
May 2nd, 2018 Bertrand Thirion 1

Large-scale machine learning 

for medical imaging

Bertrand Thirion

bertrand.thirion@inria.fr

mailto:bertrand.thirion@inria.fr


May 2nd, 2018 Bertrand Thirion 2

Outline

● Is machine learning useful for medical imaging ?

● Medical imaging in the big data era
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What is machine learning good at ?

Supervised learning

Space X (input objects) Space Y (Labels)

Mapping F(x)
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What is machine learning good at ?

Supervised learning

Feature extraction
= representation design
↔  kernel computation
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End-to-end learning

Done manually till recently “modelling”: mathematical 
morphology, wavelets, filtering, statistics

Currently done by the CNN alone 
 (possibly with transfer learning)
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What is Machine Learning good at ?

Transfer learning
● stronger type of generalization
● successful transfer interesting as such

Standard Machine learning
dataset 1 dataset 2 dataset 1 dataset 2

Transfer learning
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What medical imaging needs

Classification Detection

Segmentation

Registration

Image 
retrieval
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Medical Imaging in the big data era

● As any statistical analysis procedure, machine 
learning requires large sample sizes
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Sample size & multivariate analysis
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Multivariate analysis
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Learning curve: how prediction 
improves with n

● Predict the age of a 
subject given gray 
matter density maps 
(OASIS dataset, 
n=403) 
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Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

group 1 group 2 group 3 group 4 group 5

group 6 group 7 group 8 group 9 group 10
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Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

mean

variance
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Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

Summarized into a z image:
(effect size)  / (effect std)

z=-5

z=5

z=0
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Weight maps 
for age 

prediction / 
OASIS

(effect size 
estimated by 

bootstrap)

z=-5

z=5

z=0

n=100 n=200 n=300

n=10 n=20 n=50
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Getting more data to feed 
learning machines

● Multi-sites cohort

Increasing curves → more 
subjects in the training set 
improves prediction accuracy.

[Abraham et al. Nimg 2016]

68%

60%

50%

classification accuracy of the 
ABIDE dataset 
● n=871 subjects
● 17 acquisition centers 
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Getting more data to feed 
learning machines

● covariate shift

Original data Smote-resampled data

http://contrib.scikit-learn.org/imbalanced-learn

● class imbalance ● long-tailed distribution 
of labels

http://contrib.scikit-learn.org/imbalanced-learn
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Getting more data to feed 
learning machines

● The cost is data annotation
● Try to glean concepts organization from the 

literature + learn association between terms 
and imaging structures

“Memory”

[Dockes et al MICCAI 2018 accept]
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Overcoming the lack of data

● Transfer learning

● Data augmentation: transformations, 
rescaling, resampling, deformations.

ImageNet features Breast cancer diagnosis
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HCP mailing list, Jan 19th, 2015

“Has anyone on the ML run group-wise analysis on 
the HCP resting state data, and if so what tools did 
you use? 

I am having memory issues when running more 
than 10 subjects and I was wondering if anyone 
has a way of getting around the large memory 
requirements when concatenating in time.”

ML on large image datasets
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Working on huge data matrices

● Human Connectome project 
● n=2.106, p=2.105, 2TB of data
● Task: segmentation into regions
● Online dictionary learning [Mairal et al. ICML 2009]

● How to go faster ?
– Work on batches of images and voxels

[Mensch et al. ICML 2016, IEEE TSP 2018]
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 Stochastic gradient approaches
http://amensch.fr/research/2016/06/10/modl.html

http://amensch.fr/research/2016/06/10/modl.html
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Stochastic gradient approaches

10-fold gain in CPU time 
without loss in accuracy

Can be used for recommender systems

[Mensch et al. ICML 2016,

IEEE TSP 2018]



May 2nd, 2018 Bertrand Thirion 30

Resulting brain atlas

[Mensch et al. ICML 2016 IEEE TSP 2018]
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Compression by feature grouping
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Recursive Neighbour Agglomeration

Based on local decisions = fast (linear time) – avoid percolation

[Thirion et al. Stamlins 2015, Idrobo et PAMI in press]
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Effect on data analysis tasks

Impressive speed-up and increased accuracy with 
respect to non-compressed representation

– Clustering has a denoising effect

[Hoyos Idrobo IEEE PAMI in press]
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More results

[Hoyos Idrobo IEEE PAMI in press]
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Software

● Python OSS, community development
● scikit learn: all types of shallow machine learning 
● MNE, nilearn: brain imaging applications
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Conclusion

● Dataset increase: 
Importance of data 
sharing

● Deal with confounds 
and covariate shifts

● Handling of missing 
data, inconsistent 
annotations

● Explicability of models
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