Large-scale machine learning for medical imaging

Bertrand Thirion bertrand.thirion@inria.fr

May 2nd, 2018

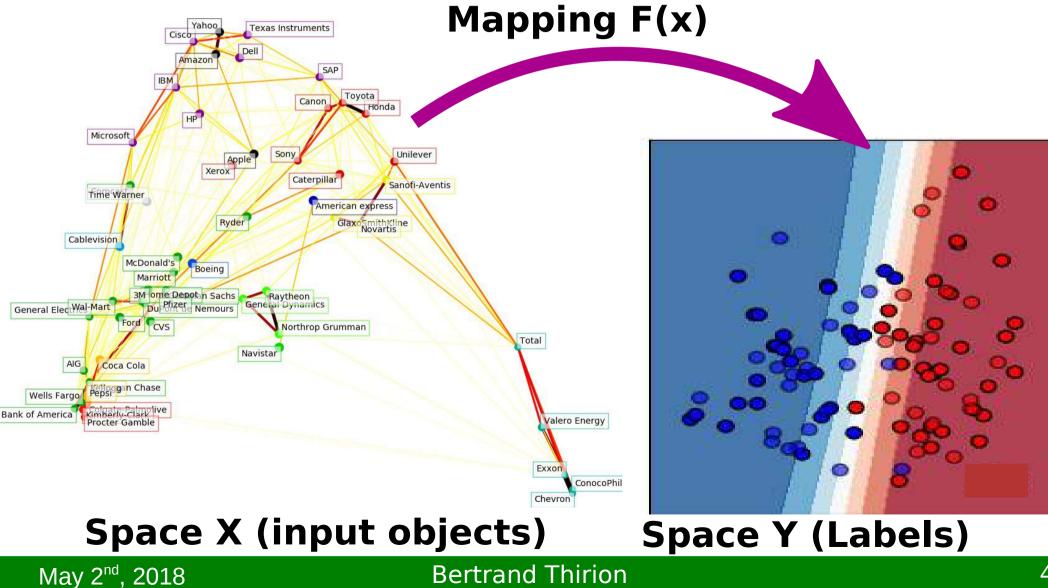
Outline

- Is machine learning useful for medical imaging ?
- Medical imaging in the big data era

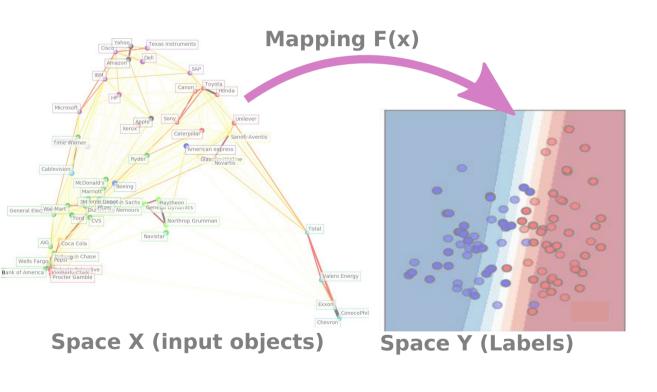
Outline

- Is machine learning useful for medical imaging ?
- Medical imaging in the big data era

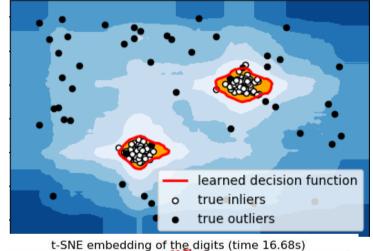
Supervised learning

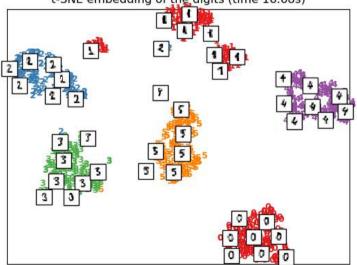


Supervised learning



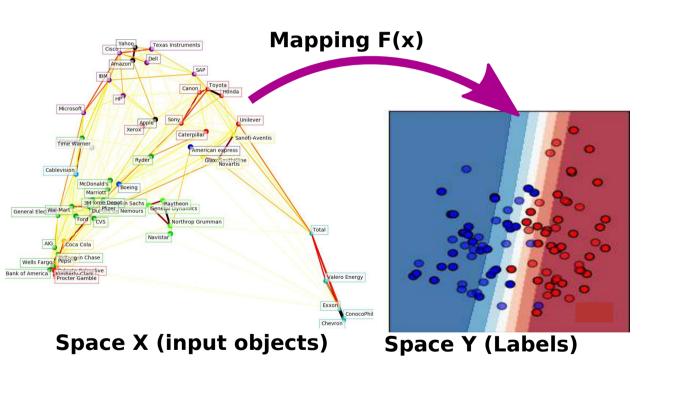
Unsupervised learning

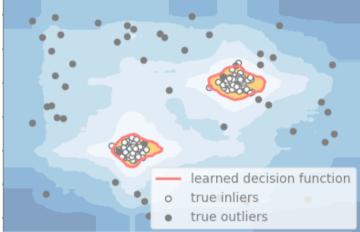


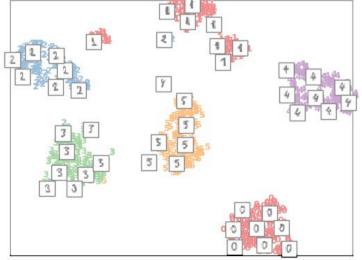


May 2nd, 2018

Supervised learning Supervised learning Visupervised learning

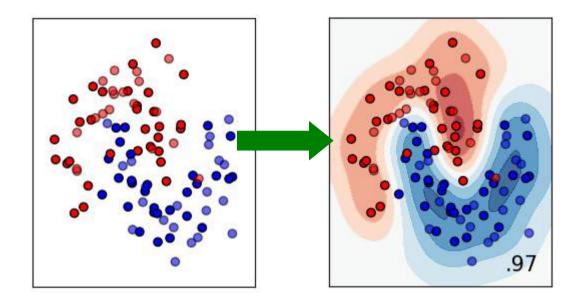




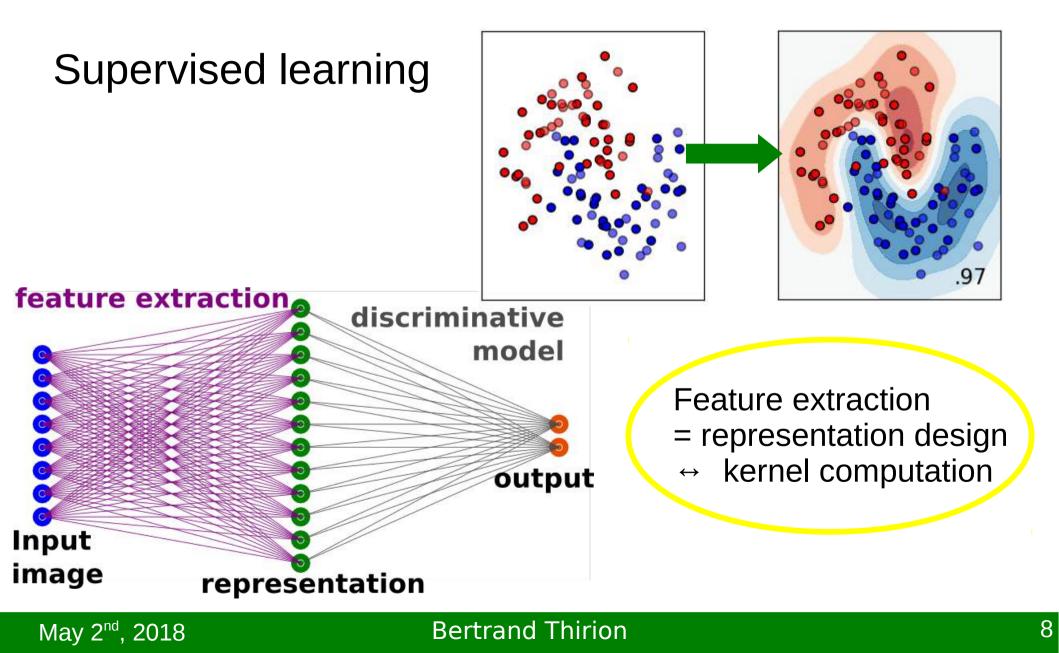


May 2nd, 2018

Supervised learning

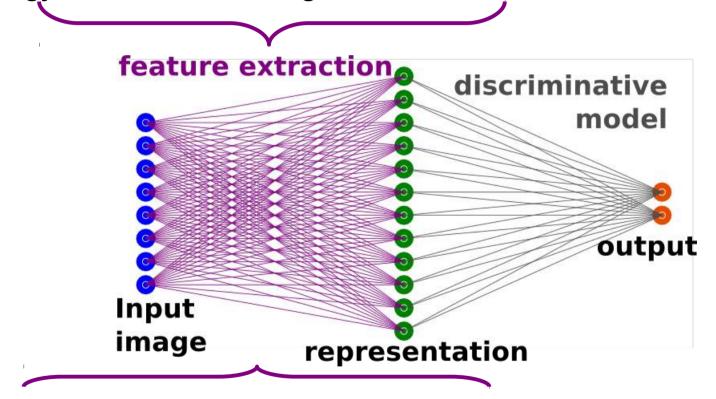




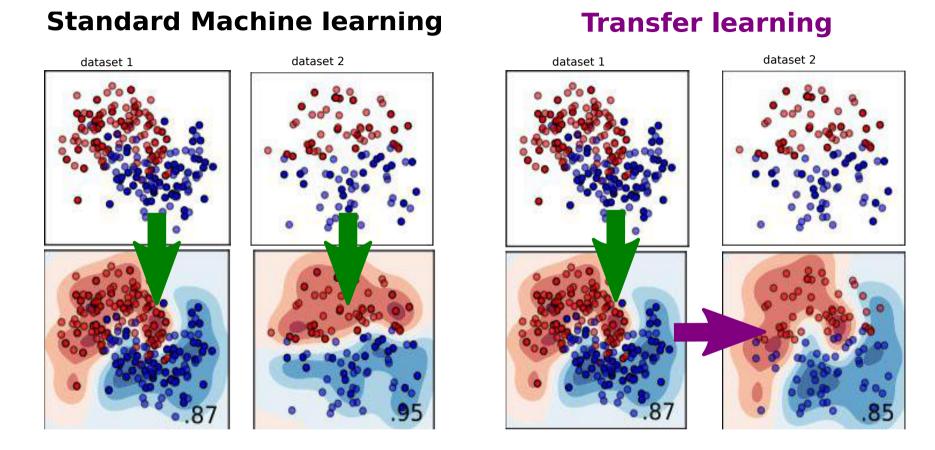


End-to-end learning

Done manually till recently *"modelling":* mathematical morphology, wavelets, filtering, statistics



Currently done by the CNN alone (possibly with transfer learning)



Transfer learning (

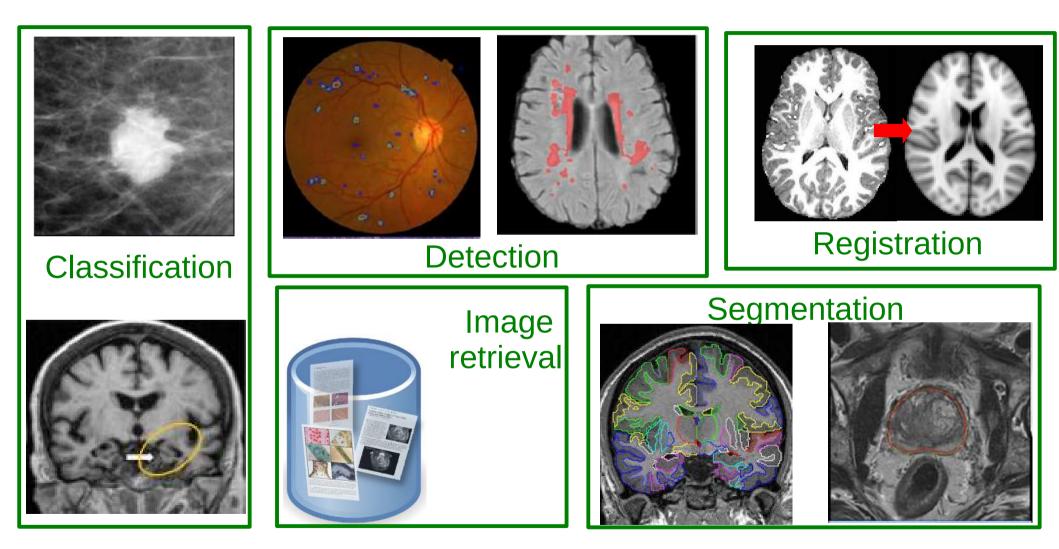
- stronger type of generalization
- successful transfer interesting as such

May 2nd, 2018

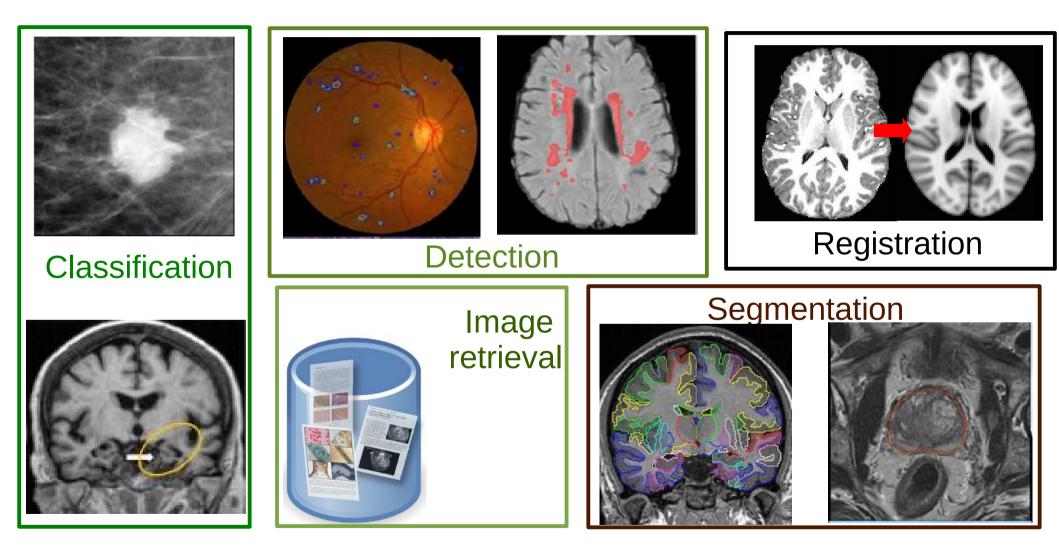
Bertrand Thirion

10

What medical imaging needs



What medical imaging needs



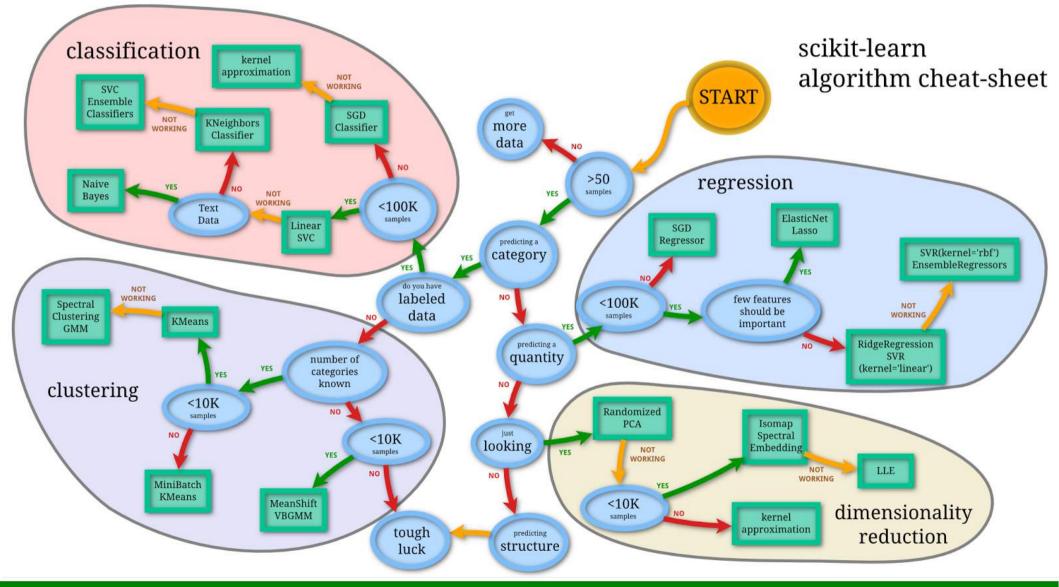
Outline

- Is machine learning useful for medical imaging ?
- Medical imaging in the big data era

Medical Imaging in the big data era

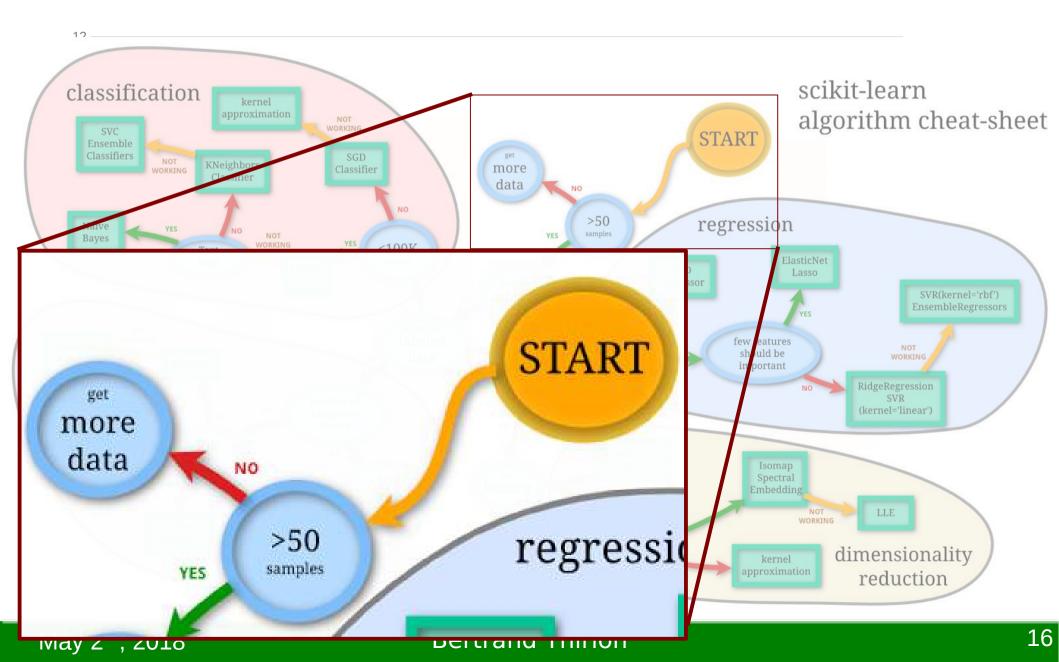
• As any statistical analysis procedure, machine learning requires large sample sizes

Sample size & multivariate analysis



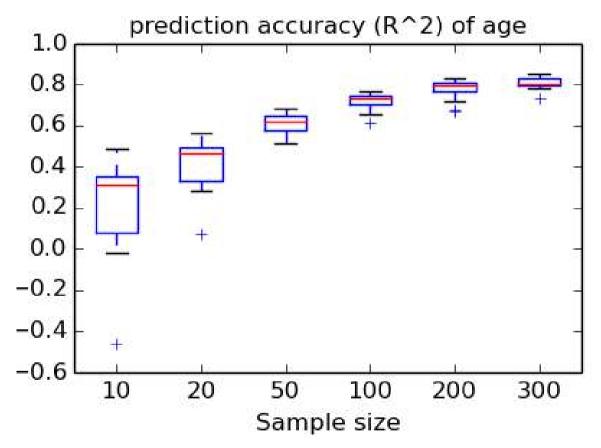
May 2nd, 2018

Multivariate analysis



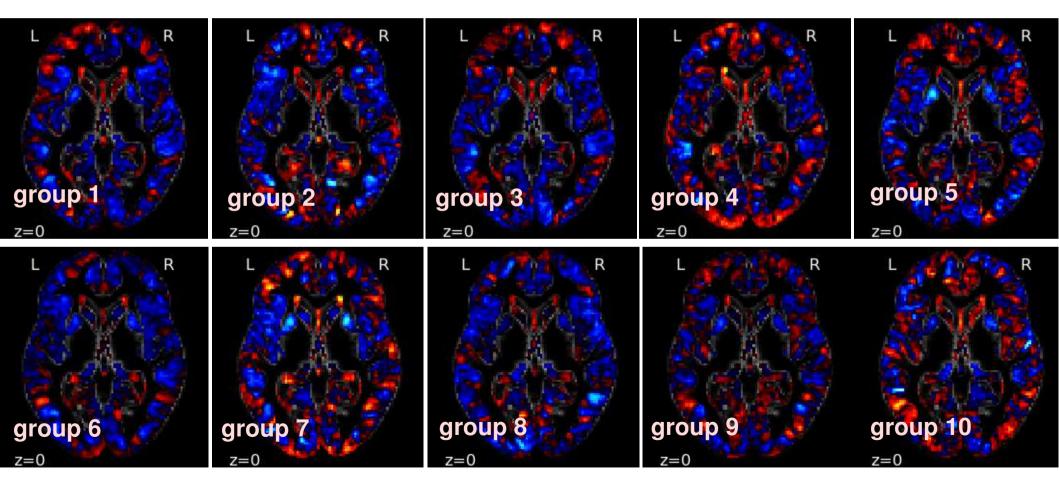
Learning curve: how prediction improves with n

 Predict the age of a subject given gray matter density maps (OASIS dataset, n=403)



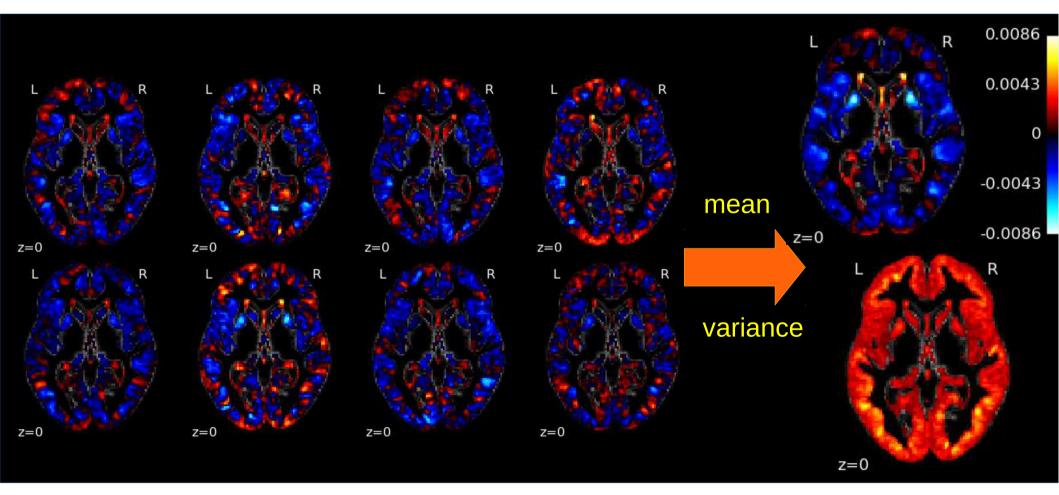
Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap): One question, different datasets, different answers



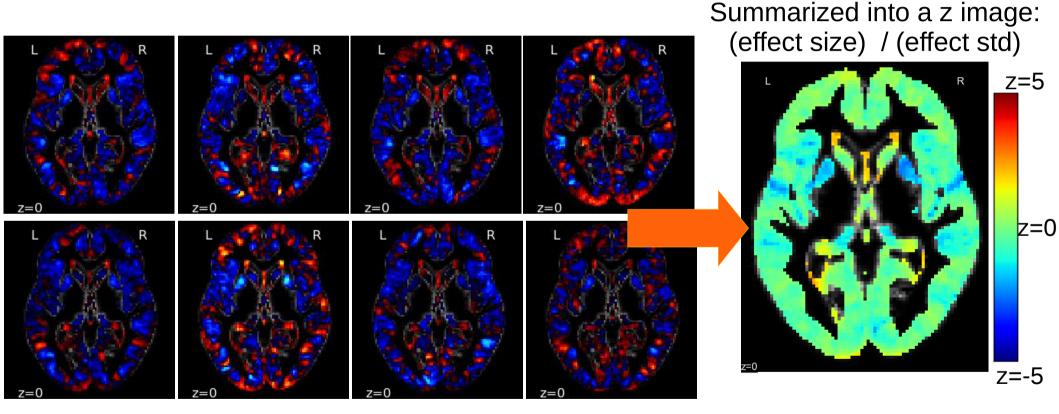
Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap): One question, different datasets, different answers



Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap): One question, different datasets, different answers



n=10

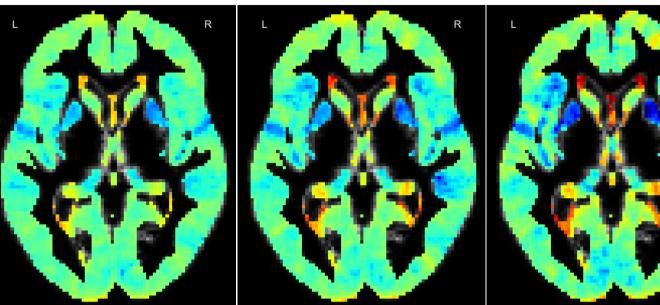
n=20

n=50

R

Weight maps for age prediction / **OASIS**

(effect size bootstrap) 7=0

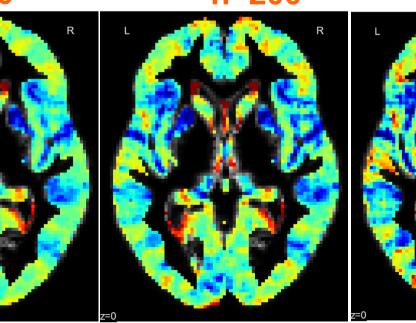


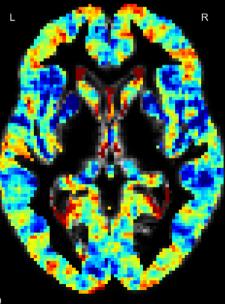
n=100

n=200

n=300





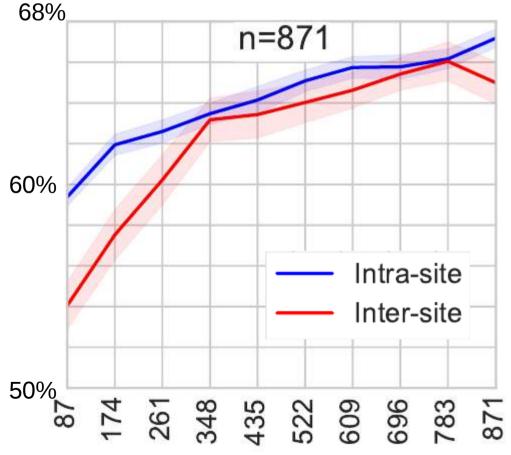


May 2nd, 2018

z=-5

Getting more data to feed learning machines

• Multi-sites cohort



classification accuracy **of the ABIDE dataset**

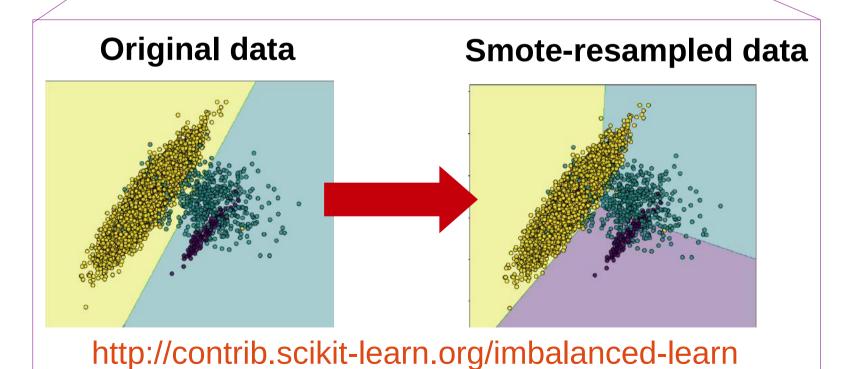
- n=871 subjects
- 17 acquisition centers

Increasing curves → more subjects in the training set improves prediction accuracy.

[Abraham et al. Nimg 2016]

Getting more data to feed learning machines

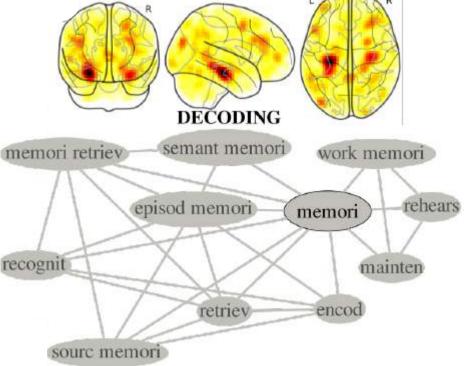
covariate shift
 class imbalance
 long-tailed distribution of labels



Getting more data to feed learning machines

- The cost is data annotation
- Try to glean concepts organization from the literature + learn association between terms and imaging structures

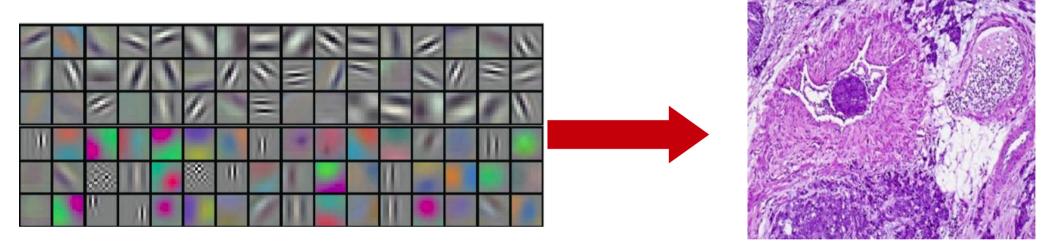
"Memory"



[Dockes et al MICCAI 2018 accept]

Overcoming the lack of data

• Transfer learning



ImageNet features

Breast cancer diagnosis

• Data augmentation: transformations, rescaling, resampling, deformations.

May 2nd, 2018

"Has anyone on the ML run group-wise analysis on the HCP resting state data, and if so what tools did you use?

I am having memory issues when running more than 10 subjects and I was wondering if anyone has a way of getting around the large memory requirements when concatenating in time."

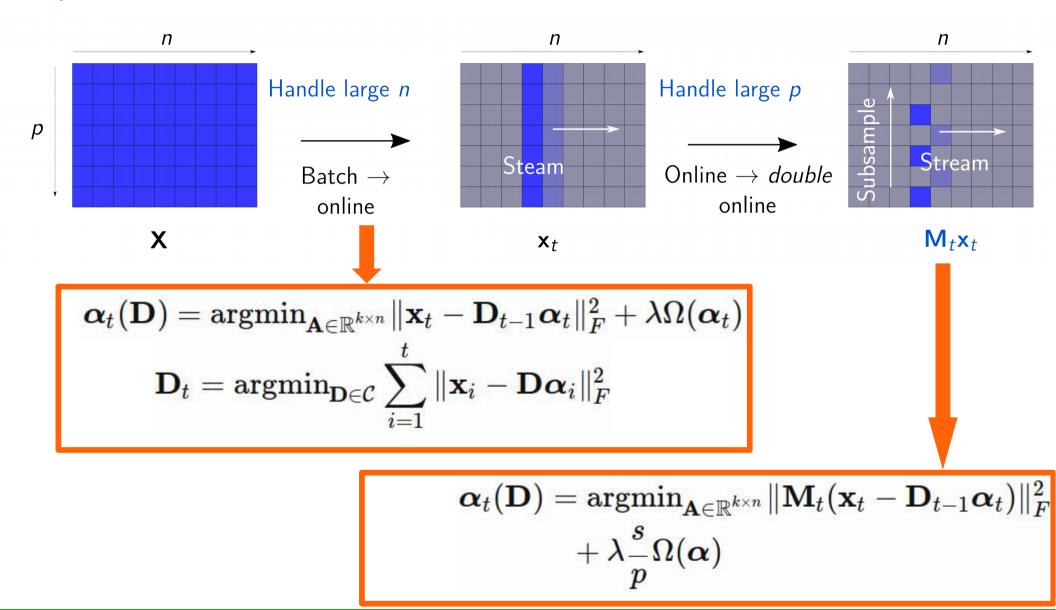
Working on huge data matrices

- Human Connectome project
- n=2.10⁶, p=2.10⁵, **2TB** of data
- Task: segmentation into regions
- Online dictionary learning [Mairal et al. ICML 2009]
- How to go faster ?
 - Work on batches of images **and** voxels

[Mensch et al. ICML 2016, IEEE TSP 2018]

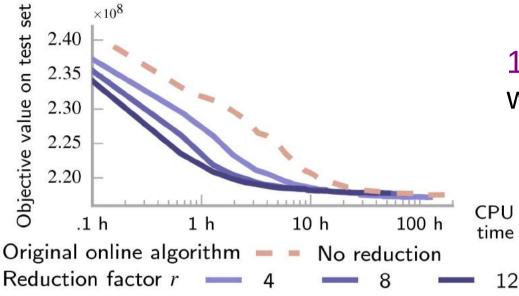
Stochastic gradient approaches

http://amensch.fr/research/2016/06/10/modl.html



May 2nd, 2018

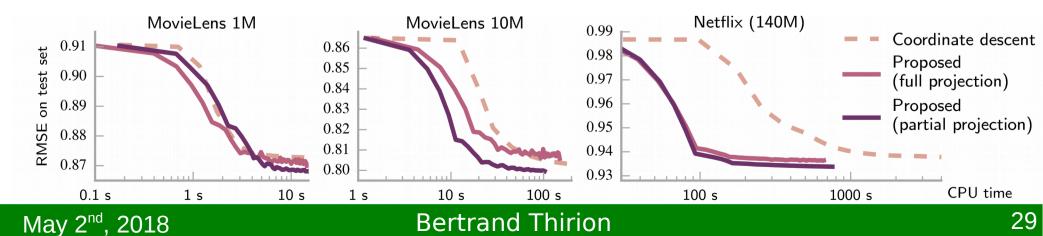
Stochastic gradient approaches



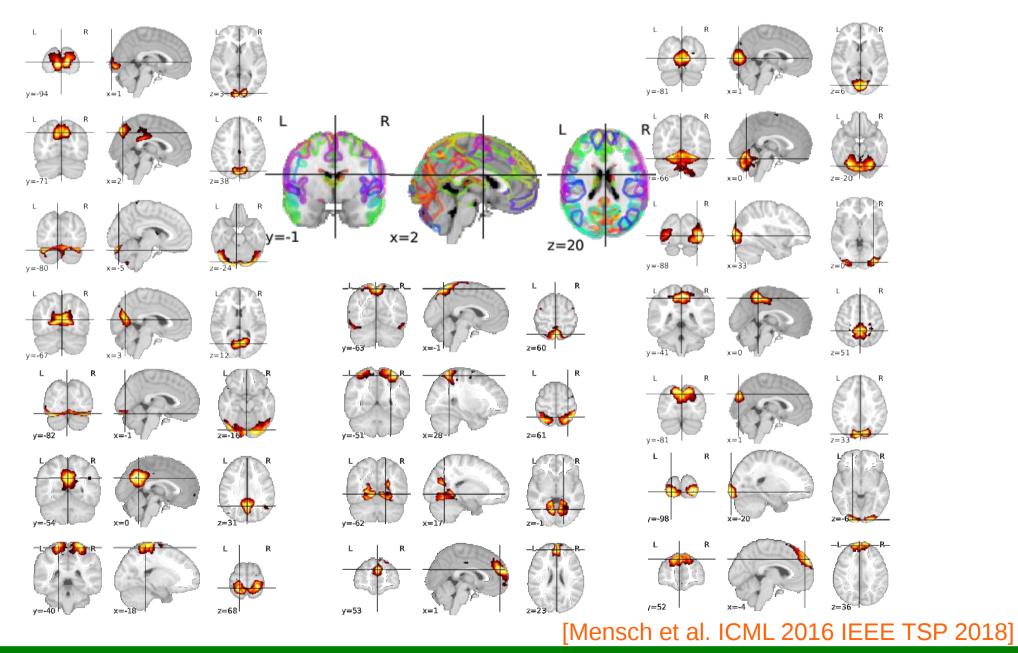
10-fold gain in CPU time without loss in accuracy

[Mensch et al. ICML 2016, IEEE TSP 2018]

Can be used for recommender systems

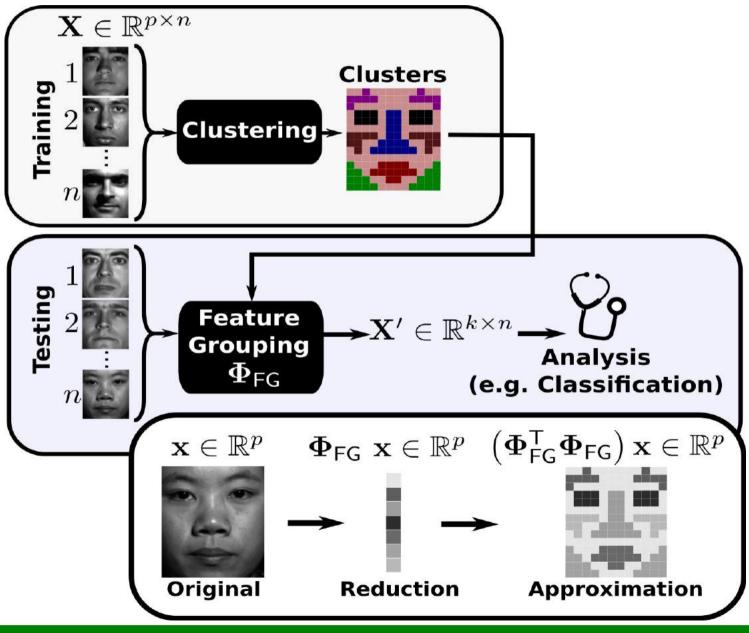


Resulting brain atlas



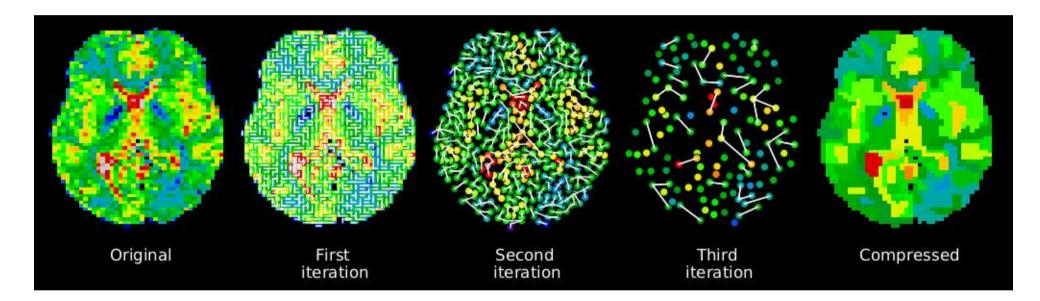
May 2nd, 2018

Compression by feature grouping



May 2nd, 2018

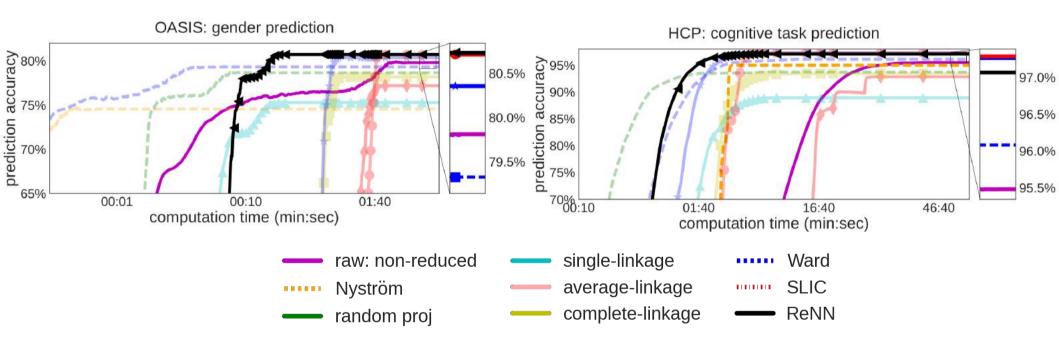
Recursive Neighbour Agglomeration



Based on local decisions = fast (linear time) – avoid percolation

[Thirion et al. Stamlins 2015, Idrobo et PAMI in press]

Effect on data analysis tasks



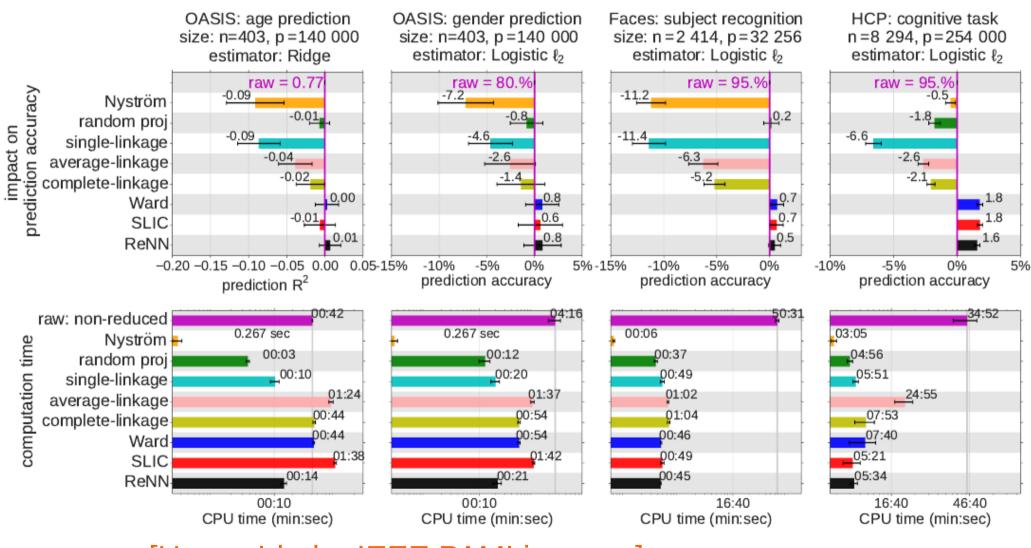
Impressive speed-up and increased accuracy with respect to non-compressed representation

- Clustering has a denoising effect

[Hoyos Idrobo IEEE PAMI in press]

May 2nd, 2018

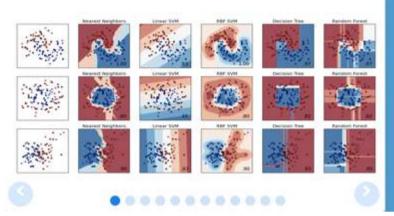
More results



[Hoyos Idrobo IEEE PAMI in press]

May 2nd, 2018

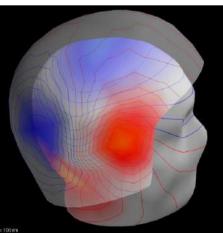
Software



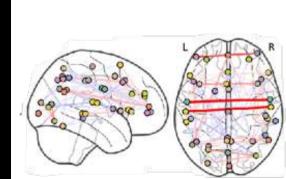
scikit-learn

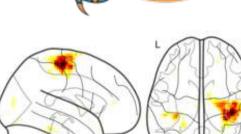
Machine Learning in Python

- · Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- · Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license
- Python OSS, community development
- scikit learn: all types of shallow machine learning
- MNE, nilearn: brain imaging applications



May 2nd, 2018





learn

Conclusion

- Dataset increase: Importance of data sharing
- Deal with confounds and covariate shifts
- Handling of missing data, inconsistent annotations
- Explicability of models

Parietal

- G. Varoquaux,
- A. Gramfort,
- P. Ciuciu,
- D. Wassermann,
- D. Engemann,
- A. Manoel,
- D. Chyzhyk
- A.L. Grilo Pinho,
- E. Dohmatob,
- A. Mensch,
- J.A. Chevalier,
- J.A. Chevaller,
- A. Hoyos idrobo,
- D. Bzdok,
- J. Dockès,
- P. Cerda,
- C. Lazarus
- D. La Rocca
- G. Lemaitre
- L. El Gueddari
- O. Grisel
- M. Massias
- P. Ablin
- H. Janati
- J. Massich
- K. Dadi
- C. Petitot

Acknowledgement

UNU

Other collaborators (thanks for the data) S. Dehaene R. Poldrack, J. Haxby C. F. Gorgolevski J. Salmon

université

PARIS-SACLAY

Bertrand Thirion

Human Brain Project

May 2nd, 2018

HP