmetric tensor in (D-1) 
dimensions (giving (D-3) 2 states), two (D-3)-component 
vectors, and 1 scalar, the “radion”.This is just what the 
QFT analysis would suggest.
However, by looking at the vertex operator for the Bμ5 
gauge boson, we discover that its “charge” is winding! 
At zero momentum the vertex operator of this field is a 
total derivative that gives zero, unless there is winding:



R = R∗ ≡
√

!α′ =
ls√
2

n = w = ±1 ; N = 0, Ñ = 1 or
n = −w = ±1 ; N = 1, Ñ = 0
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Something quite remarkable happens, however, if we 
choose a particular value for R:

In this case there are ways of getting massless strings on 
top of those we had for generic R:

These are 4 massless vectors, two left and two right-
moving. Together with the 2 previous ones they are the 6 
gauge bosons of an SU(2)xSU(2) gauge group w/ the two 
factors corresponding to left and right-moving states. 
Note that the 4 new gauge bosons carry momentum and 
winding and are therefore themselves charged, a 
characteristic of non-abelian gauge theories.
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The above solutions also provide 4 massless scalars (when 
we take the oscillator in the 5th direction).
Actually there are 4 more massless scalars corresponding 
to taking the oscillator vacuum and (n = ± 2, w=0) or (n =0, 
w= ± 2).
The total number of massless scalars is thus 10. Leaving a 
singlet dilaton aside, they form a (3,3) representation of 
SU(2)xSU(2). The radion corresponds to a particular 
direction in both SU(2)’s and plays the role of a Higgs field 
that breaks spontaneously SU(2)xSU(2) down to U(1)xU(1) 
away from the special point R = R*.
The mass of the gauge bosons corresponding to the broken 
generators is linear in (R-R*).
But the surprises are not over...
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Winding and momentum appear on a similar footing in the 
expression for X5 and for M2. However, while even in the 
classical theory winding number is an integer, classically, 
momentum in the compact direction is not quantized. At the 
classical level there is no possible symmetry between winding 
and momentum. 
At the quantum level single-valuedness of the wave function 
forces momentum to be quantized in units of 1/R. Then, all of 
a sudden, a symmetry appears between winding and momentum 
if we exchange n and w and, at the same time, we change R 
into ls2/2R. Note that the point of enhanced gauge symmetry 
is precisely the fixed point of this T-duality transformation!
T-duality is thus based on QM. It could not be otherwise 
since R-->1/R needs a length scale and there is no length scale 
in CST! It’s yet another miracle of QST! 

T-duality (for closed strings)
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We conclude that the inequivalent compactifications are 
labelled by the range R > R* so that, effectively, there is a 
minimal compactification radius R=R*. For R < R* momentum 
modes decouple and it is the winding that provides the light 
spectrum with which we probe space.
Furthermore, precisely at R=R*, a non-abelian symmetry 
emerges.
There are reasons to believe that, dynamically, string theory 
has a preference for such a value of R. Indeed, if some non-
perturbative dynamics generates a potential for the radion 
field and T-duality is respected, the potential will have an 
extremum (minimum?) at the self-dual value of R.
Possibly there will be two preferred values of R, R = infinity  
and R = R* . They could correspond to our 3 dimensions of 
space and to the compactified ones...
 



P · X ′ = 0 ; P 2 + T 2X ′2 = 0

X ′
5 → αP5/T ; P5 → α−1TX ′

5

P 2

T 2
= Ẋ2 ∼ 4n2!2α′2R−2 ; X ′2 ∼ 4w2R2
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T-duality as a canonical transformation
Can we find a canonical transformation that gives T-duality? 
The answer is yes, but illustrates the danger of trusting 
blindly canonical transformations at the quantum level.
Consider, in flat spacetime, the canonical transformation 
(NB: no minus sign needed with X’ and P):

and the constraints:

The first is left invariant by the canonical transformation 
for any value of α; the second is not unless α=1. Since: 

interchanging the two is equivalent to interchanging n and w 
and to replacing R by ls2/2R. Only one classical canonical 
transformation leads to a quantum unitary transformation!



g−2
s = e−2Φ → e−2Φ

∫
dyi

c
√

gij = e−2ΦVc = g−2
eff
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T-duality and the dilaton
There is a subtle point about T-duality. It can be appreciated 
by looking at the effective action.

When one dimension is compactified on a circle, physics in the 
remaining D-1 dimensions contains a rescaled dilaton:

As it turns out T-duality has to be accompanied by a 
transformation of Φ such that the effective coupling in the 
non-compact dimensions remains the same.

Γeff = −
(

1
ls

)D−2∫
dDx

√
−Ge−2Φ

[
4(D −Dc)

3l2s
+ R(G)− 4∂µΦ∂µΦ +

1
12

H2 + . . .

]
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A cosmological variant of T-duality?
In our description of toroidal compactifications and of T-
duality all the “internal” backgrounds Gij and Bij were constant. 
For certain properties it is sufficient that they are 
independent of just the “internal” coordinates themselves. 
A physically interesting case it that of an homogeneous 
cosmology with Gij and Bij  just functions of cosmic time. In 
that case we can still perform CT mixing Pi and Xi’ and find out 
what transformations they induce on Gij(t) and Bij(t). In 
analogy with Narain’s case these transformations, if applied 
to a cosmological solution, lead, in general, to other 
inequivalent cosmological solutions.  They form, again, an 
O(d,d) group (involving also a change of the dilaton). 
An interesting example is scale-factor-duality whereby the 
scale factor of FRW cosmology a(t) --> a-1(±t) (it can connect a 
decelerating expansion to an accelerating one driven by a 
growing dilaton) => a non-singular string cosmology?


