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Chapter 1

Introduction

This document is the reference manual of the Esterel v7 language, release v7 60, supported
by Esterel Studio 6.0. Esterel v7 is a major evolution of the previous version Esterel v5
[?, ?, ?], which makes it possible to design much richer systems and in particular hardware
and software systems that combine complex data path and control path features.

1.1 The Esterel v7 60 version

Esterel v7 60 is a minor evolution of Esterel v7. Esterel v7 60 involves the following
extensions:

• The ‘_’ character can be used in non-prefixed unsigned literals, as for 18_500_000.

• The observe keyword can be used in an interface extension or a port definition to
import all the signals as inputs, see Section ??.

• Enum codes can be signed or unsigned numbers, see Section ??. In the previous
version, enum codes had to be unsigned numbers only.

• Enum values can be converted to unsigned or signed numbers and conversely, see
Section ??.

• The switch expression in a switch statement can be of signed type or bitvector type,
see Section ??. In the previous version, only switch expressions of unsigned or enum
types were allowed.

• Signal emissions in emit and sustain statements can be nested in switch-case

structures, see Section ??.

• In a run statement, a submodule value-only input can be renamed by an expres-
sion, see Section ??. In the previous version, only submodule pure inputs could be
renamed by an expression.

• In a run statement, a registered signal can rename a submodule output, see Sec-
tion ??. In the previous version, a registered signal could not rename a submodule
output.

• Bitvector maps can be defined in a sequenced way, see Section ??.
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• The onehot predefined function can be used to check if a bitvector is onehot-encoded,
see Section ??.

• The resize and resize predefined functions can be used to resize a bitvector to
a new length, see Section ??. The resize and resize functions are more general
than the extend and sextend functions and intended to replace them. The extend

and sextend functions should be considered as obsolete.

• The if static instruction makes it possible to write configurable code and also
enables static module recursion, see Section ??.

• Assumptions are now built-in in the language and can be expressed with the assume

keywords, see Section ?? and Section ??.

• Coverage points make it possible to monitor Boolean expressions for design coverage,
see Section ?? and Section ??.

• Observers make it possible to write observation code independent from design code
but connected to it for verification, see Chapter ??.

• Local signals and ports can be declared directly in module headers, see Section ??.
This makes them visible from observers, see Section ??.

1.1.1 Esterel v7 60 feature summary

Here is a summary of the main features of Esterel v7 60:

• Synthesizability of all programs in hardware and software, including multiclock de-
signs.

• Separation of data, interface, and module units for better program structuring and
reuse.

• Data genericity of interface and module units.

• Arrays of any dimension and arrays of arrays of any base type. Array expres-
sions, with array slicing on any number of dimensions. Bitvectors seen as arrays
of Booleans.

• Arbitrary precision exact arithmetic, dealing with abstract unsigned and signed num-
bers.

• Multiple number encodings to switch between numbers and their representations as
bitvectors.

• Equational definitions of signals, which nicely complement Esterel imperative state-
ments and are of major use in data path descriptions.

• Powerful temporal statements to handle complex control.

• Static replication of statements, fundamental for architectural design.

• Built-in assertions to check dynamic properties by simulation or formal verification.
Built-in assumptions to express environment constraints.
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• Built-on coverage points to enhance design verification during simulation and check
coverability by formal verification.

• Observers for non-intrusive design verification.

1.2 Structure of the Language Reference Manual

We chose to present the manual in three parts: Part A deals with single-clock design, while
Part B deals with multiclock design, and Part C is dedicated to observers. Multiclock
design requires preliminary understanding of single-clock design. Therefore, we think it is
wiser to present it separately in Part B. Observers presented in Part C are not intended for
design building but for design verification. That is why they are described in a separate
part.

For Part A, Chapter ?? presents the data, interface, and module units, and details the
data genericity mechanism. Chapter ?? presents the data objects. Chapter ?? presents
the unsigned and signed exact arithmetic. Chapter ?? presents signals and variables.
Chapter ?? presents signal declarations in interfaces and modules. Chapter ?? presents
signal and data expressions. Chapter ?? presents the Esterel v7 statements. Chapter ??
presents the submodule run statement. Chapter ?? present oracles, a special kind of
uncontrolled signals to model non-determinism. Chapter ?? presents the macro-expansion
of complex constructs into simpler ones. Finally, Chapter ?? presents the run-time errors
that Esterel v7 programs can trigger.

For Part B, Chapter ?? presents the basics of multiclock design. Since multiclock
design is much more delicate than single-clock design, the chapter presents a thorough
studies of examples. Finally, Chapter ?? presents the syntax and constraints of multiclock
units.

For Part C, Chapter ?? introduces observers, which are intended for non-intrusive
design verification. The purpose of observers is to write verification code, in particular
assumptions, assertions, and coverage points, which is independent of design code but
connected to it for verification purpose. Since observers are brand new in v7 60, some
examples are given at the end of the chapter in order to get users started.

1.3 Lexical issues

1.3.1 Identifiers and keywords

Identifiers start with a letter and can contain letter, digits, and ‘ ’ characters. They are
case-sensitive and of unlimited length.

The list of keywords is as follows:

abort abs after always and assert assert unsigned await
bin2u bin2s bins ize bool bool2u
c a l l case clock combine constant
data default do dodown dopar double doup
each e l se emit end enum every exit extends
f a l s e f i n a l i z e f l oa t for function
generic gray2u
halt handle host
i f immediate in in i t inout input inputoutput integer inter face
lcat loop
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main map mcat mcrun mem mirror mod module multiclock mux
never next not nothing
onehot2u open or oracle out output
pause port pos it ive pre pre1 procedure
re f ine reg reg1 re lat ion repeat reset reverse run
s2bin sat seq sextend s ignal sign signed str ing suspend sustain switch
temp then t ick times trap true type
u2bin u2gray u2onehot unsigned upto
value var
weak when with
xor

It is possible to use a keyword as an identifier by prefixing it by ‘\’. For instance, ‘\emit’
is a valid identifier whose actual name is emit.

1.3.2 Comments

Single-line comments start with ’//’, and multiline comments are bracketed by ’/*’ and
’*/’ (for compatibility with Esterel v5, one can also use ’%’ for single-line comments
and ’%’ and ’%’ to bracket multiline comments). Comments starting by ’///’ or ’/**’
are propagated in special ways in generated code and documentation, see the compiler
doceumentation for details.

1.3.3 Labels

One can use the ’@’ symbol after a keyword or operator to define a label to be propagated
to the generated code in some compiler-defined way. Here are examples:

pause@WAIT1

halt@"hello   world "

x +@smart y

The way labels are propagated is compiler-dependent, see the compiler documentation for
details.

Acknowledgements: The Esterel v7 language is now being proposed for IEEE stan-
dardization under project P1778. A preliminary design was performed by G. Berry, from
Esterel technologies, and M. Kishinevsky from Intel Strategic CAD Lab, Portland. An
early document about this design is available on www.esterel-eda.com. Some constructs
have been borrowed from the Esterel++ design done at Dassault Aviation. The language
has benefited of many discussions with Stephen Edwards, Columbia University, Olivier
Tardieu, INRIA, and many users at Intel, Philips (now NXP), ST Microelectronics, and
Texas Instruments.



Chapter 2

Units and Genericity

2.1 Data, interface, and module units

An Esterel v7 60 program is composed of toplevel named units, which can be of three
kinds: data units, interface units, and module units. The role of the different units is as
follows:

• A data unit declares data types, constants, functions, or procedures. These objects
can be either defined in place, host , i.e. defined in the host language to which Esterel
is compiled, or generic for better reuse, as explained below. A data unit can extend
one or several other data units by importing all the objects they declare. Simple or
multiple data extension will be fully studied in Section ??.

• An interface unit primarily declares input / output signals. It can extend other data
and interface units by importing all their data and signal declarations. Extension
can be selective, i.e. limited to the input or output signals of the extended interface.
The mirror “mirror Inf” of an interface Intf is an interface with the same signals
but input / output directionalities exchanged. An interface unit can also declare
data objects and extend data units locally. Interface units can be generic w.r.t. data
objects. Interface extension will be introduced in Section ?? and fully studied in
Chapter ??.

• A module unit defines a reactive behavior. It is composed of a module header,
which contains declarations, and of a body which is an executable statement. As
the other units, a module can be generic w.r.t. data objects. A module header can
extend data and interface units by importing all the objects they declare. There
is no module behavior extension, this notion being much less clear than data and
interface extension. It can also declare locally data objects and interface signals.

Data genericity means that units and modules can be defined in an abstract way, depending
on generic parameters. For instance, a module that delays a value by some number of ticks
can be declared with data a generic value type T and a generic delay constant D. When
instantiating the module, one can for instance specify the type T to be bool and the delay
D to be 3. Genericity is studied in Section ??.

Modules can instantiate the behavior of other modules using the run executable state-
ment described in Chapter ??. One of the modules must be called the main module. It is
the one to be executed.
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All the unit names share the same namespace. Therefore, data, interface, and module
units must have distinct names. Units make object names visible either directly when
using extension or through the dot notation ‘X.A’ for port fields. There should also be no
conflict between unit names and object names. The visibility rules will be made precise
below for each kind of unit.

Before entering into details about units and genericity, we give two illustrative examples
to gradually introduce these concepts.

2.2 A basic example

Here is a main module written in the most compact form, grouping all data and interface
declarations in the module header. The module takes a signed number as input and
doubles it on the output. There is precise size control on the input and output values,
which are respectively in the ranges [−8..7] and [−16..15]:

main module Double :

constant N : unsigned = 8;

input I : signed <N>;

output O : signed <2*N>;

every I do
emit ?O <= 2 * ?I

end every
end module

Splitting data and interface signals in separate units make it possible to separate the data /
interface / behavior concerns for better readability and reuse. Here is the same example
with maximally split data and interface units:

data SizeData :

constant N : unsigned = 8;

end data

inter face DoubleIntf :

extends data SizeData;

input I : signed <N>;

output O : signed <2*N>;

end inter face

module Double :

extends inter face DoubleIntf;

every I do
emit ?O <= 2 * ?I

end every
end module

The extends declarations specify that all the objects defined in the extended unit are
imported in the current unit, in a recursive way. Therefore, the constant definition N = 8 is
imported within Double since Double extends DoubleIntf which itself extends SizeData.

It is also possible and sometimes better to split concerns a little less, in order to avoid
introducing too many small units. Here, we can suppress the data unit and directly declare
the constant N in the interface:
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inter face DoubleIntf :

constant N : unsigned = 8;

input I : signed <N>;

output O : signed <2*N>;

end inter face

An interface can extend another interface by importing all its data and signal components:

inter face ExtendedIntf :

extends inter face DoubleIntf;

output X : bool[N];
end inter face

The components of ExtendedIntf are N, I, O, and X. The latter is a bitvector of size N,
see Chapter ??.

If one is only interested in importing the constant N, one can extend only the data
part of DoubleIntf using the “extend data” keywords, thus forgetting about the signals
I and O:

data PartiallyExtendedIntf :

extends data DoubleIntf;

output X : bool[N];
end data

Then, the only components of PartiallyExtendedIntf are N and X.

2.2.1 Making the units generic

So far, we have hard-wired the value 8 for N in its declaration. It is possible to make
the units generic w.r.t. the value of N, by prefixing the declaration with generic and not
giving the value. Here is a generic interface declaration:

inter face DoubleIntf :

generic constant N : unsigned;

input I : signed <N>;

output O : signed <2*N>;

end inter face

The generic constant N acts as a size parameter for the input signal I and the output
signal O. The type signed<N> of I is that of all signed numbers from −N to N−1 included,
while the type signed<2*N> of O is that of all signed numbers from −2× N to 2× N− 1,
see Section ?? below for details. These defined types themselves depend on the generic
parameter N; we call them defined generic types.

Genericity is inherited by simple extension: without having to change its code, Double
above automatically becomes generic in the same constant N since it imports the generic
declaration of N.

Notice that the generic parameters are declared together with normal data objects,
unlike in C++-like languages where generics are declared in a specific parameter list
placed before the class declaration.

2.2.2 Instantiating a generic unit

The generic interface and module are instantiated by substituting actual objects for generic
ones using the ‘[./.]’ substitution notation below:
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inter face DoubleIntf8 :

extends inter face DoubleIntf [constant 8 / N]

end inter face

module Double8 :

extends inter face DoubleIntf8;

run Double [constant 8 / N]

end module

For the interface, the extends declaration simply includes the extended interface into the
new one after substitution of actual data objects to generic ones. For the module, the run

statement does more than instantiating the generic module: it also executes its code. Here,
the run statement is executed at toplevel, realizing the simplest behavior instantiation.
Generally speaking, run statements can appear anywhere a statement can.

2.3 A memory example

The next example is that of a simple memory. We start with a non-generic memory, then
make it generic, and instantiate it in different ways.

2.3.1 A non-generic memory

A non-generic memory may have object type, size, and address type, explicitly defined as
follows:

data MemData :

type ObjType = bool [32];
constant MemSize : unsigned = 256;

type Address = unsigned <MemSize >;

end data

The memory interface is declared as follows:

inter face MemIntf :

extends data MemData;

input Write : Address;

input DataIn : value ObjType;

input Read : Address;

output DataOut : value ObjType;

end inter face

The “extends data” declaration imports all data objects of MemData into MemIntf. The
other objects declared in MemIntf are interface signals. Valued signals such as Read or
Write carry two kinds of information: a Boolean status, absent or present (also called low
or high, unset or set, 0 or 1, etc.), and a value of the type that follows the colon. The
status is tested by giving the name of the signal, as in “if Write then...”, and the value
is read using the ‘?’ operator, as for ?Write which denotes the address carried by Write.
A value-only signal such as DataOut is declared with the additional value keyword. It
has no status.

In MemIntf, the status of Write is used as a write enable for the value DataIn at
address ?Write, while that of Read is used as a read enable at address ?Read, with the
read operation returning the value ?DataOut. The memory behavior is written as follows:
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module Mem :

extends inter face MemIntf;

var MemArray : ObjType[MemSize] in
always

i f Write then
MemArray [?Write] := ?DataIn

end i f ;
i f Read then

emit ?DataOut <= MemArray [?Read]

end i f
end always

end var
end module

The semicolon ‘;’ denotes sequencing: if write and read occur at the same address, the
value read is the one just written.

2.3.2 Making the memory generic

Making the memory generic consists in specifying the value type and memory size as
generic parameters, without changing the interface and module codes. For this, we simply
write the following:

data MemData :

generic type ObjType;

generic constant MemSize : unsigned;

type Address = unsigned <MemSize >;

end data

In MemData, the generic parameters are explicitly indicated by the generic keyword. The
Address defined generic type is not a generic parameter, but it is indirectly generic in
some sense since it depends on the generic parameter ObjType.

When making the data unit generic, the memory interface and behavior module au-
tomatically become generic in the same parameters since basic extension of a data unit
simply imports its declaration. One can also make interfaces and modules directly generic
by declaring generic objects within them, without resorting to a separate data unit.

2.3.3 Reconstructing a specific memory

Our initial word memory interface can be reconstructed as follows, with more explicit type
and size names:

data WordData :

type Word = bool [32];
constant WordMemSize: unsigned = 256;

end data

inter face WordMemIntf :

extends WordData;

extends MemIntf [type Word / ObjType;

constant WordMemSize / MemSize]

end inter face
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Here, extension of MemIntf substitutes actuals for generic parameters and imports the
other data and signal objects from MemIntf after this substitution. Therefore, the visible
data objects within WordIntf are the type Word, the constant WordMemSize, and the
Address type defined by Address = unsigned<WordMemSize>. The generic parameter
names Objtype and MemSize are not visible any more. The signals of MemIntf are as
follows:

input Write : Address;

input DataIn : value Word;

input Read : Address;

output DataOut : value Word;

Here is the instantiation of the behavior module:

module WordMem :

extends inter face WordMemIntf;

run Mem [type Word / ObjType;

constant WordMemSize / MemSize ];

end module

Because we have split the interface and module declaration , we need to repeat the sub-
stitution in the run executable statement; otherwise, that statement would still have
generics ObjType and MemSize. Substitution in the interface extension from MemIntf to
WordMemIntf has no effect on the Mem module, which still has MemIntf interface: extends
and run are uncorrelated.

2.3.4 Ports and run statements

Assume we want to use a pair of word memories in an application. It is clearly not possible
to directly extend twice WordMemIntf, since this would doubly declare its component with
the same names. We do not provide ways of renaming signals in interface instantiation.
The solution we propose is to use ports, which are groups of signals typed by an interface.
One uses a dot-notation to access port fields, as for conventional record fields. Here is a
compound of two concurrent word memories accessed by two ports:

module DoubleWordMem :

port P1 : WordMemIntf;

port P2 : WordMemIntf;

{

run WordMem1 / WordMem [P1.Write / Write , P1.DataIn / DataIn ,

P1.Read / Read , P1.DataOut / DataOut]

||

run WordMem2 / WordMem [P2.Write / Write , P2.DataIn / DataIn ,

P2.Read / Read , P2.DataOut / DataOut]

}

end module

As far as behavior is concerned. two instances of the WordMem module are run in parallel
using the Esterel ‘||’ concurrency operator. To distinguish the instances, they are renamed
into WordMem1 and WordMem2 in the run statement. One writes into memory 1 using
P1.Write, and one reads from memory 2 using P2.Read. In the run statements, the ‘/’
character is used to connect signals in the caller to interface signals in the callee. For
instance, the port field P1.Write declared in DoubleWordMem is connected to the Write

input of WordMem1.
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To further simplify the writing, on can use the open statement described in Section ??
that gives direct access to port fields:

{

open P1 in
run WordMem1 / WordMem

end open
||

open P2 in
WordMem2 / WordMem

end open
}

In the body of the “open P1” port opening statement,simple identifiers such as Write be-
come synonyms to the field P1.Write. Therefore, the implicit renaming “Write / Write”
silently performs the actual renaming to “P1.Write / Write”.

Notice that signal instantiation uses the same syntax as data instantiation: the actual
signal is on the left of the ‘/’ instantiation symbol and the instantiated interface param-
eter is on the right. This is true independently of the input / output directionality of
the interface signals. Data instantiation and signal instantiation can both appear in an
instantiation list, with data instantiation first, see Chapter ??..

Port declaration and run statements are not extensions

A port declaration refers to an interface but it does not provoke extension of this interface.
Similarly, a run statement does not extend the data and interface of the module it refers
to. Therefore, in the body of DoubleWordMem, the data object Word, WordMemSize, and
Address are not visible. This is not a problem here since we do not need to refer to them.
However, we might need to be able to use them, for instance to code additional check or
trace operations. This is easily done by adding the following declaration:

extends data WordMemIntf;

2.3.5 Multiple instantiation of generic data: renaming defined objects

Substituting actual data to generic parameters is not enough to deal with multiple het-
erogeneous instantiation of a generic unit. For instance, assume we want to define an
interface for a pair of memories of different types and sizes, with an access port for a 128
bytes memory and an access port for a 256 words memory. A fully explicit description
would be as follows:

data ByteMemData :

type Byte = bool [8];
constant ByteMemSize = 128;

type ByteAddress = unsigned <ByteMemSize >;

end data

data WordMemData :

type Word = bool [32];
constant WordMemSize = 256;

type WordAddress = unsigned <WordMemSize >;

end data
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inter face ByteMemIntf :

extends ByteMemData;

input Write : ByteAddress;

input DataIn : value Byte;

input Read : ByteAddress;

output DataOut : value Byte;

end inter face

inter face WordMemIntf :

extends WordMemData;

input Write : WordAddress;

input DataIn : value Word;

input Read : WordAddress;

output DataOut : value Word;

end inter face

inter face MemoryPair :

extends ByteMemData;

extends WordMemData;

port BytePort : ByteMemIntf;

port WordPort : WordMemIntf;

end inter face

Obviously, the goal of genericity is to factor out these declarations by instantiating the
same generic units twice. The first obvious idea would be to write the data units hierar-
chically as follows:

data ByteMemData :

type Byte = bool [8];
constant ByteMemSize = 128;

extends MemData [type Byte / ObjType;

constant ByteMemSize / MemSize]

end data

data WordMemData :

type Word = bool [8];
constant WordMemSize = 256;

extends MemData [type Word / ObjType;

constant WordMemSize / MemSize]

end data

data DoubleMemData :

extends ByteMemData;

extends WordMemData;

end data

with automatic building of address types by the extension scheme. But this simple method
would not work since it would provoke a double declaration of the Address type:

type Address = unsigned <ByteMemSize >; // from ByteMemData

type Address = unsigned <WordMemSize >; // from WordMemData
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Therefore, we need a way to distinguish between byte and word addresses as we did in the
non-generic design. To solve this problem, Esterel provides the user with the possibility
of renaming defined types at extension time:

data ByteMemData :

type Byte = bool [8];
extends data MemData [type Byte / ObjType ,

ByteAddress / Address;

constant ByteMemSize / MemSize]

end data

data WordMemData :

type Word = bool [32];
extends data MemData [type Word / ObjType ,

WordAddress / Address;

constant WordMemSize / MemSize]

end data

data DoubleMemData :

extends data ByteMemData;

extends data WordMemData;

end data

Although they use the same substitution symbol ‘/’, the substitution “Byte / ObjType”
and “ByteAddress / Address” are not quite of the same nature: the first one passes the
actual type Byte defined in ByteMemData to replace the generic type ObjType of MemData,
while the second one renames the defined generic type Address generated by MemData into
ByteAddress for inclusion in DoubleMemData.

To avoid performing the same substitution again for interfaces, one can do the substi-
tution directly for both data and signals at interface level:

inter face ByteMemIntf :

extends inter face MemIntf [type Byte / Obj ,

ByteAddress / Address;

constant ByteMemSize / MemSize]

end inter face

inter face WordMemIntf :

extends inter face MemIntf [type Word / Obj ,

WordAddress / Address;

constant WordMemSize / MemSize]

end inter face

module ByteWordMem :

extends data ByteMemIntf; // forgetting signals

extends data WordMemIntf; // forgetting signals

port BytePort : ByteMemIntf;

port WordPort : PortMemIntf;

run Mem [type Byte / ObjType;

constant ByteMemSize / MemSize;

s ignal BytePort.Write / Write ,

BytePort.DataIn / Write ,

BytePort.Read / Read ,

BytePort.DataOut / DataOut]
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||

run Mem [type Word / ObjType;

constant WordMemSize / MemSize;

s ignal WordPort.Write / Write ,

WordPort.DataIn / Write ,

WordPort.Read / Read ,

WordPort.DataOut / DataOut]

end module

2.3.6 Composing genericity

The byte and word memories share a common property: they both store bitsets of different
lengths. Therefore, it can also be useful to define bitset memories of variable length as
intermediate structure. Here is how to do this:

data BitsetMemData :

generic constant BitsetLength : unsigned;

type BitsetType = bool[BitsetLength ];
end data

inter face BitsetMemIntf :

extends BitsetMemData;

extends MemIntf [type BitsetType / ObjType ];

end inter face

module BitsetMem :

extends BitsetMemIntf;

run Mem [type BitsetType / ObjType ];

end module

Here, we have changed the level of genericity: the former generic type ObjType has been
replaced by a generic parameter BitSetLength determining the size of the bitset type.
This is what we call genericity composition. The other generic parameter was MemSize.
Since it has not been instantiated, its declaration is simply imported in BitSetMemIntf

and BitSetMem and it remains generic there. The implicitly created interface unit is as
follows:

inter face BitsetMemIntf :

generic constant BitsetLength : unsigned;

type BitsetType = bool[BitsetLength ];
generic constant MemSize : unsigned;

type Address = unsigned <MemSize >;

input Write : Address;

input DataIn : value BitsetType;

input Read : Address;

output DataOut : value BitsetType;

end data

2.3.7 Implicit generic instantiation

Finally, if there is only one instantiation of the memory in the design, simply defines the
generic parameters with the same names before instantiating the design:
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inter face WordMemIntf :

constant MemSize = 256;

type Address = unsigned <MemSize >

type ObjType = bool [32];
extends MemIntf;

end inter face

Here, the simple extension “extends MemIntf” acts as a short-hand for

extends WordMemIntf [ type Addess / Address ,

ObjType / ObjType;

constant MemSize / MemSize]

This capture-by-name mechanism is very convenient for large argument lists.

2.4 Data genericity specification

2.4.1 Data declaration

Units declare data objects of four different kinds: type, constant, function, and procedure.
Data objects can be declared in three different ways:

• Generic, declared with the generic keyword. Generic objects only have a kind, a
name, and possibly a type.

• Fully defined , with no reference to generic objects. They can be given a definition
in the data unit, or they can be declared host, in which case their definition is to be
given in the host language.

• Defined generic, with a definition, that refers to other generic or indirectly generic
object. Host objects cannot be defined generic; in particular they cannot have generic
types.

Consider the following example:

data D :

generic constant WordLength : unsigned;

type Word = bool[WordLength ];
host type Time;

generic type T;

generic constant A : T;

generic function F (T, T) : T;

constant C : T = F(A,A);

end data

Here, WordLength, T, A, and F are generic, while Time is fully defined and Word and C are
defined generic. There is an additional dependency of A, F, and C on T since their types
involves T; these types will be viewed as a constraints to be respected at instantiation time.
For instance, if one writes “bool / T”, one must substitute A by a Boolean constant and
F by a Boolean binary function. In that case, C will indeed type-check as a bool.
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2.4.2 Generic data extension

Data extension of a generic unit Sub within a current unit U is peformed by declaration of
the form “extends data Sub”, optionally with a bracketed substitution list. A substitu-
tion list has semicolon-separated sections, each identified by a keyword type, constant,
function, or procedure. There can be serveral sections starting with the same keyword.
Within each section, Substitutions are comma-separated. A substitution has the form
“X / Y” where X is a data object already declared in U and Y is a data object of the same
kind declared in Sub. The rules are as follows:

• If Y is a generic parameter in Sub, there are two subcases:

– If there is already an object called Y in U, then this object is substituted to Y

in the definition of all the subsequent data objects imported from Sub.

– Otherwise, Y becomes a generic parameter of U.

• If Y is a defined or defined generic object in Sub, its definition in Sub becomes the
definition of X in U after generic parameter substitution.

2.4.3 Generic extension example

Generic extension is mostly useful for interfaces and modules. Consider the following
generic interface that extends D above:

inter face Intf1 :

extends D;

input I : T;

output O : Word;

end inter face

A partial extension of Intf1 can be defined as follows:

inter face Intf2 :

extends Intf1 [type bool / T;

constant true / A;

function and / F]

end inter face

Then Intf2 is actually the following interface:

inter face Intf2 :

generic constant WordLength : unsigned;

type Word = bool[WordLength ];
host type Time;

constant C : bool = true;
input I : bool;
output O : Word;

end inter face

Notice that the generic parameter names T, A, and F do not occur any more in Intf2 since
they have been instantiated. From Intf2, we can derive a fully defined interface Intf3 as
follows:

inter face Intf3 :

extends Intf2 [constant 32 / WordLength]

end inter face
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This makes the name WordLength disappear in Intf3. To keep this convenient name alive,
one can write the extension as follows:

inter face Intf4 :

constant WordLength : unsigned = 32;

extends Intf2;

end inter face

Then, WordLength is defined when Intf2 is extended and it replaces Intf2’s WordLength
generic parameter during the extension. The final interface Intf4 is fully defined, and it
could have been written as follows:

inter face Intf4 :

constant WordLength : unsigned = 32;

type Word = bool[WordLength ];
host type Time;

constant C : bool = and(true , true);
input I : bool;
output O : Word;

end inter face

If needed, one could have renamed some defined components to give them more explicit
names:

inter face Intf5 :

constant WordLength : unsigned = 32;

extends Intf2 [type Word32 / Word]

end inter face

Then, the resulting interface would have been:

inter face Intf5 :

constant WordLength : unsigned = 32;

type Word32= bool[WordLength ];
host type Time;

constant C : bool = and(true , true);
input I : bool;
output O : Word32;

end inter face

2.4.4 Using interfaces in ports and runs

When an interface Intf is refererred to in a port declaration “port P : Intf”, it is not
considered as being extended. Therefore, all its generic parameters must be either already
defined in the context or renamed in the port declaration, as in the following declarations:

type Word = bool [32];
port P : Intf [type Word / ObjType]

Since there is no name exported from Intf to the current context, defined objects of Intf
cannot be renamed in a port interface substitution list.

Similarly, the interface of a module M is not extended by a “run M [...]” statement.
All generic parameters must be either already defined or explicitly instantiated, and no
defined object can be renamed.
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2.4.5 Name spaces, visibility, and declaration uniqueness

The named objects in a program are units, data objects, signals, ports, variables, and
traps. Units and statements define the visibility scope at each point of the program. All
the unit names are visible from everywhere in a program. Data objects are visible at a
point if they were already declared in the current unit or imported from other units, this
directly or indirectly. Signals, variables, and traps follow classical static scoping visibility
rules for statements, explained in Chapter ??.

At each point, there is a single namespace for all the visible objects. Therefore, no
two distinct objects can have the same name if they are visible from a common point.
Consider the following program:

data D1 :

constant C : unsigned = 213;

end data;

module M1 :

extends D1;

output O : unsigned;

emit ?O <= C

end module

data D2 :

constant C : unsigned = 347;

end data;

module M2 :

extends D2;

output O : unsigned;

emit ?O <= C

end module

main module Main :

output O : unsigned;

run M1;

pause;
run M2

end module

Since there is no point at which the two different declarations of the C identifier are visible,
the program is legal and emits 213 at first instant and 347 at second instant. It would be
illegal to write:

main module Main :

extends data D1;

extends data D2;

output O : unsigned;

run M1;

pause;
run M2

end module
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because the two distinct definitions of a constant named C would be visible in the same
scope.

Nevertheless, relying only on visibility rules to give the same name to two different
constants can be confusing for the program reader and should we done with care.

Multiple data extension

It is legal to import twice the very same declaration during unit extension, as in the
following multiple extension scheme:

data D :

constant N : integer = 3;

end data

data D1 :

extends D;

type T1 = unsigned <N>;

end data

data D2 :

extends D;

type T2 = unsigned <N>;

end data

data D3 :

extends D1;

extends D2;

end data

Since D1 and D2 both extend D, they share the very same definition of N. On the contrary,
the following scheme is illegal:

data D1 :

constant N : integer = 3;

type T1 : unsigned <N>;

end data

data D2 :

constant N : integer = 3;

type T2 : unsigned <N>;

end data

data D3 :

extends D1;

extends D2;

end data

Here, there are two objects called N, which is forbidden even though their definitions
happen to coincide.

2.4.6 Host objects are global

Host objects are considered as global to the whole application (in practice, they are most
often defined with their name in the host language, although this is not strictly manda-
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tory). Therefore, it is forbidden to declare two host objects with the same name, even if
there is no visibility scope where both declarations are visible.

2.5 Forgetting unit components

There is a strict hierarchy between the three kinds of units: any interface unit can be
viewed as a data unit of the same name by forgetting its signals, and any module unit can
be viewed as an interface unit by forgetting its behavior. A data or interface keyword
specifies what is retained (not forgotten). Here is an example:

inter face Intf1 :

generic type T1;

input I : T1;

output O : T1;

end inter face

data D2 :

extends data Intf1; // forget I and O

host type T2;

end data

module M3 :

extends data D2;

input I : T1;

output O : T2;

· · ·
end module

module M4 :

extends data M3; // forget I and O of Intf1 and M3

input J : T1;

· · ·
end module

For D2, the “extends data Intf1” keywords are used to specify that we extend only the
data part of Intf1, forgetting about its interface signals. Similarly, “extends data M3”
extends only the data part of M3 and disregard its interface. Notice that there is no double
declaration of I and O in M3 since their declarations in Intf1 were forgotten.

To shorten writing, the keywords data or interface can be omitted in an extends

declaration when there is no possible confusion, The rules are as follows, where Intf is an
interface and M is a module assumed to be already declared, for any unit U and any unit
V that contains “extends U”:

• If U is a data unit, then “extends U” is the same as extends data U.

• Otherwise, if V is a data unit, then “extends U” is the same as “extends data U”.

• Otherwise, U and V are interfaces or modules, and “extends U” is the same as
“extends interface U”.
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Data

The data objects handled in Esterel v7 60 are types, constants, functions, and procedures.
These objects can be defined either directly in the Esterel program or in the host language
to which the Esterel program is compiled. In the latter case, the data objects are called
host data objects and are known only by their name and type at Esterel level. The value
of host constants and the body of host functions and procedures is supposed to be defined
in the host language.

Furthermore, Esterel supports generic data definitions for parametric design, as ex-
plained in Section ??.

3.1 Types

Types can be of four kinds:

• primitive, i.e. defined by the language;

• host, i.e. defined in the host language;

• generic, i.e. type parameters of a unit.

• defined, i.e. defined in the program from other types and constants.

3.1.1 The bool primitive type

The bool type contains the true and false Boolean values, with constants named true or
’1 and false or ’0. It is used in test expressions and is also the basis of bitvectors, see
Section ??.

The primitive function bool2u takes a bool argument and returns the unsigned number
0 for argument false and the unsigned number 1 for argument true. Its result type is
unsigned<2>, see Section ?? below.

3.1.2 The unsigned primitive types

For each natural number M > 0, the type unsigned<M> is a primitive type that denotes
natural numbers from 0 to M − 1 included. There is no maximum to the range since
Esterel supports arbitrary precision exact unsigned arithmetic, see Section ??.

23
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Note that M represents the size of the set being encoded, not the number of bits in
binary encoding. Therefore, unsigned<21> represents all the natural numbers from 0 to
20 included, while the set of numbers one can write with 21 bits is unsigned<2**21>.

Of course, it is very common to take a power of 2 for N. We provide the user with the
syntactic sugar unsigned<[M]> for unsigned<2**M>. Therefore, unsigned<2**21> can
also be written unsigned<[21]>. The number of bits it takes to implement unsigned<M>
can be computed as binsize(M-1), where the primitive function binsize(M) returns the
number of bits it takes to write the number M in binary, see Section ??.

To be compatible with more classical type declarations, one can also omit the size
declaration altogether and write unsigned as a shorth-hand for unsigned<[32]>.

In designs, the unsigned types play two different roles:

• At run-time, they are fundamental to implement various kinds of calculations: count-
ing, addressing, coloring pictures, etc.

• At compile-time, they are fundamental to define size arrays, index arrays, count
events, parametrize designs, etc.

Esterel unsigned arithmetic is exact, which means that ‘+’ always means exact addition, ‘-’
always means exact subtraction, etc. There is no overfflow in exact arithmetic: operations
never drop bits in an implicit way, unlike in classical software languages or HDLs. All
bit-dropping calculations must be explicitly done by the user. Unsigned arithmetic is
presented in details in Section ??.

Abstract numbers vs. bit encodings

Esterel unsigned numbers are defined in an abtract way, independently of any internal
representation. The user or the compiler may choose to use other internal representations
than classical binary: onehot, Gray, signed-digit Avizienis encoding, etc. This is why the
size parameter M of the unsigned<M> declaration is a set size and not a bit size: the
number 21 takes 5 bits in binary or Gray encoding, 22 bits in onehot encoding, and 10
bits in Avizienis redundant binary encodings.

Of course, bitvector manipulations are also essential, for instance because addresses
or values must be extracted from bit frames. The user can convert numbers to bitvector
representations and conversely using encoding and decoding functions such as u2bin or
bin2u for binary encoding, see Section ??. Three primitive encodings are predefined
in Esterel together with their conversion functions: binary, onehot, and Gray. Specific
encodings can be added by the user, for example signed digit encoding. Distinguishing the
semantics of numbers from their internal representation makes programming higher-level,
since algorithms are expressed at a more abstract level. It also yields more optimization
potential and an easier link to the newest verification systems that do understand numbers
and not only bits: such mathematical algorithms based systems definitely prefer exact
arithmetic to truncated one.

Unsigned literals

Unsigned literals can be written in various numbering systems:

• decimal, either without prefix as in 15 or with a ‘0d’ prefix as in 0d15;
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• binary, with a ‘0b’ prefix, as in 0b1111;

• octal, with a ‘0o’ prefix, as in 0o17;

• hexadecimal, with a ‘0x’ prefix, as in 0xF.

For all forms, one can use ‘_’ underline characters to make the value more readable, as
for 123_456 and 0b_110_001. This character can appear at any place. It is ignored when
computing the constant value.

The type of an unsigned constant M declared in Esterel is the minimal unsigned type
that contains it, which is unsigned<M+1>. This type is automatically extended as needed
to larger unsigned types during arithmetic operations, see Section ??.

Only the numerical value of a literal matters to define its type. For instance, since lead-
ing 0’s don’t change the value, the literals 0xA and 0x0A have the same type unsigned<11>.
See Section ?? for the difference with bitvector constants, which are not numerically eval-
uated: ’xA has type bool[4] while ’xOA has type bool[8].

Unsigned constant tight declarations

When declaring an unsigned defined constant, one gives the value of the constant after
the ‘=’ sign. To control intermediate result sizes in expressions that use this constant, it
is always a good idea to declare the type of the constant as the smallest unsigned type
that contains its value. This type is unsigned<N+1> if the value is N . Here are explicit
declarations of this kind, where A and B are already declared unsigned constants:

constant WordSize : unsigned <33> = 32;

constant C : unsigned <A+B+2> = A+B+1;

To make such declarations simpler, Esterel v7 provides the user with a simpler defined un-
signed constant tight declaration syntax, where the type is simply declared as unsigned<>
to abbreviate unsigned<N+1> if the value is N . The previous examples can be rewritten
as follows:

constant WordSize : unsigned <> = 32;

constant C : unsigned <> = A+B+1;

The tight declaration syntax is available only for defined unsigned constant declaration and
cannot be used elsewhere. Any constant expression can be used in the defining expression.

3.1.3 The signed primitive types

Given a positive integer M , the type signed<M> denotes the set positive or negative
integers x such that −M ≤ x < M , i.e. the range [−M,M − 1]. Note that the cardinality
of this set is 2M . The notation signed<[M]> is a shorthand for signed<2**(M-1)>,
which exactly denotes the set of signed integers one can represent with M bits in 2’s
complement binary notation. One can use integer as a synonym for signed<[32]>.

As for unsigned arithmetic, signed arithmetic is always exact and no implicit bit-
dropping is performed. Signed arithmetic is presented in Section ??.

Although the language does not enforce signed numbers to be represented in 2’s com-
plement binary form, the bounds are chosen to conform to it, and predefined functions
s2bin and bin2s converts signed numbers to and from bitvectors in this form.
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There are no signed literals. Signed constants can be built from unsigned literals by
adding the + or - signs, as for +3 or -5, see Section ??.

For compatibility with common use, we provide the user with the integer keyword
as an abbreviation of signed<[32]>. Beware if you lazily use this type for synthesis, you
may generate unwanted 32-bit registers.

Signed constants tight declarations

Signed constants tight declarations are similar to unsigned constants tight declarations
described in Section ??. When declaring an signed defined constant, one can use the tight
type denotation signed<> to mean the smallest signed type that contains the value of the
expression. If the expression is E, that type is computed as follows:

• If E evaluates to a positive number n, the type is signed<n+1>

• If E evaluates to a negative number −n, n > 0, the type is signed<n>.

• If E cannot be completely evaluated in the current scope because it contains generic
constants, the type is signed<abs(E)+1>, where abs be the is the absolute value
function described in Section ?? below. the ‘+1’ term is needed to handle the case
where E is positive.

Assume that A and B are previously declared signed constants with known values, and
consider the following declarations:

constant C : signed <> = 5;

constant D : signed <> = -5;

constant E : signed <> = A+B;

The type of C is signed<6>, while the type of D is signed<5>. If the value v of A+B is
positive, the type of E is unsigned<v + 1>. If v is negative, let w = −v; then the type of
E is unsigned<w>.

The tight signed declaration syntax is available only for defined constant declaration
and cannot be used elsewhere.

3.1.4 The float primitive type

The float type denotes positive or negative floating-point numbers. The constants are
written as in C++ or Java: 12.3f, .123E2F, or -1.23E-1F. The representation and range
of supported floats depends on the host language and CPU architecture. It should agree
with the IEEE floating point norm.

3.1.5 The double primitive type

The double type denotes positive or negative double-precision floating-point numbers.
The constants are written as in C++ or Java: 12.3, .123E2, or -1.23E-1. The repre-
sentation and range of supported doubles depends on the host language and architecture.

.
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3.1.6 The string primitive type

The string type is a primitive type. It denotes character strings. Constant strings are
written between double quotes: "a string", with doubled double quotes as in "a "" double quote".
The empty string is written "".

3.1.7 Enum types

An enum type defines a list of distinct values, which are given symbolic names and called
enum constants. For example:

type Color = enum {Red , Blue , Green };

Enum constants are associated with signed or unsigned numbers, which are called enum
codes, and which must be all distinct. By default, with no explicit enum code declaration,
enum codes shall be the unsigned numbers 0, 1, 2, 3, etc. For example, the Color type
above has code 0 for Red, code 1 for Blue, and code 2 for Green.

The user may explicitly specify the enum code of every enum constant by specifying
an unsigned literal preceded by an optional ‘+’ or ‘-’ symbol:

type CardSuit = enum {

Clubs = 1, // explicit code 1

Diamonds , // implicit code 2

Hearts = 4, // explicit code 4

Spades // implicit code 5

};

type CarManualGear = enum {

Rear , // implicit code -1

Idle = +0, // explicit code 0

First , // implicit code +1

Second , // implicit code +2

Third , // implicit code +3

Fourth , // implicit code +4

Fifth // implicit code +5

};

type CarAutomaticGear = enum {

Rear , // implicit code -1

Park = +0, // explicit code 0

Standard = +2, // explicit code +2

Sport // implicit code +3

};

If any of the user enum codes uses a ‘+’ or ‘-’ symbol, then the type is a called signed
enum type. Otherwise, the type is an unsigned enum type. If no code is specified, the type
is considered as an unsigned enum type.

For an unsigned enum type, the code of the first constant shall be 0 if it is not specified
by the user. For any other constant, if the code is not specified by the user, it shall be
the code of the previous constant in the list incremented by one; if the code is specified
by the user, it shall be strictly superior to the explicitly or implicitly specified code of the
previous constant in the list.

For a signed enum type, let us note C the first constant whose code is specified by the
user and let us note x this code. The code of the constant that is positioned just before
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C in the list shall be x-1, the code of the constant just before the latter constant shall be
x-2, and so on until the beginning of the list. The codes of enum constants after C shall
be incremented by one from C until another user-specified code is encountered; in that
case the user code shall be strictly superior to the explicit or implicit code of the previous
constant. The incrementation by 1 shall restart from the new user-defined value.

We define the size of an unsigned (resp. signed) enum type as the size of the smallest
unsigned (resp. signed) type that can hold all the enum codes. For example, the Color

type above is an unsigned enum type of size 3; the CardSuit type above is an unsigned
enum type of size 6; the CarManualGear type above is a signed enum type of size 6; the
CarAutomaticGear type above is a signed enum type of size 4.

Equality ‘=’ and unequality ‘<>’ can be used on an enum type: “Red = Red” is true,
“Red <> Red” is false, “Red = Green” is false, and “Red <> Green” is true.

The mux operator can be used to build enum expressions, see Section ??. Here is an
example:

output TrafficLight : Color;

...

emit ?TrafficLight <= mux(isGreen , Green , Red);

Conversions between unsigned enum types and unsigned types can be performed using
the functions enum2u and u2enum; conversions between signed enum types and signed
types can be performed using the functions enum2s and s2enum, see Section ??.

3.1.8 Host types

An host type is a type whose contents and implementation are not specified in Esterel but
only in the host language to which the type is compiled. A host type is declared using the
host keyword, as follows:

host type Time;

The Time type can be implemented in C by a structure with hours, minutes, and seconds
fields, using the usual Babylonian carry propagation. The interest of host types is that
such datapath details can be irrelevant for the behavior of an Esterel program and better
handled in separate host libraries to separate concerns.

One can declare a constant, a signal, or a variable of host type. These objects are then
called host objects, and they are the only way to manipulate objects of the type. One can
compare abstract objects by ‘=’ or ‘<>’, and pass host objects to functions, procedures, or
units. Here are examples:

module M :

host type T;

host constant C : T;

host function F (T) : T;

input I : T;

output O : T;

sustain ?O <= F(?I) i f ?I <> C

end module
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3.1.9 Defined types

A defined type is a type declared to be equal to another type, which must be primitive or
declared beforehand:

type Temperature = unsigned <90>;

type Word = bool [32];

The types are identical for any usage, except for bitvector types for which maps can be
defined as explained in Section ??.

3.1.10 Array types

Data arrays can be defined from types by adding dimensions. The dimension expressions
must be statically evaluable unsigned or positive signed numbers, see Section ??. Arrays
and arrays of arrays are supported up to any size and depth.

Array types can be named or unnamed. An unnamed array type directly appears in
the declaration of an Esterel object:

input Opcode : bool [8];
var X : integer [3][5] in ... end

A named array type is an array type appearing in a type definition:

type Image = unsigned <[8]> [100][100];

type Word = bool [32];
constant MemorySize : unsigned;

type Memory = Word[MemorySize ];

Notice that objects of Memory type are arrays of arrays declared in an indirect way. When
indexing such indirectly defined arrays, the indices appear in the definition dependency
order: Memory[i] is a Word, and Memory[i][j] is the j-th bit of this word. This in-
dexing scheme defines the unfolded type of the indirect type, which is obtained by suc-
cessively removing all defined type declarations. Here, the unfolded type of Memory is
bool[MemorySize][32], not bool[32][MemorySize].

Because of the type-prefix notation bool[32], array type unfolding is a little awkward:

Word[MemorySize]

→ (bool[32])[MemorySize]

→ bool[MemorySize][32]

To avoid any confusion, we forbid to define arrays from direct arrays, thus to write types
of the form (bool[32])[MemorySize]. We enforce the use of intermediate defined array
types such as Word.

Notice that the same unfolding rules are clearer with a type-postfix notation a la
VHDL. There, one simply has

array MemorySize of (array 32 of bool)

→ array MemorySize of array 32 of bool
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Two array types are considered identical if and only if they have the same base type,
the same number of dimensions and the same dimensions, this after unfolding for indirect
array types.

Data arrays can be indexed and sliced as explained in Section ??. Their relation with
signal arrays is presented in Section ??.

Array literals

Array literals are used to define values for constant arrays, and they can be used in array
expressions. Their syntax follows that of System Verilog [?]. First, for single-dimensional
arrays, one can first give a list of values between curly brackets, the length of the list being
exactly the array dimension:

constant C : bool [3] = {’0, ’1, ’0};

One can repeat a subrange by adding a constant unsigned expression acting as a repetition
factor followed by a bracket and a sublist:

constant C1 : bool [3] = {’1, 2{ ’0}}; // same as {’1,’0,’0}

constant C2 : bool[N] = {(N/2){’0,’1}}

// same as {’0,’1,’0,’1,’0,’1...}

// provided N is even

After expansion of the repeated elements, the literal size must match the array size.
For arrays of arrays, one nests subarray definitions, first index varying slowest, with

mandatory dimension match at all levels. Repetition factors can be applied to whole
subarrays. Here are examples:

var V : unsigned [2][2] = { {1,2}, {3,4} } in ... end
// V[0][0]=1 , V[0][1]=2 , V[1][0]=3 , V[1][1]=4

s ignal S : integer [5][5] i n i t {4{{5{0}}} , {-1,-2,-3,-4,-5}} in
// lines 0-3 filled with 0’s

//line 4 filled by decreasing numbers from -1 on

pause;
emit ?S <= {2{{5{ -1}}} , 3{{5{0}}}}

// lines 0-1 filled with -1’s, lines 2-4 filled with 0’s

end s ignal

For definition of constants and for initialization of variables and signals, one can use a
single literal instead of an array constant to initialize all components of the array with a
single value:

constant C : unsigned[10] = 0; // shorthand for {10{0}}

type Word = bool [32];
constant B : Word [100] = ’0; // shorthand for {100{{32{ ’0}}}

s ignal Mem : Word [100] i n i t ’0 in ... end
var V: Word [100] := INIT_WORD in ... end

The initialization literal is limited to be either a data constant literal such as 0, true, or
’x01 or a constant name such as INIT_WORD. Its type must match the array base type.

3.1.11 Bitvectors

Single dimensional arrays of Booleans are called bitvectors. They play a very special role
in hardware or low-level software designs.
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Bitvector literals

For bitvector constants, one can use an alternative syntax similar to the unsigned constant
syntax presented in Section ??, replacing the leading 0 by a quote symbol. The ’b, ’o,
and ’x forms are allowed, while ’d is disallowed. As for unsigned constants, one can use
the ‘_’ dummy separators, as in ’b00_01_10_11.

The bit width can also be given explicitly before the quote symbol: 8’b11 is the same as
’b00000011, 5’o23 is the same as ’b10011, and 10’xF37 is the same as ’b1100110111;
note that the unused higher-order 1’s of F are simply discarded in the latter case and
provoke no error.

If the bit width is not explicitly given, it is computed by multiplying the number of
digits in the constant by the basis bit width, taking account of the leading 0’s (unlike for
unsigned constants). Therefore, ’o27 is six-bits wide, while ’x01234567 is 32-bits wide.

There is a well-known but unfortunate reversal of endianness w.r.t. the C-like notation.

• The literal ’b1110001 is a synonym to the array literal {’1,’0,’0,’0,’1,’1,’1}.
Notice the bit reversal w.r.t. array literals: low-order bits are first in the C-based
array literal notation, last in the bitvector array notation;

• The literal ’o027 is a synonym to the array literal {’1,’1,’1,’0,’1,’0, ’0, ’0, ’0}.
Notice that the first 0’s do matter, unlike for the unsigned constant 0o027;

• The literal 7’x6E is a synonym to the array literal {’0,’1,’1,’1,’1,’1,’0}.

3.1.12 Generic types

A generic type is declared as follows:

generic type T;

If a data, interface, or module unit contains a generic type declaration, it becomes a generic
unit. The generic type can be instantiated as explained in Section ??. All generic types
must be instantiated for the main module to be executable.

3.2 Constants

Constants can be defined, host, or generic, just as types. A constant has a type, which
must be primitive or declared beforehand.

3.2.1 Defined constants

A defined constant is a constant whose value is given at declaration time, after the type
and a ‘=’ symbol.

constant Threshold : unsigned = 223;

constant GlobalSize : unsigned = MemorySize * WordSize;

The value is given by a static expression containing only literals, constants, and primitive
operators, with all objects declared beforehand.

There is a special tight notation described in Section ?? and Section ?? to help sizing
unsigned and signed constants.
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3.2.2 Host constants

A host constant is a constant which will be defined in the host language. Its type cannot
be generic. A host constant is declared using the host keyword:

host constant Threshold : unsigned <[16] >;

host constant Midnight : Time;

A host constant is known only by its name, nothing being known about the value.

3.2.3 Generic constants

A generic constant is a constant declared by its name and type after the generic keyword:

generic constant C : T;

The type itself can be defined, host, or generic.

If a data, interface, or module unit contains a generic constant declaration, it becomes
a generic unit. The generic constant can be instantiated as explained in Section ??. All
generic constants must be instantiated for the main module to be executable.

3.3 Functions

A function takes typed arguments by value and returns a typed value. A function is
supposed to be computed instantaneously and to have no side-effects.

The argument types are in a parenthesized list, the result type appearing after a
colon. Non-primitive types must be declared beforehand. They can be arbitrary, including
generic. There are predefined functions, host functions, and generic functions.

3.3.1 Predefined functions

The predefined functions are as follows:

• binsize(m), where m is a natural number, returns the number of bits it takes to
write m in binary.

• bool2u converts a Boolean to an unsigned number, see Section ??.

• bin2u, onehot2u, code2u, u2bin, u2onehot, and u2code, convert bitvectors to un-
signed numbers and conversely, see Section ??.

• bin2s and s2bin convert bitvectors to signed numbers and conversely, see Section ??.

• mux chooses between values according to a condition, see Section ??.

• lcat and mcat concatenate bitvectors, see Section ??.

• reverse reverses bitvectors, see Section ??.
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3.3.2 Host functions

A host function is a function whose body is defined externally in the host language and
unknown at Esterel level. The arguments and result types cannot be generic: they must
be primitive or declared beforehand. A host function is declared using the host keyword:

host function IncrementTime (Time) : Time;

The declaration declares the name and type of the host function, its definition remaining
unknown at Esterel level.

3.3.3 Generic functions

A generic function is a function declared after the generic keyword by its name and its
argument and result types, which can be generic as well:

generic function Fun (T1 , T2) : T;

The argument and result types can also involve generic constants. Thus, the following is
allowed:

generic type T;

generic constant Size : unsigned;

generic function Transpose (T[Size , Size]) : T[Size , Size];

If a data, interface, or module unit contains a generic function declaration, it becomes a
generic unit. The generic function can be instantiated as explained in Section ?? provided
types match at instantiation time. All generic functions must be instantiated for the main
module to be executable.

3.4 Procedures

A procedure has a list of in, out, and inout arguments; it is declared by its name,
and its arguments types annotated with the corresponding access mode keyword. The
procedure is supposed to be executed instantaneously. When executed, it reads its in and
inout arguments and modifies (side-effects) its out and inout arguments, which must be
variables. There are host procedures and generic procedures. A procedure is called by
the call Esterel statement, see Section ??. There is no provision to define the code of
a procedure in Esterel. Therefore, the code of the procedure will always be written in
the host language. Because Esterel is concurrent, side effects other than assigning out or
inout parameters are fully under the user control, and their effect cannot be predicted if
procedures sharing user data are called concurrently.

3.4.1 Host procedures

A host procedure is a procedure whose body is defined externally in the host language and
unknown at Esterel level. The arguments types cannot be generic: they must be primitive
or declared beforehand. A host procedure is declared using the host keyword:

host procedure UpdateTime ( inout Time , in integer );
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3.4.2 Generic procedures

A generic procedure is a procedure declared using the generic keyword:

generic procedure P ( in T1 , out T2 , inout unsigned);

The types can be generic. If a data, interface, or module unit contains a generic procedure
declaration, it becomes a generic unit. The generic procedure can be instantiated as
explained in Section ?? provided types match at instantiation time. All generic procedures
must be instantiated for the main module to be executable.



Chapter 4

Arithmetic, Enum, and Bitvectors
operations

4.1 Boolean operators

Remember that the Boolean literals are false or ’0 and true or ’1. The Boolean oper-
ations are unary not, left-associative ‘and’, ‘or’, and ‘xor’, implication ‘=>’, equivalence
‘<=>’, exclusion ‘#’, plus the generic mux operator.

Conjunction and and disjunction or are left-associative, with higher priority for and

as usual. Implication is right-associative: x => y => z means x => (y => z). Equivalence
‘<=>’ is synonym to equality ‘=’ but makes use of the often clearer standard mathematical
notation. It is left associative, just as for ‘=’.

Exclusion is truly n-ary: x # y # z means that x, y, and z are exclusive, i.e. that no
two of them can be true at the same time. Beware, x # y # z is completely different from
x # (y # z), which means “x is exclusive with the result of the exclusivity predicate of y
and z”.

The mux(b, e1, e2) operator takes a Boolean expression b and two expressions e1 and e2
of the same arbitrary type, which can also be an array type. It returns the value of e1 if
b evaluates to true, e2 otherwise.

mux(b, e1, e2) =

{
e1 if b = true

e2 if b = false

If the expressions e1 and e2 are arrays, an array is returned and the whole mux expression
is considered to be an array expression, see Section ??.

Note that the first argument is a single Boolean expression, not an array expression.
Extension to Boolean arrays as first argument requires the [mux] array operator notation
presented in Section ??.

The bool2u function takes a bool and returns an unsigned number of type unsigned<2>,
defined as follows:

bool2u(’0) = 0

bool2u(’1) = 1

Notice the equality bool2u(b) = mux(b, 1, 0).

35
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4.2 Unsigned arithmetic

The unsigned types support the following internal operations that return unsigned num-
bers: addition ‘+’, subtraction ‘-’, multiplication ‘*’, division ‘/’, modulo (remainder)
‘mod’, power ‘**’, binary size ‘binsize’, saturation sat<M> and binary truncation trunc<[M]>,
up to any size. The size assertion operation assert<M> described in Section ?? asserts
that a value is in a given unsigned type and provokes an error otherwise. Unsigned num-
bers support all standard Boolean comparisons =, <>, <, <=, >, and >=. Conversions to and
from signed numbers and bitvectors will be studied in Section ?? and Section ??. Note
that there is no + and - unary operations on unsigned numbers, since these operations
convert unsigned numbers into signed ones. All operations can be applied to unsigned of
any size.

We use m,n to denote unsigned numbers, M,N to denote type sizes, and em, en to
denote unsigned expressions of respective types unsigned<M> and unsigned<N>. Ex-
pression typing is denoted em : unsigned<M>. The result type is always computed to be
the smallest unsigned type that fits the result, with the rules given below. Therefore, size
extension can be viewed as automatic.

4.2.1 Unsigned addition

Unsigned addition ‘+’ takes two unsigned m,n and returns an unsigned with value m+n.
For expression type-checking, the result type is the smallest possible to accomodate the
result, the worst case being (M − 1) + (N − 1):

em : unsigned<M>, en : unsigned<N> → em + en : unsigned<M +N − 1>

Note that addition never overflows, for any unsigned size. There is no implicit “bit-
dropping”. The sizing rule being associative, the size of the result of a n-ary addition is
independent of any subexpression calculation order. Therefore, there is no difference in
value and size between (em + en) + ep and em + (en + ep).

4.2.2 Unsigned subtraction

Unsigned subtraction ‘-’ takes two unsigned m,n such that m ≥ n and returns an unsigned
with value m−n. If m is strictly smaller than n, then m -n is undefined and the operation
raises a run-time error, see Section ??.

The result type is the smallest possible to accomodate the result, i.e. that of the first
expression since the second one can be 0:

em : unsigned<M>, en : unsigned<N> → em - en : unsigned<M>

Unsigned subtraction is left-associative: em - en- ep means (em - en) - ep.

4.2.3 Unsigned multiplication

Unsigned multiplication takes two unsigned m,n and returns an unsigned with value m×n.
For the result type size, the worst case is (M − 1) * (N − 1):

em : unsigned<M>, en : unsigned<N> → em * en : unsigned<(M − 1)(N − 1) + 1>

As for addition, multiplication never fails and is always exact, without any bit loss. It is
fully associative.
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4.2.4 Unsigned power

Unsigned power takes two unsigned m,n and returns an unsigned with value mn. For the
result type size, the worst case is (M − 1) ** (N − 1):

em : unsigned<M>, en : unsigned<N> → em ** en : unsigned<(M − 1)(N−1) + 1>

Power associates to the right: em ** en ** ep is em ** (en **ep)

4.2.5 Unsigned division

Unsigned division ‘/’ takes two unsigned m,n such that n 6= 0 and returns an unsigned
with value the integer quotient m/n. If n has value 0, then m /n is undefined and raises
a run-time error, see Section ??.

For subexpression typing, the result type is that of the first expression, since the second
one can be 1:

em : unsigned<M>, en : unsigned<N> → em / en : unsigned<M>

4.2.6 Unsigned modulo

Unsigned modulo mod takes two unsigned m,n such that n 6= 0 and returns the remainder
of the division of m by n. If n has value 0, then m /n is undefined and raises a run-time
error, see Section ??.

For subexpression typing, since m mod n is strictly less than n and n is strictly less
than N , the size of the result type is N − 1:

em : unsigned<M>, en : unsigned<N> → em mod en : unsigned<N − 1>

4.2.7 Unsigned binary size

Unsigned binary size binsize(m) takes an unsigned m and returns the number of bits
necessary to write m in binary:

binsize(m) =

{
1 if m = 0
n if 2n−1 ≤ m < 2n

The binsize function is mostly used at compile-time to compute the size of the bitvector
implementing an unsigned type unsigned<M> in binary, which is binsize(M−1). Notice
that binsize(2M − 1) = M , which is consistent with the fact that M bits are needed to
implement the type unsigned<[M]> = unsigned<2M>.

Of course, the binsize function can also be used for other purposes.

The typing rule for type-checking binsize subexpressions itself uses the function
binsize:

em : unsigned<M> → binsize(em) : unsigned<binsize(M − 1) + 1>
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4.2.8 Unsigned saturation

Unsigned saturation sat<N> takes a positive compile-time constant N and an unsigned
m and returns the largest unsigned in unsigned<N> that is less than or equal to m.
Therefore, the definition is as follows:

sat<N>(m) =

{
m if m < N
N − 1 if m ≥ N

The type-checking rule is as follows:

em : unsigned<M> → sat<N>(em) : unsigned<N>

Unsigned saturation is important for saturated arithmetic, for instance color handling in
photofinishing.

The sat operator can also be used to change the type of an unsigned value into a
bigger one. Given an expression e of type unsigned<M> and given N > M, the expression
sat<N>(e) has the same value as e but has type unsigned<N>

4.2.9 Unsigned binary truncation

Remember that unsigned<[N]> is a shorthand for unsigned<2**N>. Binary truncation
trunc<[N]> takes a positive constant N and an unsigned m of any size and returns the
remainder of the division of m by 2N , i.e. the value of “m mod (2**N)”. In the binary
representation, one simply drops the bits above N , brutally bringing back m to N binary
bits. Truncation is easy to express using bitvector conversions:

trunc<[N]>(m) =

{
m if m < 2N

bin2u(u2bin(m)[0..N − 1]) if m ≥ 2N

The trunc operation is only available for sizes that are powers of 2, and we make the
special brackets <[ ]> mandatory here to avoid any confusion.

The type-checking rule is as follows:

em : unsigned<M> → trunc<[N]>(m) : unsigned<[N]>

For an application example, consider addition of two N -bits numbers. The default
Esterel calculation is exact:

m,n : unsigned<[N]> → m+n : unsigned< 2N+1 − 1>

for instance, if N = 3, one computes 7 + 6 = 13 : unsigned<15>. On the contrary, the
usual HDL carry-dropping calculation returns 5 : unsigned<8> if the result is to be put
on 3 bits. In Esterel, we must explicitly use trunc for such a truncated addition, writing
trunc<[3]>(7+6) = 5. The associated type formula is:

m,n : unsigned<[N]> → trunc<[N]>(m +n) : unsigned<[N]>

Since 7 + 6 = 5 is not very good for program verification, we definitely prefer arithmetic
to be exact by default. Therefore, we require carry-dropping to be explicit.
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4.2.10 Unsigned assert

Given two natural numbers M,N and an expression eu of type unsigned<N> of value
v, the expression assert<M>(eu) is of type unsigned<M>. It returns v if v < M and
provokes a run-time error otherwise, see Section ??.

Numerical assert<M> is used to shrink down the type of a computation result for which
an upper bound is known for dynamic reasons that are outside the scope of static type-
checking. Unlike C-like casting, assert<M> is completely safe since it does not change
the meaning of its argument and generates a verification condition.

For a typical usage instance, consider converting a 4-bit bitvector B that represents the
binary writing of an unsigned number m into that number. The conversion expression is
u2bin(B), detailed in Section ??. Its type is unsigned<[4]> = unsigned<16>. Assume
now that 0 ≤ m < 13 is guaranteed by the design specification. We want the result to
be in unsigned<13>. By writing assert<13>(u2bin(B)), we appropriately restrict the
type in a safe way. If, because of some bug, B does not respect the specification, we can
detect that fact at run-time since a run-time error is generated or statically using formal
verification.

For another usage instance, consider a signal S of type unsigned<M>. One often writes
emissions like

emit ?S <= pre(?S)+1

Strictly speaking, these expressions are ill-typed, since the right-hand side is in the type
unsigned<M + 1> while the left-hand side is in unsigned<M>. With rigid type-checking,
the program should be rejected. One should write the following:

emit ?S <= assert <M-1>(pre(?S))+1

In tolerant type-checking, the language tolerates the emission but implicitly encloses the
right-hand side within assert<M>:

emit ?S <= assert <M>(pre(?S)+1)

which is actually less clever than the form above since the adder may need to use one more
bit.

A similar case is the indexing of an array of size M with an unsigned expression of a
bigger type, which is tolerated in tolerant type-checking and for which compilers should
generate verification conditions for simulators or formal verifiers.

4.2.11 Unsigned comparisons

The comparison operators are classical: =, <> (not equal), <, <=, >, and >=. They take
two unsigned numbers of any size and return a Boolean.

4.2.12 Unsigned size checks

There are five cases where the value of an unsigned expression exp can be assigned to or
passed to an object of unsigned type: variable assignment, signal emission, function call,
procedure call, and module run statement:

V := exp // V unsigned variable

emit ?S <= exp // S unsigned signal

...f(exp, ...)... // unsigned argument
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c a l l P(..., exp, ...) // unsigned argument

run Sub [S / I] // S unsigned signal

In practice, it would be too cumbersome to systematically add sat or trunc operations
to guarantee that no run-time overflow can occur. Therefore, the language allows the user
to write an assignment of a value v in unsigned<M> to an object of type unsigned<N>

with M > N. Such an assignment is correct only if v < N. Compilers and programming
environments may check value assignment correctness in two ways:

• statically, by checking at compile-time that the value received is guaranteed to be
in the required range. This is obvious if the value type is smaller than the receiver
type; it can also be checked using partial evaluation techniques in other cases.

• dynamically, by providing run-time checks (at least in simulation mode). This should
be done only if static checks are not sufficient.

Similarly, when indexing a signal or data array as for S[m], the index can be in a type
larger than the index range of the array dimension, but it is an out-of-bounds error if its
actual value is bigger than or equal to the dimension, see Section ??.

Nevertheless, compilers should always be able to issue warnings for dubious operations.

4.3 Signed arithmetic

The signed types support the following internal operations: unary plus ‘+’, unary minus
‘-’, addition ‘+’, subtraction ‘-’, multiplication ‘*’, division ‘/’, power ‘**’, saturation
‘sat<N>’, and binary-truncation ‘trunc<[N]>’, up to any size. Notice that there is no
signed modulo operation, since this operation has no universally adopted definition yet.
Signed types support the assertion assert<M> to assert that a signed value is within a
signed type and the assertion assert unsigned<N> to assert that a signed value v satisfies
0 ≤ v < N .

Signed numbers support all classical Boolean comparisons. All operations can be
applied to signed of any size, with exact signed arithmetic.

In practice, one most often uses full binary-encoded signed sets, i.e. types signed<[M]>.
However, finer signed types naturally appear when tightly typing subexpression, and they
can also be useful in applications.

The relation between signed numbers and unsigned numbers is as follows: the unary
operations ‘+’ and ‘-’ convert unsigned numbers into signed ones; the abs(x) absolute
value function returns the unsigned absolute value of x; the x>=0 test returns the sign of
x as a Boolean (one can use mux to convert it to a 0 / 1 sign if needed).

Unsigned numbers are automatically converted to signed numbers of the appropriate
size by the unary operations ‘+’ and ‘-’ and when used together with signed numbers in
arithmetic operations. Conversions to and from bitvectors by s2bin and bin2s is studied
in Section ??.

We use x, y to denote signed numbers and M,N to denote their type size. We use ex
and ey to denote signed subexpressions of respective types signed<M> and signed<N>,
denoting subexpression typing by ex : signed<M>. As for unsigned numbers, the result
signed type of an expression is always computed to be the smallest signed type that fits the
result, with the rules given below. Therefore, size extension can be viewed as automatic.
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4.3.1 Signed unary plus and minus

When applied to a signed number x : signed<M>, unary plus +x simply returns x in
the same type; when applied to an unsigned number m : unsigned<M>, unary plus +m
returns the signed value m; that value belongs to the type signed<M>, which is the
smallest one to contain it. Here are the typing rules:

ex : signed<M> = + ex : signed<M>

em : unsigned<M> = + em : signed<M>

When applied to a signed number x : signed<M>, unary minus -x returns the opposite of
x, which is in signed<M + 1> since that type is the smallest one to contain M = −(−M).
When applied to an unsigned number m : unsigned<M>, unary minus -m returns the
opposite of m, which is in signed<M − 1> since the worst case is −(M − 1). Here are the
typing rules:

ex : signed<M> = - ex : signed<M + 1>

m : unsigned<M> = -m : signed<M − 1>

4.3.2 Signed addition and subtraction

Signed addition ‘+’ and subtraction ‘-’ take two signed numbers x, y and returns their sum
x + y and their difference x − y. The result type is signed<M + N> in both cases since
the worst cases are respectively (−M) + (−N) and (M − 1) - (−N):

ex : signed<M>, ey : signed<N> → ex + ey : signed<M +N>

→ ex - ey : signed<M +N>

Notice that ex + ey has type signed<[N+1]> for ex, ey : signed<[N]>, and that the same
property holds for subtraction, which is always defined. This contrasts signed number vs.
unsigned ones, since none of these properties is true for the latter.

The sizing rule being associative, the size of the result of a n-ary addition is independent
of any subexpression calculation order. Therefore, there is no difference in value and size
between (ex + ey) + ez and ex +(ey + ez). As for unsigned addition, signed subtraction is
left-associative: ex - ey - ez is (ex - ey) - ez.

4.3.3 Signed multiplication

Signed multiplication ‘*’ takes two unsigned x, y and returns their product value x × y.
The result type is signed<M N + 1> since the worst case is (−M) * (−N) = MN :

ex : signed<M>, ey : signed<N> → ex * ey : signed<MN + 1>

Signed multiplication is left-associative.

4.3.4 Signed division

Signed division ‘/’ takes two unsigned x, y such that y 6= 0 and returns their signed integer
quotient value x/y. If y has value 0, then x / y is undefined and raises a run-time error,
see Section ??.
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The result type is signed<M + 1> since the worst case is (−M) / (−1) = M :

ex : signed<M>, ey : signed<N> → ex / ey : signed<M + 1>

Signed division is left-associative.

4.3.5 Signed saturation

Signed saturation sat<N> takes a positive constant N , a signed x of any size, and returns
the largest signed in signed<N> that is less than or equal to x if x > 0 or the smallest
signed in signed<N> that is bigger than or equal to x if x < 0. Therefore, the definition
is as follows:

sat<N>(x) =


x if −N ≤ x < N
N − 1 if x ≥ N
−N if x < −N

The type-checking rule is as follows:

ex : signed<M> → sat<N>(ex) : signed<N>

4.3.6 Signed binary truncation

Remember that signed<[N]> is a shorthand for signed< 2** (N − 1)>, which denotes
the set of signed numbers writable with N bits in 2’s complement representation. Binary
truncation trunc<[N]> takes a positive constant N , a signed x of any size, and returns
a signed obtained by dropping the higher-order bits in the 2’s-complement binary repre-
sentation of x, including the sign bit. It brutally brings back x to N bits. The formal
definition is easiest using bitvector conversions:

trunc<[N]>(x) =

{
x if M ≤ N
bin2s(s2bin(x)[0..N − 1]) if M > N

There is no simple arithmetic formula to express numerically what trunc does on signed
numbers.

For an usage example, consider addition of two signed N -bits expressions. The default
Esterel calculation is exact:

ex, ey : signed<[N]> → ex+ey : signed<[N+1]>

For instance, with N = 4, one has (-8) + (-8) = −16 : signed<[5]>. On the contrary,
a 4-bits carry-dropping usual HDL calculation returns 0. In Esterel, such a truncated
calculation must involve an explicit trunc truncation:

ex, ey : unsigned<[N]> → trunc<[N]>(ex + ey) : signed<[N]>

As for unsigned numbers, we prefer arithmetic to be exact by default since −8−8 = 0 is a
formula that does not quite help formal verification. Therefore, we require carry-dropping
to be explicit, writing trunc<3>((-8)+(-8)) = 0.
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4.3.7 Signed absolute value

The absolute value abs(x) of a signed number x is an unsigned number with value x is
x ≥ 0 and −x if x < 0. Expression type-checking is as follows:

ex : signed<M> → abs(ex) : unsigned<M + 1>

Here, M + 1 is needed because of the worst case ex = −M .

4.3.8 Signed comparisons

The comparison operators are classical: =, <> (not equal), <, <=, >, and >=. They take
two signed numbers of any size and return a Boolean.

4.3.9 Signed assert

Signed assertion is similar to unsigned assertion described in Section ??, and it uses
the same syntax. Given two natural numbers M,N and a signed expression ex of type
signed<N>, the expression assert<M>(ex) has type signed<M>. It returns the value
v of ex if that value satisfies −M ≤ v < M and provokes a run-time error otherwise, see
Section ??.

4.3.10 Signed assert unsigned

Given two natural numbers M,N and a signed expression ex of type signed<N>, the
expression assert unsigned<M>(ex) has type unsigned<M>. It returns the value v of
ex if that value satisfies 0 ≤ v < M and provokes a run-time error otherwise, see Section ??.

4.3.11 Mixed signed / unsigned arithmetic

Unsigned and signed can be combined in operations, as for u +x where u is an unsigned and
x is a signed. In this case, the unsigned is converted into a signed, viewing the operation
as (+u) +x with the corresponding size computation rules.

Conversion is done in a way that respects the operator associativity rules presented in
Section ??, and leaving intermediate results unsigned as long as possible. For instance,
with u, v unsigned and x signed, u + v +x is evaluated as (+ (u + v)) +x, while u +x + v is
evaluated as ((+u) +x) + (+ v).

4.4 Bitvector operations

Bitvectors are arrays of Booleans. Bitvector literals were presented in Section ??. We
describe here the specific bitvector operations, including the conversion from signed and
unsigned numbers to and from bitvectors.

A cumbersome issue we cannot escape is that we have to deal with two traditional
ways of seeing the same bitvector: least significant bit (lsb) first, as for the array notation
{0,1,1}, or most significant (msb) first, as in ’b110 which is the same bitvector. In Esterel,
we do not identify bitvectors with numbers, but we still have to follow the conventions.
We shall be precise about what operators mean in both presentations.
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4.4.1 Bitvector equality

Equality ‘=’ and unequality <> are available for bitvectors. Two bitvectors are equal if
and only if they have the same length and the same bits.

Equality is not available for general arrays, and in particular for arrays of bitvectors.
It needs to be programmed explicitly.

4.4.2 Bitvector onehot and onehot0 predicates

The onehot predefined function takes a bitvector argument of arbitrary length and returns
true if exactly one bit is one in the bitvector and false otherwise. The onehot0 predefined
function takes a bitvector argument of arbitrary length and returns true if the bitvector
is onehot-encoded or filled only with 0’s and false otherwise. Example:

module Arbiter :

input Req [4]; // request vector

output Grant [4]; // grant vector

... // arbiter code

||

sustain {

// check there is always at most one grant

assert GrantIsOnehot0 = onehot0(Grant),

// check there is exactly one grant when there is some request

assert GrantIsOnehotIfReq = onehot(Grant) i f SomeReq

}

end module

4.4.3 Bitvector shifts

There are four bitvector shift operations: unsigned right shift ‘>>’, unsigned left shift ‘<<’,
signed right shift ‘>>>’, and signed left shift ‘<<<’. Signed operations preserve the sign if
one sees the bitvector as the binary encoding of a signed number.

The shift operations take a bitvector expression as left argument and an unsigned
expression as right argument, as for X >> E. If the type of the first argument is bool[M],
the type of the second argument must be unsigned<N> with N <= M + 1, otherwise
there is a type-check error. That is, a bitvector of type bool[4] can be shifted 4 times in
any direction but not 5 times. The size of the result is equal to the size of the bitvector
argument. The shift direction is indicated in the numerical bit order, i.e. with most
significant bit on the left, opposite to the array order. For instance, the same right-shift
operation can be written in two ways:

’b00110100 >> 1 = ’b00011010

{’0,’0,’1,’0,’1,’1,’0,’0} >> 1 = {’0,’1,’0,’1,’1,’0,’0,’0}

Shift operations are formally defined as follows, assuming that the bitvector expression X
evaluates to a bitvector B of size n and the shift argument E evaluates to k ≤ n:

(B >> k)[i] =

{
B[i+ k] if i < n− k
0 if n− k ≤ i < n

(B << k)[i] =

{
0 if i < k
B[i− k] if k ≤ i < n
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(B >>> k)[i] =

{
B[i+ k] if i < n− k
B[n− 1] if n− k ≤ i < n

(B <<< k)[i] =


0 if i < k
B[i− k] if k ≤ i < n− 1
B[n− 1] if i = n− 1

4.4.4 Bitvector concatenation

The lcat and mcat concatenation operators take n bitvectors and concatenate them. For
lcat, which can be read lsb-cat, the lsb bit of the result is that of the first argument. For
mcat, which can be read msb-cat, the msb bit of the result is that of the first argument.
One has the following equality:

lcat(B0, B1, . . . , Bn) = mcat(Bn, . . . , B1, B0)

Of course lcat is easiest to understand using the array notation and mcat is easiest using
the bitvector notation. Here is an example:

l cat ({’0,’0}, {’1,’0,’0}, {’0,’1}} = {’0,’0,’1,’0,’0,’0,’1}

mcat(’b11 , ’b001 , b’10) = ’b1100110

The same examples can be written as follows using the other notation:

l cat (’b00 , ’b001 , ’b10} = ’b1000100

mcat({’1,’1}, {’1,’0,’0}, {’0,’1}) = {’0,’1,’1,’0,’0,’1,’1}

We formally defined concatenation of two bitvectors B and C of respective lengths k and
l, extension to the n-ary case being trivial by associativity:

(lcat(B,C))[i] =

{
B[i] if i < k
C[i− k] if k ≤ i < k + l

(mcat(B,C))[i] =

{
C[i] if i < k
B[i− k] if k ≤ i < k + l

4.4.5 Bitvector extension

There are two extension functions that take a bitvector B of size M and an unsigned
statically evaluable expression E: extend and sextend. It is required that E statically
evaluates to a value N ≥M , otherwise there is a type error. The definition is as follows:

• extend(B,E) is a bitvector C of size N such that C[0..M − 1] = B[0..M − 1] and
C[M..N − 1] = ’0.

• sextend(B,E) is a bitvector C of size N such that C[0..M − 1] = B[0..M − 1]
and C[M..N − 1]] = B[M − 1].

bin2u (extend(B,E)) = bin2u (B)

bin2s (sextend(B,E)) = bin2s (B)
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where bin2u and bin2s are the conversions to unsigned and signed numbers presented in
Section ?? below.

For instance, extend(’b110,5) = ’b00110 and sextend(’b110,5) = ’b11110.

Note: extend and sextend functions should be considered as obsolete and so they should
no longer be used. Instead, resize and sresize functions should be used.

4.4.6 Bitvector resizing

There are two bitvector resizing functions that take a bitvector B of size M and an unsigned
statically evaluable expression E: resize and sresize. It is required that E statically
evaluates to a value N 6= 0, otherwise there is a type error. The definition is as follows:

• resize(B,E) is a bitvector C of size N such that:

– C[0..min(M,N)− 1] = B[0..min(M,N)− 1];

– if M < N , then C[M..N − 1] = ’0.

• sresize(B,E) is a bitvector C of size N such that:

– C[0..min(M,N)− 1] = B[0..min(M,N)− 1] ;

– if M < N , then C[M..N − 1] = B[M − 1].

bin2u (resize(B,E)) = trunc < [E] > (bin2u (B))

bin2s (sresize(B,E)) = trunc < [E] > (bin2s (B))

where bin2u and bin2s are the conversions to unsigned and signed numbers presented in
Section ?? below.

For instance, resize(’b110,5) = ’b00110, resize(’b110,2) = ’b10, and sresize(’b110,5) =
’b11110, sresize(’b110,2) = ’b10.

4.4.7 Bitvector reverse

A bitvector expression of value B and size k is reversed by applying the reverse predefined
function. The formal definition is as follows:

(reverse(B))[i] = B[k − i− 1] for i < k

4.5 Bitvector maps

4.5.1 Bitvector map declaration

A map is a set of aliases for bits and slices of a named bitvector type. It can be unnamed
or named. Maps can be defined only for defined types (see Section ??). An alias for a
bit or a slice is called a map field. Slices and bits can overlap within a map, and several
maps can be declared for a single type. Map field identifiers must be unique for a single
type. The same field identifier can occur in two maps only if they do not bear on the same
type. Maps must be defined for a given type only and must not follow structural type
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equivalence: a map defined for a type Word declared as bool[32] must not be applicable
to any bool[32] nor for any other declared type of type bool[32]. Since map is a data
declaration, it is inherited by data extension.

There are two ways of specifying maps:

• In a concurrent map declaration, a single-bit field is defined by giving the field name
and the bit index in the bitvector; a slice field is defined by giving the field name,
the slice first index, and the slice last index in the bitvector.

• In a sequenced map declaration, a single-bit field is defined by giving the field name;
a slice field is defined by giving the field name and slice size. Map fields are defined
in sequence in the bitvector: the first field starts at index 0, any other field starts
at the index following the previous field. Notice that map fields in a sequenced map
declaration cannot overlap by construction.

Here is an example of concurrent map declaration:

type Word = bool [32];

map Word { // unnamed

Low [0..15] ,

High [16..31]

};

map Instruction : Word {

Opcode [0..7] ,

Immediate [8], // single bit

Register [9..15] ,

Address [16..31]

};

map SignedNumber : Word {

Sign [31], // single bit

Abs [0..30]

};

Notice that Sign[31] is a single bit, while Sign[31..31] would be a bitvector of dimension
1.

The following sequenced map declaration is fully equivalent to the precedent one:

map Word seq {

Low[16],

High [16]

};

map Instruction : Word seq {

Opcode [8],

Immediate ,

Register [7],

Address [16]

};

map SignedNumber : Word seq {

Abs[31],



48 CHAPTER 4. ARITHMETIC, ENUM, AND BITVECTORS OPERATIONS

Sign

};

A map name such as Instruction has no semantic meaning. It is only meant to be
used by programming and debugging environments, typically to display information in a
nicer way.

4.5.2 Bitvector map field usage

A mapped bit or slice is referred to using the dot-field notation:

emit {

?W.Immediate ,

?W.Opcode <= 42

}

is the same as

emit {

?W[8] <= 1,

?W[0..7] <= 42

}

Maps can themselves be reindexed or sliced: ?W.Register[1] is the same as ?W[10] and
?W.Register[1..3] is the same as ?W[10..12].

4.6 Encoders: from unsigned to bitvectors and back

An unsigned encoding translates an unsigned expression into a bitvector according to a
given mathematical encoding. An unsigned decoding performs the converse operation.
Esterel v7 provides the user with three predefined codes, binary (classical binary writing,
least significant bit 0), onehot (exactly one 1 bit per value, for instance 0 → 0b001,
1→ 0b010, 2→ 0b100), and Gray. The user can also define her or his own code.

Unsigned encoding and decoding can be applied to any numerical type, not just types
defined by powers of 2. However, in dense encodings such as binary and Gray, a number
in unsigned<[M]> is encoded by a bitvector in bool[M ] and conversely, while a number
in signed<[M]> is binary encoded by a bitvector in bool[M + 1] and conversely. This
justifies the <[ ]> notation for signed and unsigned types, which facilitates the handling
of powers of 2.

For arbitrary encodings, the size correspondence may be more complex. For instance,
in onehot encoding, unsigned<M> is in bijection with bool[M], which implies that
unsigned<[M]> is in bijection with bool[2M].

4.6.1 Binary encoding / decoding

To turn an unsigned expression eu into a binary-encoded bitvector, one can use one of the
two forms

u2bin(eu)
u2bin(eu, b)

Assume that the type of eu is unsigned<M>. In the first form, the result has type
bool[binsize(M −1)]. For instance, one has u2bin(6) = ’b110 = {’0, ’1, ’1 } with



4.6. ENCODERS: FROM UNSIGNED TO BITVECTORS AND BACK 49

type bool[3]. In the second form, b is the size of the resulting bitvector; it must be
statically evaluable and satisfy b ≥ binsize(M − 1). For instance, to put a value v of
type unsigned<M> with M < 232 on a 32-bit bus, one writes

output Bus : bool [32];
...

emit ?Bus <= u2bin(v, 32)

Notice that the second argument is not really needed. One could obtain the same effect
with the unary u2bin, by writing u2bin(assert<[32]>(v)). However, this form would
be far less readable.

According to our exact arithmetic philosophy, there is no implicit number bit-dropping
for u2bin: the resulting bitvector must be always big enough to hold the result. If bit-
dropping is desired, it can be performed either before or after the call to u2bin. For
instance, to get the N least significant bits of v written in binary, one can write one of the
two following statements:

emit Y <= u2bin(v mod 2**N)

emit {

X <= u2bin(v),

Y <= X[0..N-1]

}

Binary decoding is symmetrical. The unsigned value of a bitvector B read as a binary-
encoded number is the result of the following expressions:

bin2u(B)
bin2u(B,u)

In the first form, the type of the result is unsigned<2M> = unsigned<[M]> if B is of
type bool[M]. In the second form, the type of the result is unsigned<u>, where u must
be statically evaluable. One must have u ≥ 2M .

Because of incomplete value ranges, one may also want the result to be in a type
unsigned<u> with u < 2M . For instance, one may know that only the 13 first numbers
can be encoded in a given 4-bit bitvector, and, therefore, one may want the result in
unsigned<13>. This is easy to achieve using assert<>:

input Bits : bool [4];
output Value : unsigned <13>;

emit ?Value <= assert <13>(bin2u(?Bits))

There will be a runtime error if the bits do not satisfy the hypothesis, see Section ??.

4.6.2 Onehot and Gray encoding

The handling of one-hot and Gray encodings is similar. The following expressions return
bitvectors:

u2onehot(eu)
u2onehot(eu, b)
u2gray(eu)
u2gray(eu, b)
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Let unsigned<M> be the type of eu. For onehot, the result type is bool[M] in the unary
case and bool[b] in the binary case, with the constraint b ≥ M . For Gray, things are
as for binary: the result type is binsize(M − 1) in the unary case and bool[b] in the
binary case, with the constraint b ≥ binsize(M − 1).

Conversely, the following expressions return unsigned numbers:

onehot2u(B)
onehot2u(B,u)
gray2u(B)
gray2u(B,u)

Let bool[M] be the type of B. For onehot, the result type is unsigned<M> in the unary
case and unsigned<u> in the binary case, with the contraint u ≥ M . One must have
M ≥ 1, and the argument bitvector must have exactly one bit with value 1, otherwise
there is a run-time error described in Section ??.

For Gray, the result type is unsigned<2M> in the unary case and unsigned<u> in the
binary case, with the constraint u ≥ 2M .

There is no direct re-encoding from an array to another array. To translate a signal
array from binary to Gray, one must write

u2gray(bin2u(B))

4.6.3 Combining encodings

It is often useful to use different encodings in a single calculation. For instance, assume we
want to compute 2u for a natural number u < M . In Esterel, we can simply write 2∗∗u.
However, this operation may not be synthesizable by backends. Another way to write it
using bitvector intermediates is as follows:

module Pow :

generic constant SZ : unsigned;

input u : unsigned <M>;

input x : unsigned <2**(M-1) + 1>;

emit ?x <= assert <2**(M-1)+1 >(bin2u(u2onehot(?u)))
end module

The call to u2onehot builds a bitvector of length M with a 1 at index ?u. Calling bin2u

on this bitvector computes 2?u, but with type unsigned<2**M>. The call to assert safely
shrinks this type to the type <2**(M-1)+1>, which is the best type for the result whose
value can reach 2**(M-1).

4.6.4 From signed to bitvectors and back

For signed numbers, we consider only one encoding, 2’s-complement binary. The functions
that translate signed numbers to bitvectors is s2bin, unary or binary:

s2bin(ex)
s2bin(ex, b)

As usual, the highest-order bit (msb) of s2bin(ex) is the sign bit. Assume that the type of
ex is signed<M>. Then, in the unary case, the result type is bool[binsize(M)+1]. For
the binary case, the result type is bool[b], with the constraint b ≥ bool[binsize(M)+1].
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The reverse conversion from bitvectors to signed numbers is performed by bin2s:

bin2s(B)
bin2s(B, s)

Let bool[M] be the type of B. Then the result type is signed<[M]> in the unary case
and signed<s> in the binary case, with the constraint s ≥ 2M . As for unsigned numbers,
one can use the assert< > function to narrow the range. For instance, if only numbers
from −5 to 4 should be encoded by a bitvector B of width 5, one write

assert <5>(bin2s(B))

A run-time error will be generated if the decoded value is out of range, see Section ??.

4.7 From enum to unsigned or signed and back

In this section, we consider the enum types CardSuit and CarManualGear of Section ??:

type CardSuit = enum {

Clubs = 1, // explicit code 1

Diamonds , // implicit code 2

Hearts = 4, // explicit code 4

Spades // implicit code 5

};

type CarManualGear = enum {

Rear , // implicit code -1

Idle = +0, // explicit code 0

First , // implicit code +1

Second , // implicit code +2

Third , // implicit code +3

Fourth , // implicit code +4

Fifth // implicit code +5

};

The enum2u function can be used to convert a value of an unsigned enum type into
its unsigned code. For example, enum2u(Diamonds) = 2. If exp is an expression of an
unsigned enum type, then enum2u(exp) is of type unsigned<M>, where M is the unsigned
size of the enum type.

The u2enum<E> function can be used to convert an unsigned value to the element of the
unsigned enum type E whose code is that value. For example, u2enum<CardSuit>(5) = Spades.
If exp is an expression of unsigned type, the type of u2enum<E>(exp) is E. The unsigned-
to-enum conversion run-time error occurs if the value of exp is associated with no enum
constant in E, see Section ??.

The enum2s function can be used to convert a value of a signed enum type into its
signed code. For example,enum2s(Third) = +3. If exp is an expression of a signed enum
type, then enum2u(exp) is of type signed<M>, where M is the signed size of the enum
type.

The s2enum<E> function can be used to convert a signed value to the element of the
signed enum type E whose code is that value. For example, s2enum<CarManualGear>(-1) = Rear.
If exp is an expression of signed type, the type of s2enum<E>(exp) is E. The signed-to-
enum conversion run-time error occurs if the value of exp is associated with no enum
constant in E, see Section ??.



52 CHAPTER 4. ARITHMETIC, ENUM, AND BITVECTORS OPERATIONS



Chapter 5

Signals and Variables

Signals are the main objects dealt with by Esterel v7 60 programs. They are shared
scoped objects, broadcasted within their scope in a way that ensures fully safe synchro-
nization of parallel threads. More conventional variables are also available, but they are
of restricted use since they cannot be freely shared between concurrent control threads.
However, variables are useful as intermediates in computations and necessary as vehicles
to communicate with the host language, being passed by reference in procedure calls (see
Section ??).

In this chapter, we first introduce the signal categories in Section ??: interface signals,
local signals, oracles, assertions, assumptions and coverage points. Then, in Section ??,
we study the main features of signals, the status and the value. Section ?? is devoted to
standard signals, the most common signals that act instantaneously. Section ?? is devoted
to registered signals, which act with a delay of one tick and are fundamental for Moore
machines and pipelines. Section ?? presents temporary signals, which do not hold their
value over time. Section ?? presents signal arrays.

The full signal declaration syntax will be presented in Chapter ??, together with
the difference between interface and module features of signals. This chapter mostly
concentrates on behavioral aspects.

5.1 Interface and local signals, verification signals, and or-
acles

There are several categories of signals corresponding to different uses:

• Interface signals are declared within interface or module declarations. They establish
communication between a module body and its environment. Their scope is a module
body.

• Local signals are declared either in a module header or in a module body in a dec-
laration statement block. The scope of a local signal declared in a module header
is the module body; the scope of a local signal declared in a module body is the
declaration statement block.

• Assertions, assumptions, and coverage points are special local signals designed for
simulation or formal verification-based validation. Assertions, assumptions, and
coverage points are generically called verification signals.

53
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• Oracles are special local signals used for non-deterministic specifications. They are
declared locally but input from the environment in a hidden way. Oracles are in-
complete and experimental in Esterel v7 60.

This chapter focuses on the common features of all signals and only uses interface and
local signals in examples.

Basic example

Here is a simple example to illustrate how interface and local signals are declared and
what their scopes are:

module Stopwatch :

type TimeType;

input Second;

output Time : TimeType;

s ignal InternalTime : TimeType in
...

s ignal Reset in ...

...

end s ignal
end s ignal

end module

The interface signals are Second and Time, with global module scope. The local signals
are InternalTime, whose scope is the full module body, and Reset, with scope delimited
by the signal—end signal keywords pair.

The Second signal is a pure signal that conveys a bit-level present / absent status
information. Being an input, it is generated by the module’s environment, which is the
global execution environment for the main module and the the local execution context for
a submodule. The Time valued signal is made of the pair of a bit-level status and a value
of type TimeType. It is declared output, which means that it is generated by the module
itself and output to the module’s environment. There are also inputoutput signals, which
are bound to master signals in both input and output mode, see Section ??.

5.2 Signal status and value

We browse quickly through the main features of signals before describing the precise signal
kinds. The first features we present are the main components of a signal: the status and
value. Their combination leads to two different kinds of signals: pure and valued, the latter
divided into two subkinds, full , and valueonly.

The next features concern temporal behavior: signals can be either standard , i.e.
instantaneous, or registered. These features are orthogonal to the previous ones.

Valued signals can have two additional features, independent of each other and of the
temporal ones: being initialized and being combined.

Furthermore, for better hardware synthesis, there are temporary signals that do not
keep their value over time. They are a bit special and discussed in a specific section.

In the last part of this section, we discuss which features are interface features and
which are module features.
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5.2.1 Signal status

The status of a signal S is the basic tool for control path programming. It is a binary
information usually referred to as absent / present , or false / true, and sometimes also
called 0 /1, or low / high, or unset / set, which is standard hardware terminology. The
status of S is absent by default, and it is set present either by the environment for an
input signal or by the program when an emit statement is executed, either directly in
the module where the signal is declared or indirectly through a submodule connection.
The status of S is tested for presence or awaited to be present by statements such as
“if S then ...”, “await S”, “every 3 S do ... end”, etc. In such statements, the
value of the Boolean expression S evaluates to false if S is absent and to true if S is
present . The status-handling statements are presented in full details in Chapter ??. Here
is a simple example of status-based sequential programming:

module Status ;

input I;

output O;

await I;

emit O

end module

The await I statement terminates at the first instant I occurs, first instant excluded.
The semicolon ‘;’ that follows the await statement is sequencing. Control is immediately
passed to “emit O” that immediately emits O. See Chapter ?? for the full description of
control propagation.

Dissymmetry of status with absent as default is key to Esterel control path program-
ming: there is no need to execute any statement to keep O absent .

5.2.2 Signal Value

A valued signal is declared using a colon and a type name after the signal name, as in
“S : T”. The value ?S of S is a data object of type T. If the type is an array type, the
value is an array value that can be indexed; for instance, with T = bool[8], the value S

is a bitvector of width 8 that can be indexed to return a Boolean, as in ?S[3].

As for the status, the value is set either by the environment if S is an input or by emit

statements executed by the module body or in a connected submodule. Here is a simple
example:

module Value :

input A : unsigned <[8] >;

output X : unsigned <[9] >;

every immediate I do
emit ?X <= 2*?A

end every
end module

Whenever it receives A, the Value module emits twice the value of A as the value of X.

5.2.3 Pure, full, and valueonly signals

The signals I and O of the above Status example are the simplest Esterel objects, called
pure signals. They only have a status.
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The signals A and X of the Value example are called full signals. Their declaration
involves a value type after a colon ‘:’. They have both a status and a value.

The statement “emit ?X <= 2*?A” performs two simultaneous functions: it sets the
status of X present , and it sets its value ?X to that of the right-hand-side 2*?A. Status
and value are coordinated: the signal value changes only when the status is present . In
hardware terminology, one would say that the status acts as a value enable. The status is
tested for presence in control statements such as “every immediate I”, while the value
is used in data expressions such as 2*?A. For instance, for I and O unsigned signals, the
statement

every I do
emit ?O <= 2*?I

end every

emits O with twice the value of I whenever this value is emitted by the rest of the program.
There are also value-only signals that have a value but no status. They are declared

using a value keyword before the type. Here is an example:

module Converter :

input Farenheit : value f l oa t ;
output Celsius : f l oa t ;
input Second;

every Second do
emit ?Celsius <= (?Farenheit -32.f) * 5.f / 9.f

end every
end module

Here, the input value ?Farenheit is assumed to be delivered by a thermometer that one
can read at any time but that does not send value change information. This is why we
use a statusless value-only signal. In Converter, we chose to output the Celsius value as
a full signal. We could also output it as a valued signal, using the declaration

output Celsius : value f l oa t ;

In that case, the user would not be warned of value changes on Celsius.
Full signals and value-only signals are collectively called valued signals. Therefore, a

signal is either pure or valued.
For valued signals, one may allow simultaneous multiple emission of values. The values

are then combined using a combination (or resolution) function. This will be detailed in
Section ??.

5.3 Standard signals

A standard signal is declared in the simplest way, by giving its name and possibly its type
after a colon, as for “input I” or “output O : Byte”. Standard signals status and value
are instantaneously updated by signal emission. For valued signals, the value is persistent
and it can be read at any time provided it is defined. The pre operators give access to
the status and value at previous instant.

5.3.1 Standard signal emission and reception

When a standard signal is emitted, its status and value are made instantaneously available
to other active statements. Here is an example:
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module Standard :

output O : unsigned;

s ignal S : unsigned in
pause;
emit ?S <=1;

pause;
pause;
emit ?S <= 2;

||

await S;

emit ?O <= ?S+1;

await S;

emit ?O <= ?S+2

end s ignal
end module

At first instant, the first parallel branch initial pause statement waits for one tick while
the second parallel branch await statement starts waiting for S. At second instant, the
first branch emits S with value 1, which immediately triggers emission of O with value 2
by the second branch. The first branch pauses for two ticks, while the second one waits
for another occurrence of S. At fourth instant, the first branch emits S with value 2 and
the second branch emits O with value 4.

Status and value transmission from S to O through the “await S” statements and the
?S expressions take no logical time, i.e. are performed combinationally in the same tick
as the emission. So are the intermediate additions.

5.3.2 Value persistency and initialization

If a standard signal S is valued, its value ?S is persistent. If it is not emitted nor received
from the environment (for an input) in one instant, it remains that of the previous instant.
For instance, in Standard above, reading the value ?S at third instant would return 1.

By default, before the first emission, the value is uninitialized and reading it is a run-
time error, see Section ??. For instance, in the Standard module above, the value of S
and O are undefined at first instant and reading them at that instant would be an error.

One can explicity initialize the signal value at declaration time using the init keyword,
as for

output O : unsigned in i t 0;

In that case, the value is always defined and it can be read at all instants. The initial value
is overwritten by the first signal emission or by the first reception from the environment
for an input. Here is an example involving an initialized local signal:

module InitializedSignal :

output O : unsigned;

s ignal S : unsigned in i t 0 in
pause;
emit?S <= 1;

||

sustain ?O <= ?S

}

end module
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Here, O is emitted with value 0 at first instant and value 1 from second instant onwards.
Removing the pause statement would make the initial value overwritten at first instant
and thus useless.

For arrays, the initial value can be either a full array literal or a simple literal of the
base type, see Section ??:

s ignal S : unsigned[5] i n i t {0,1,2,3,4},

T : bool [12] i n i t ’0 in
...

end s ignal

Notice that systematically holding the value over time involves storing it in some
memory, which may be too expensive for hardware applications. Thus, we also provide
temporary signals that do no store the value, see Section ??.

5.3.3 The status pre(S) operator

For a pure or full standard signal S, one can read the status at previous instant using the
pre(S) and pre1(S) Boolean expressions, For instance, one can detect a rising edge of
S by computing “S and not pre(S)”. The only difference between pre(S) and pre1(S)

is the Boolean value at first instant of the lifetime of a signal, i.e. at the instant where
the signal declaration is executed. At that instant, pre(S) is false while pre1(S) is true.
Here is an example:

module Pre :

input I, J;

output X, Y;

{

sustain {

X <= pre(I),
Y <= pre1(J)

}

||

pause;
s ignal S in

emit S;

||

sustain Z <= pre1(S)
end s ignal

}

end module

Here, X is emitted at any instant that follows an occurrence of I, Y is emitted at first
instant and at any instant that follows an occurrence of J, and Z is emitted at second and
third instant. Notice that the expression pre1(S) yields its initial value 1 only at second
instant since this is when the lifetime of S starts because of the pause statement.

The pre operator extends to status expressions as explained in Section ??. For in-
stance, “pre(S and not T)” is the same as “pre(S) and not pre1(T)” (noticing that
“pre(not T)” is equal to “not(pre1(T))” and not to “not(pre(T)”), because of the
initial instant — a well-known retiming pitfall).

Status pre operators cannot be nested. If needed, nesting can be achieved using
auxiliary signals, as in
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s ignal preS , prepreS in
sustain {

preS <= pre(S),
prepreS <= pre(preS)

}

||

... await prepreS; ...

end s ignal

or auxiliary sliding window arrays, as in

s ignal PreS[N] in
emit {

PreS[N-1] <= S ,

PreS [0..N-2] <= pre(PreS [1..N-1])
}

||

... i f PreS[i] then ...

end s ignal

See Section ?? and Section ?? for details on status arrays and slices.

5.3.4 The value pre(?S) operator

One can also read the value at previous instant using the pre(?S) data expression. The
previous value is defined at the first instant that follows value definition. If the signal has
an initial value, it is also the initial value of pre(?S).

There is no extension of data pre to expressions: one cannot write pre(?S+?T), but
only “pre(?S)+pre(?T)”.

Value pre operations cannot be nested. To implement sliding windows for values, one
can use either intermediate signals or sliding windows as for status. Here is an example

s ignal PreValS[N] : unsigned in
emit {

?PreValS[N-1] <= ?S ,

?PreValS [0..N-2] <= pre(? PreValS [1..N-1])
}

||

... ?PreValS[i] + 1

end s ignal

See Section ?? and Section ?? for details on value arrays and slices.

5.3.5 Standard signal submodule connection

Standard signals can be sent to or emitted by submodules through signal connections,
detailed in Section ??. Consider the following example:

module Sub :

input I : unsigned;

output O : unsigned;

sustain ?O <= ?I + 1

end module
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main module Main :

input A : unsigned;

output X : unsigned;

emit ?X <= 1;

pause;
run Sub [A / I, X / O]

end module

Here, A in Main is connected to the input I of Sub, while X is connected to the output O of
Sub. The status and value of A are tranmitted to the input I of Sub, while the status and
value of O in Sub are transmitted to X. In Main, the X signal is emitted in two different ways:
at first instant, by the explicit “emit ?X” statement; after the first instant, i.e. when Sub

runs, through the “X / O” connection with help of the “A / I” connection. Assume that
Main receives A from its environment with value 2. Then, A is present in Main with that
value. After the first instant, since Sub is running, the connection “A / I” instantaneously
sets I present with value 2 within Sub. This provokes instantaneous emission of O with
value 3. The connection “X / O” makes X present in Main with value 3, and this value is
instantaneously returned to the environment.

Therefore, an emit in the submodule acts just as an emit in the main module through
the signal connection.

5.4 Registered signals

Registered signals act with a delay of one tick for status and value transmission. Pure,
full, and value-only signals can be registered. Local and output signals can be registered,
but input signals cannot.

5.4.1 Registered signal declaration and emission

The register declaration uses a reg or reg1 keyword after a colon and before the type.
Registered signals are emitted using “emit next” instead of emit, and tested or value-
read in the same way as standard signals. A registered signal is present at an instant if
it has been emitted at the previous instant; its value is also shifted by one tick. Here is a
registered version of Standard above:

module Registered :

output O : unsigned;

s ignal S : reg unsigned in
pause;
emit next ?S <=1;

pause;
pause;
emit next ?S <= 2;

||

await S;

emit ?O <= ?S+1;

await S;

emit ?O <= ?S+2

end s ignal
end module
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As for Standard, emission of S is performed at second and fourth tick. However, since
status and value transmission consume one tick, S is present only at third and fifth tick,
with respective values 2 and 4. The output O is emitted at these ticks with these values.

For a reg1 signal, the status is also set present at the first instant of the signal lifetime.
Replacing reg by reg1 in Registered would make S present at initial instant.

Notice that the “emit next” statement is instantaneous, just as the emit statement:
the status and value are instantaneously posted for the next instant and control instanta-
neously proceeds in sequence.

5.4.2 Value persistency and initialization

The value ?R of a registered signal R is persistent. By default, it is uninitialized until the
instant that follow the first emission of the signal. Therefore, in Registered above, the
value of R at first instant is uninitialized, and reading it would be a run-time error. This
is also true for a valued registered signal declared reg1, since the ‘1’ applies only to status
and not to value.

As for a standard signal, the value of a registered can be initialized using an init

keyword. Then, the value at first signal lifetime instant is the initial value, which implies
that no uninitialized signal error can occur. Consider the following variant of Registered:

module RegisteredInit :

output O : unsigned;

s ignal R : reg unsigned in i t 0 in
pause;
emit next ?R <=1;

pause;
pause;
emit next ?R <= 2;

||

emit ?O <= ?R

await R;

emit ?O <= ?R+1;

await R;

emit ?O <= ?R+2

end s ignal
end module

In RegisteredInit, O is emitted at first instant with value 0 by the second parallel branch,
the subsequent behavior being identical to that of Registered.

5.4.3 The next(R) status operator

For a registered pure or full signal R, the next(R) operator tests whether an “emit next R”
statement is executed in the instant. Here is an example:

module Registered2 :

output X : reg , Y;

emit {

next X,

Y <= next(X)
}

end module
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Here, Y is present at the first instant since “emit next X” is executed at that instant,
while X is only present at the second instant since it is registered.

The expression pre(R) is disallowed for a registered signal R.

5.4.4 The next(?R) value operator

For a registered valued signal R, the next(?R) operator returns the posted value if an
emit next ?R <= ... statement is executed in the instant; otherwise, it returns the
current value of ?R. Of course, in the latter case, there is a run-time error if that value is
yet undefined. Here is an example:

module Registered3 :

output X : reg unsigned , Y : unsigned;

emit {

next ?X <= 314,

?Y <= next(?X)
}

In Registered3, Y is present at first instant with value 314, while X is undefined at first
instant and present at second instant with the same value.

The expression pre(?R) is disallowed for a valued registered signal R.

5.4.5 Registered signals submodule connection

Registered signals can be connected to submodule inputs in the same way as local signals.
Here is an example similar to that of Section ??:

module Sub :

input I : unsigned;

output Rsub : reg unsigned;

sustain next ?RSub <= ?I+1

end module

module MainReg :

output X : unsigned;

output R : reg unsigned;

emit next ?R <= 2;

pause;
run Sub [R / I, X / RSub]

end module

Ar first instant, Main emits R with value 2 for the next instant. At second instant, R is
made present with value 2, and Sub starts. Because of the “R / I” connection, I is made
present in Sub with value 2, which provokes emission of Rsub with value 3 for the next
instant. At third instant, because of the “X / Rsub” connection, X is made present with
value 3 and output to the environment.

Altogether, there is no difference between standard and registered connections if one
only thinks in terms of current status and value: the status and value considered are those
in the instant, and the registers act only to locally delay status and value setting within
Main and Sub.

Because registers only support emission for the next instant, it is not possible to
connect a submodule output signal to a master module registered signal through an output
connection.
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However, in the future, it may be useful to introduce connections of the form “next R / O”
— advice wanted!

5.4.6 Building data pipelines with registered signals

Registered signals are fundamental for Moore machine design and for hardware data
pipelining. Since their current status and value depend only on past actions, they are
Moore signals in the usual sense. For an example of data pipelining, consider the follow-
ing calculation: given four unsigned value-only inputs A, B, C, and D, compute the value
(A× B) + (C× D). The obvious idea is to write

module Calc :

input {A, B, C, D} : value unsigned;

output O : unsigned;

sustain ?O <= (?A*?B)+(?C*D)

end module

But the data calculation may lead to a unacceptable critical path, and one may want
to pipeline the design by inserting a register barrier between the multiplications and the
addition. This is very easy by Esterel program transformation. First, we introduce two
intermediate signals to cut the operation:

module Calc :

input {A, B, C, D} : value unsigned;

output O : value unsigned;

s ignal {AB, CD} : value unsigned in
sustain {

?AB <= ?A*?B,

?CD <= ?C*?D,

?O <= ?AB + ?CD

}

end s ignal
end module

So far, we haven’t changed anything in the behavior, since the intermediate standard
signals AB and CD act in a purely combinational way. However, pipelining is now made
easy . We simply declares the local signals AB and CD to be registered, annotating their
emission with the next keyword, and we delay the first emission of O by one tick using the
pause statement presented in Section ??:

output O : value unsigned;

s ignal {AB, CD} : reg value unsigned in
sustain {

next ?AB <= ?A*?B,

next ?CD <= ?C*?D

}

||

pause;
sustain ?O <= ?AB + ?CD

end s ignal

Of course, O is emitted with a delay of one tick, which is the pipeline latency. Since next

is used for all equations in the first sustain statement, we can factor it out at sustain

level, as will be explained in Section ??:
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s ignal {AB, CD} : reg value unsigned in
sustain next {

?AB <= ?A*?B,

?CD <= ?C*?D

}

...

end s ignal

In the above design, ?O is the result of an addition. In hardware implementation, this
means that ?O is the output of some combinational logic. To improve circuit delay, one
often desires output values to be register driven instead of combinational logic driven, i.e.
to compose Moore machines instead of Mealy machines. To achieve this, it suffices to
declare O registered:

output O : value unsigned;

s ignal {AB, CD} : reg value unsigned in
sustain next {

?AB <= ?A*?B,

?CD <= ?C*?D

}

||

pause;
sustain next ?O <= ?AB + ?CD

end s ignal

Of course, latency is now 2: the first value of O is output at third instant.

5.5 Temporary signals

Temporary signals are restricted kinds of valued standard signals with non-persistent val-
ues. While the lifetime of the value of a standard or registered signal is the lifetime of
its declaration statement, the lifetime of the value of a temporary signal is an instant. Of
course, the value pre operator pre(?S) is not available for a temporary signal S, and a
temporary signal cannot be registered.

Temporaries are used mostly for hardware synthesis, where one does not want to store
values in memory unless strictly necessary.

5.5.1 Temporary signal declaration

A temporary signal is declared by the temp keyword before the type name:

output X : temp Byte;

A temporary signal can be value-only; it is then declared using the temp and value

keywords in any order:

output Y : temp value Byte;

s ignal S : value temp Byte in ... end

A temporary signal is internally emitted just as a standard signal, using an emit statement.
For a temporary input of a module M, there are two cases:

• if the signal is full (not value-only), its value is supposed to be received from the
module environment only when the signal is present.
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• If the signal is value-only, the value is assumed to be received from the environment
at each instant in the lifetime of M.

Therefore, one can view a value-only temporary input as a temporary whose status is
always present.

5.5.2 Temporary signals submodule connection

A temporary signal S can also be sent to a submodule or received from a submodule.
Consider first the connection of a temporary S to the input I of a submodule Sub, as in
“run Sub[S / I]”:

• If S is full, at each tick where S is present, I is set present in Sub if it is pure or full,
and the value of S is passed to I if I is valued.

• If S is value-only, then I must also be value-only, and the value of S is passed to I

at each tick where Sub is executed.

The laws are dual for a temporary S connected to an output O of Sub, as in “run Sub[S / O]”:

• If S is full, so must be O; then S is set present and O’s value is passed to S at each
tick where O is present in Sub.

• If O is value-only, O’s value is passed to S at each tick where Sub is executed.

The rules will be made fully precise in Chapter ??.

5.5.3 Temporary signal initialization

The value of a temporary signal can be initialized using the init keyword. Unlike for a
standard signal for which initialization is performed only at lifetime start, initialization
of a temp signal is performed anew at each instant1.Therefore, the value of an initialized
temp signal is always defined. Here is an example:

module Temp :

output O : unsigned;

s ignal S : temp unsigned in i t 0 in
pause;
emit ?S <= 1;

||

sustain ?O <= ?S

end s ignal
end module

In Temp, the value of S is initialized to 0 at each instant; since S is emitted at second instant
with value 1, it takes that value at that instant, but for that instant only. Therefore, O is
emitted at first instant with value 0, at second instant with value 1, and at each instant
with value 0 from then on. The behavior would be the same with S declared “value temp”.

Beware, because initialization is different, it may be non-innocuous to turn a standard
signal into a temporary one just to improve circuit synthesis. One must check that the
value is not accessed at a time where the signal is not emitted, since one would find the
previous value for the standard signal and the initial value for its temp variant.

1The initial value could be more accurately called a default value. However, we did not want to add
one more keyword just for this case.
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5.5.4 Temporary signal value definition

If a temporary signal is initialized, its value is always defined and can always be read.
Otherwise, the value can be undefined. There are two cases:

• For a normal non-value-only temporary signal, the value is defined exactly when the
status is present .

• For a value-only temporary signal, the value is defined when the signal is driven. An
input value temp signal is always driven by the environment if it is an input; it is
driven by any emit statement executed within the module; finally, when connected
to a submodule output, it is driven as long as the submodule is alive, see Section ??.

Reading the value of an undriven temporary signal is a run-time error, see Section ??.

5.6 Single vs. combined signals

By default, a valued signal S of any kind supports only one value emission at a time. We
say that S is single. It is a run-time error to perform two simultaneous emissions, see
Section ??. Such an error can be detected at run-time, compile-time, or verification time,
according to the programming environment.

Esterel also provides its user with combined signals that support multiple simultaneous
emission. The values are combined using a specified combination (or resolution) opera-
tion. Any kind of valued signal (standard, registered, temporary, full, value-only) can be
combined.

A combined signal is declared by adding the combine keyword followed by a data
function name or by an operator name. The function or operator must be of type (T,T):T
if the value type is T. It must be associative and commutative. If several values at emitted
at a time for S, say v1, v2, . . . , vn, and if the function is called f, then the final value ?S of
S is f(v1, f(v2, ....f(vn−1, vn)))

Anticipating on signal arrays, here is an easy way to compute the sum of an array of
byte with addition as the combination function 2

module ArraySum :

input I[16] : unsigned <256 >;

output O : unsigned <16*255+1 > combine +;

for i < 16 do
emit ?O <= ?I[i]

end for
end module

Notice the result type unsigned<16*255+1>. This is the tightest possible type for the
sum, since each array component maximum value is 255. If the signal type is an array
type, the combination function must apply on the non-array base type of the signal and
combination is done in a pointwise way. Here is an example:

type Word = bool [32];
s ignal W : Word combine or;

For W, or-combination is performed independently for each ?W[i]. Combining arrays
values globally requires explicit programming.

2Warning: for hardware synthesis, this method may not be optimal in term of adder width, depending
on the synthesis system.
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5.7 Signal arrays

Signals of any kind can be organized into signal arrays or arrays of arrays. The dimensions
are given right after the signal identifier. They must be statically evaluable expressions.
Here are signal array declarations examples:

input InBus[Size]; // array of pure signals

output Matrix[N][N] : f l oa t ; // square matrix of floats

s ignal S[N]: bool[M] in ... end // signal array of bitvectors

Any kind of signal (standard, registered, temporary, full, value-only) can be an array. All
properties of elementary signals extend pointwise to arrays.

5.7.1 Signal array status

A pure or full signal array has one status per index. For instance, the Inbus status array
above can be indexed as in Inbus[1] or sliced as in Inbus[1..5]. Arrays of arrays such as
S[3][8] can be totally indexed, as in S[1][7], partially indexed, as in S[1], or sliced, as
in S[1][2..3], S[1..4][0..5], or S[1..4]. In the above example, the status of Matrix
is an array of arrays, and the status of S is a simple array. Notice that the value array
dimension of S is ignored as far as the status is concerned.

For standard signals, the pre operator applies pointwise, and it can be applied to par-
tially or totally indexed arrays. Therefore, one can write the expressions pre(Matrix),
which is of type bool[N][N], pre1(Matrix), which is the same but with initial sta-
tus present at each position, Pre(Matrix[1][2..4]), which is of type bool[3], and
Pre(Matrix[1][2]) which is of type bool. The same holds for next expressions for
registered arrays.

Notice that indexing must be inside pre or next. One cannot write pre(Matrix)[1][2].

5.7.2 Signal array value

A valued signal array A declared of a non-array data type T also has one value of type
T per index. Therefore, the expression ?A denotes a data array of the same dimension
as the status. This array can be indexed and sliced in the same way. For instance, for
Matrix above, ?Matrix is an array of type float[N][N], ?Matrix[1][2] is a float, and
?Matrix[1..4][2] is an array of type float[4].

If the data type T is itself an array type, the signal and data dimensions are concate-
nated from left to right, signal dimensions first. Here is an example:

input Memory [1024] : bool [32];

Here, there is one status per memory 32-bits word. As far as data is concerned, the
?Memory expression has type bool[1024][32]. In the same way as the status expression
Memory[100] denotes the status of the 100th word, the data expression ?Memory[100] de-
noted the value of the 100th word, which is of type bool[32]. Therefore, ?Memory[100][8]
denoted the bit of index 8 of the 100th word value.

Whether to put the dimensions on status or value is a matter of control granularity.
There are three posssible choices for Memory:

input Memory : bool [1024][32];
input Memory [1024] : bool [32];
input Memory [1024][32] : bool;
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With the first choice, there is only one Memory status bit for the whole memory. That bits
witnesses any change in the memory. With the second choice, there are 1024 status bits,
one per memory word. Only one status bit changes when a word changes. With the third
choice, there is one status bit for each memory bit, which gives maximal but expensive
control over memory change information.

Be careful when the signal is declared using an intermediate defined array type, as in
the following example:

type Word = bool [32];
input Memory [1024] : Word;

The type of Memory is still bool[1024][32], which means that we apply the following
implicit operation on defined types:

?Memory : Word[1024]

= (bool[32])[1024]

= bool[1024][32]

To avoid any confusion, there is no way to write directly a potentially ambiguous type
expression of the form (bool[32])[1024] in Esterel, and one should simply remember that
indices are always written in the order of dimension declaration. Therefore, ?Memory[i]
is a Word, and ?Memory[i][j] is the j-th bit of that word3.

As for the status, the value pre and next operators can be applied to arrays, and they
act pointwise. For instance, pre(?Matrix[1..4][2..5] has type float[4][4], while
pre(?Memory[1]) has type Word = bool[32]. As for the status, indexing must be done
inside the call of pre or next

5.7.3 Combined arrays

Any valued array can be combined, using a pointwise combination function. The combi-
nation is done position per position independently. There is no way to use a function that
acts globally on data arrays. Here is an example:

s ignal CombineMemory [N] : bool[M] combine or;

Then, or-combination is performed individually for each position ?Memory[i][j].

5.8 Variables

Besides valued signals, Esterel v7 60 can handle data through more classical typed vari-
ables. Variables are in the same namespace as signals and all other names. They are only
local to modules, therefore they cannot appear in interfaces.

3It turns out that the potential pitfall disappears when one writes the postfix form
array 1024 of array 32 of bool instead of the prefix form bool[1024][32], but we want to keep the
simplest and most usual notation for Esterel.
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5.8.1 Variable declaration and scope

Variables are declared using the “var vardecl in stat end” statement which defines their
scope. They can be initialized using the ‘:=’ assignment symbol followed by an expression,
see Section ??. They can have array types, but, unlike signals, they cannot be themselves
arrays (there is no need to distinguish between variable arrays and variables of array type
since variables have no status). Here are examples:

var IterationNumber : unsigned <[8]>,

VarArray1 : unsigned <[8] >[5] := {5{0}} ,

VarArray2 : bool [12] := ’0 in
...

end

For arrays, the initialization value can be either a full array literal, as for VarArray1

above, or a single literal of the array base type, as for VarArray2 above. See Section ??
for details.

5.8.2 Persistent vs. temporary variables

By default, a variable is persistent , i.e. retains its value between instants. If it is initialized,
a persistent variable takes its initial value when the var statement that declares it starts;
otherwise, it remains uninitialized until its first value assignment by an assignment or
procedure call statement.

As for signals, using the temp keyword, one can also declare temporary (or combina-
tional) variables that do not keep their values over time and do not generate hardware
registers. Here are examples

var X : temp Byte ,

Y : temp f l oa t := 3.14f in
...

end var

As for a signal, an initialized temp variable is reinitialized afresh at each instant. When
changing a variable from temp to normal, beware that initialization is performed only once
instead of at each tick; this is normal since the variable value has become persistent over
time.

Variables values are updated either by ‘:=’ assignment statement, see Section ??, or
by procedure calls, see Section ??. When it exists, the initial value is overwritten.

Variable values are read in data expressions by simply mentioning their name, without
the ‘?’ symbol used for signals. For instance, the expression “?I+X” adds the value of the
variable X to the current value of the signal I. Reading the value of an undefined variable
is a run-time error, see Section ??. Notice that an initialized persistent or temporary
variable is never undefined.

5.8.3 Variables cannot be shared

Unlike signal emission and reception, variable updating embodies no built-in write / read
synchronization mechanism. Therefore, a variable can take several successive values in the
same instant. Here is an example:
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var V : unsigned := 1 in
emit O1(V);

V := V+1;

emit O2(V)

end var

Here V successively takes the values 1 and 2 in the same instant, O1 is emitted with value
1, and O2 is emitted with value 2.

Because of this, we must forbid arbitrary sharing of variables to ensure behavior de-
terminism. The following behavior must be forbidden:

var V : integer := 0 in
V := 1;

V := 2;

||

emit O(V)

end var

Since both assignments and the emission should occur in the same instant, there is no
consistent value to emit for O and the program must be rejected.

There are two ways of forbidding shared variables:

• Requiring that no sharing conflict ever occurs at run-time. One should then report
a run-time error, see Section ??.

• Statically enforcing that this will be true, by some compile-time algorithm.

Note: In the Esterel Studio we require a variable not to be shared by two concurrent threads:
a variable read by one branch of a parallel cannot be read nor written by any other branch
of the parallel. In other words, a variable written by a computation thread ought to be local
to this thread. This clearly rejects the above statement. More subtle static analysis could
be performed by other compilers.

5.9 Verification signals: assertions, assumptions, and cov-
erage points

5.9.1 General

Esterel v7 60 provides users with verification signals, which are assertions, assumptions,
and coverage points. Unlike other signals, verification signals are not used to achieve
the design functionality but are intended for the verification of the design and of the
environment constraints.

Verification signals are directly declared in special signal equations of emit and sustain

statements. An assertion is introduced by the assert keyword, an assumption is intro-
duced by the assume keyword, and a coverage point is introduced by the cover keyword.
For example, here are verification signal equations for a FIFO design:

input Put , Get;

output Full , Empty;

...

sustain {

assume NoFifoFullError = not(Put and Full),
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assume NoFifoEmptyError = not(Get and Empty),

assert FifoFullEmptyExclusive = Full # Empty ,

cover FullCovered = Full ,

cover EmptyCovered = Empty

}

In this chapter, we focus on the semantics of verification signals. For syntax issues, please
refer to Section ?? and Section ??.

5.9.2 Assertions and assumptions

Assertions and assumptions both expresses properties. An assertion or an assumption is
specified as a Boolean expression. When the Boolean expression evaluates to true, we say
that the assertion or assumption passes or is valid; when the Boolean expression evaluates
to false, we say that the assertion or assumption fails or is violated.

The difference between assertions and assumptions lies in their intended interpration.
Assertions express properties about the design whereas assumptions express properties
about the design environment.In simulation, there is no difference between assertions and
assumptions, except that when an assertion fails the problem is in the design, whereas
when an assumption fails the problem is in the design environment, i.e. the design input
sequence (testbench). In formal verification however, there is a fundamental difference:
assertions are verified but assumptions are assumed to be always valid, that is, only input
sequences respecting the assumptions are analyzed.

5.9.3 Coverage points

A coverage point is used to cover a Boolean expression, that is, to monitor that the Boolean
expression evaluates to true. The intention of a coverage point is to signal that a certain
logical condition has happened or has been covered. Coverage points do not pass or fail
like assertions and assumptions; instead, they are either covered or not covered. A coverage
point is covered if its Boolean expression is evaluated and evaluates to true. In simulation
the hits of coverage points can be counted. In formal-verification, a coverage point can be
proven unreachable by showing that no input sequence (respecting all assumptions) can
cover the coverage point, or be covered by generating an input sequence (respecting all
assumptions) that cover the coverage point.
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Chapter 6

Interfaces and Module Headers

This chapter presents the declaration of signals and ports in interfaces and modules. We
first present the signal declaration syntax in Section ??, detailing all the attributes a signal
declaration can have. We establish a distinction between two kinds of attributes:

• Interface attributes, which concern the way in which one can connect to a module
interface signal from outside its module.

• Module attributes, which are more behavior-related and local to the module that
owns the signal.

Signal declaration in interfaces can only involve interface attributes, and the other at-
tributes of a signal must be given by refinement declarations in modules.

We then present hierarchical declarations of signals and ports within interfaces in
Section ??. We present input and output relations in Section ??. We end the chapter by
presenting module headers and the refinement of interface signals in Section ??

Local signal and ports declarations in module bodies are deferred to Chapter ??, where
we study the signal local signal declaration statement in Section ??.

6.1 Signal declaration overview

6.1.1 Signal declaration syntax

A signal declaration must occur after one the input, output, inputoutput or signal

keywords. The first three keywords characterize interface signal declarations; they can
only occur in interfaces and module headers. The signal keyword starts module signal
declarations; it can only occur in module headers and bodies.

A signal declaration consists of the name of a signal, optionally followed by a dimension
list for a signal array, and optionally followed by a colon and a list of attributes. One
can use a single keyword for a comma-separated list of independent signal declarations.
Furthermore, when there is an attribute list, a declaration can declare a list of signals or
signal arrays sharing the same attributes by enclosing this list within curly brackets. Here
are examples:

input I;

output X[4],

{Y, Z[8]} : unsigned <M>[3];

inputoutput IO;
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s ignal S : reg value signed in i t -2 combine + in
...

end

Local signal declarations can also declare ports, see Section ?? for details. We concentrate
on interface signals in this chapter.

6.1.2 Signal declaration attributes

The attributes are as follows:

• The reg attributes declares the signal to be registered. Without it, the signal is
standard. The signal must be output or local.

• The value attribute declares a valued signal to be value-only. Without it, a valued
signal is full.

• The temp attribute declares a valued signal to be temporary. Without it, a valued
signal is persistent.

• The type attribute declares the type of a valued signal. Without it, the signal is
pure (and all attributes except reg are disallowed).

• The “combine f” declares a valued signal to be combined, with f as the combination
function. One can replace f by +, *, and, or, or xor provided the type is adequate.
Without the combine attribute, a valued signal is single.

• The “init exp” attribute declares the signal to be initialized by the given expression.
Without it, a valued signal is uninitialized.

The reg attribute is the only one allowed for pure signals. All the other attributes require
the signal to be valued, i.e. a type to be declared. The reg and temp attributes are
exclusive. For a valued signal declaration, the reg, temp, and value attribute must appear
before the type, in any order, while the combine and init attributes must appear after
the type, in any order.

Here are some examples of valid attribute declarations (in module headers where all
attributes are allowed):

output R : reg;
input {X1, X2} : unsigned;

output Y : reg unsigned <[12] > i n i t 0;

input Z : temp value unsigned in i t 3 combine +;

output T : reg value bool combine or i n i t f a l s e ;
...

And here are examples of invalid declarations:

input S : reg; % no reg for input

input S : temp; % missing type

output R : reg value in i t 0; % missing type

output X : temp reg unsigned; % incompatible attributes

output Y : unsigned temp; % wrong order
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6.1.3 Interface vs. module attributes

Signal declaration in interface units are restricted. They must start with the input,
output, or inputoutput keyword, and they can only involve the type, value, and temp

attributes. These attributes are called interface attributes, while reg, init, and combine

are called module attributes.
Interface attributes are exactly what is needed to understand how to connect to the

signal from the global environment or from another module. The value attribute tells
that the interface signal has a value but no status, while the temp signals declares how
the value is driven. On the other hand, module attributes declare internal behavioral
properties of signals that should not be known from external users of this signal.

For instance, consider a registered output R of a module Sub, which can be directly
declared registered in the Sub module header:

module Sub :

output R : reg;
...

emit next R;

...

end module

Consider now Sub as a submodule of a module M, with a signal connection of the form
“run Sub[X / R]”. The fact that R registered is important for the behavior of R within
Sub, but it irrelevant for the user X of this signal in M. Logically speaking, X simply sees
the current status of R as it is produced by Sub, and the same holds for the value if the
signals are valued. Changing R in Sub into a standard signal with exactly the same output
behavior should be totally equivalent for M, which therefore should not know about the
reg feature in Sub. For instance, here are two modules that perform the same, one with
a standard output and one with a registered output:

module Sub1 :

output O;

pause;
every 2 t ick do

emit O

end every
end module

module Sub2 :

output O : reg;
every 2 t ick do

emit next O

end every
end module

Since they are behaviorally equivalent, the only thing Main should know about them is
their common interface, which is simply

inter face SubIntf :

output O;

end inter face

Then the same run statement with the same signal renaming will work for both Sub1 and
Sub2.
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Similarly, the combine and init attributes of a signal output by a module should be
unknown to its external users:

• For combine, they should only see the result of the combination.

• for init, they should see the initial value as the value at initial instant, not different
from any other value.

For a submodule input, we also disallow combine in interface units; it could in principle be
allowed by handling multiple connections to a single input, but we feel that this mechanism
is much too fancy and requires an explicit protocol which can be easily programmed in
Esterel v7. We allow init, but only within the submodule: an init declaration gives
the signal an initial value for the body in a way invisible to the external producers of the
signal, see Chapter ??. Therefore we disallow init in interface units for input signals,
restricting its use to module units.

Altogether, we forbid the combine and value attributes in interface units. Specifying
these attributes in a module after having imported an interface requires a refinement
declaration, presented in the next section.

6.1.4 Interface signal refinement

Back to the M / Sub1 / Sub2 example above, splitting the interface is obvious for Sub1:

inter face SubIntf :

output O;

end inter face

module M1 :

extends Intf;

pause;
every 2 t ick do

emit O

end every
end module

Splitting the interface for M2 uses very same interface Intf, but requires the addition of a
refinement declaration in the module header to recover the missing attributes:

module M2 :

extends Intf;

re f ine O : reg;
every 2 t ick do

emit next O

end every
end module

A signal refinement declaration can only occur in a module header or a local signal declara-
tion, see Section ??. It consists of the name of the signal followed by the added attributes.
The type and value attributes already declared cannot be mentioned nor changed in the
refine declaration. The temp attribute can be refined into mem or reg. With mem, the
signal is actually memorized in the module, as if the temp keyword was simply ignored.
With reg, the signal is declared registered. In both cases, the temp attribute is canceled.
The mem and reg refinements are fundamental to allocate signal memories in designs, see
Section ??. Here are examples of correct refinements:
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inter face Intf :

input A : temp unsigned <M>;

output X;

output Y : signed <N>;

output Z : temp bool;
end inter face

module Mod :

extends Intf;

re f ine A : i n i t 0 combine +;

re f ine X : reg;
re f ine Y : mem in i t -1;

re f ine Z : combine and;
...

end module

And here are incorrect refinements of the same interface:

module Mod :

extends Intf;

re f ine A : value in i t 0; % value forbidden

re f ine X : reg unsigned; % type addition forbidden

re f ine Y : signed <N+1>; % type change forbidden

end module

Finally, one can group refinements using curly brackets :

re f ine {A, B} : reg in i t 0;

6.2 Interfaces and Ports

Interface units describe the input / output structure of modules. Besides data declaration
and extension already described in Chapter ??, interface declarations consist in signal,
port, and relation declarations, plus interface extension. Ports are groups of signals typed
by interfaces. They make the interface structure fully hierarchical, in addition to its object-
oriented character that follows from extensibility. Relations are simple combinational
behavior assertions about input or output signals.

In this section, we first describe simple interfaces, which are the leaves of the hierarchy.
We define the mirror of an interface. Then, we define ports that lead to general interfaces.
We give details about what full or selective extension means for interfaces. Finally, we
present input and output relations.

6.2.1 Simple interfaces

A simple interface involves declarations and extension of data and declarations of signals
starting with one of the directionality keywords input, output, or inputoutput. The
declared signals can be typed, and, in that case, they can bear the additional interface
attributes value and temp. The signals must have distinct names that do not conflict
with other names visible from their declaration point. Here is a simple example:
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inter face Intf1 :

type Byte = unsigned <[8] >;

input I;

output O : Byte;

inputoutput IO : value Byte;

end inter face

A simple interface can also contain relations, whose study is deferred to Section ??.

6.2.2 The mirror of a simple interface

The mirror “mirror Intf” of a simple interface Intf declares exactly the same signals
with opposite directionalities: input is changed into output, output is changed into
input, while inputoutput stays the same. Input relations and output relations are also
swapped, as will be explained in Section ??. Mirroring has no effect on data. Of course,
mirroring an interface twice yields it back unchanged. Here is an interface that extends
the mirror of Intf1 above, followed by its own mirroring:

inter face Intf2 :

extends mirror Intf1;

output X;

end inter face

inter face ArrayInft2 :

extends mirror Intf2;

end inter face

In Intf2, I and X are outputs, O is an input, and IO remains an inputoutput. In Intf3,
I and X are inputs, O is an output, and IO remains an inputoutput. Notice that the
declaration of Intf3 uses the extension mechanism just to give a name to the mirror of
Intf2.

6.2.3 Ports

General interfaces can declare ports, where a port is a named groups of signals itself typed
by an interface. A port is declared by its name, a colon, and an interface name possibly
preceded by the mirror keyword. Here is an example:

inter face Intf1 :

type Byte = unsigned <[8] >;

input I;

output O : Byte;

inputoutput IO : value Byte;

end inter face

inter face Intf2 :

input J;

port Direct : Intf1;

port Mirror : mirror Intf1;

end inter face

Of course, for the hierarchy to be consistent, dependency of interfaces through ports must
have no cycle and port building must develop from simple interfaces.
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The pointed notation is used to address port fields. In Intf2, Direct.I and Mirror.O

are input signals, while Direct.O and Mirror.I are output signals. The signals Direct.IO
and Mirror.IO are both inputoutput signals. Using curly brackets to represent interface
boundaries, we can picture Intf2 as follows:

inter face Intf2 :

input J;

port P : { input I;

output O : Byte;

inputoutput IO : value Byte; };

port Mirror : { output I;

input O : Byte;

inputoutput IO : value Byte; };

end inter face

Warning: this notation is just for explanation; it is not accepted in Esterel.
When mirroring a general interface, the port interfaces are recursively mirrored. In the

“mirror Intf2” mirror interface, Direct.I and Mirror.O become output signals, while
Direct.O and Mirror.I become input signals.

Signals and declared ports in an interface must have distinct names; however, there is
no name conflict between components of a port and the objects declared in the interface
where the port is declared. An input I added to Intf2 would not conflict with Direct.I

nor with mirror.I.
To ease the declaration of local signals in module bodies, interfaces can be extended

and ports can be declared and refined in local signal declarations, see Section ??. The
open delcaration makes it possible to locally forget about the dot notation by setting I as
a synonym for P.I, see Section ??.

6.2.4 Port arrays

One can also declare arrays of ports in an interface:

inter face Intf3 :

constant Size : integer ;
input J;

port DirectArray[Size] : Intf1;

port MirrorArray[Size] : mirror Intf1;

end inter face

Port fields addressing uses a mix of dot notation and array indexation, as in ‘DirectArray[3].I’.
Dimensions add up for signals and values. Consider the declarations

inter face ArIntf :

input I[32];

output O : bool [8];
end inter face

inter face ArPortIntf :

port P[16] : ArIntf;

end inter face

Then P.I has dimension [16][32], while ?P.O is of type bool[16][8]. However, as said
before, indexing is mixfix: one writes P[i].I[j] and ?P[i].O[j], not P.I[i][j] and
?P.O[i][j].
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6.3 General Interfaces

We now present general interfaces, obtained recursively from simple interfaces by extension
and port definition. Data extension was described in Chapter ??. Signal extension can be
full or selective, i.e. limited to input, output, or inputoutput signals.

6.3.1 Full interface extension and port definition

Full interface extension consists of the extends keyword, optionally followed by mirror

and observe, and followed by the interface name. Full extension imports all the signals and
ports declared in the base interfaces. When mirror is used alone, the signal directionalities
are mirrored. When observe is used alone, the signals are all imported as inputs. When
“mirror observe” is used, the signals are all imported as outputs. Interface extension
can be combined with port definition in the declaration of an interface. Here is an example
using Intf1 and Intf2 of Section ??:

inter face Intf1 :

type Byte = unsigned <[8] >;

input I;

output O : Byte;

inputoutput IO : value Byte;

end inter face

inter face Intf2 :

input J;

port Direct : Intf1;

port Mirror : mirror Intf1;

end inter face

inter face Intf3 :

extends Intf2;

port P : Intf2;

port Q : mirror Intf2.

end inter face

inter face Intf4 :

extends observe Intf2;

port R : mirror observe Intf2;

end inter face

Here, Intf3 directly extends Intf2 and has two additional ports involving Intf2. Besides,
Intf4 observes Intf2 and has an additional port involving Intf2. Using the curly bracket
notation, we can picture Intf3 and Intf4 as follows:

inter face Intf3;

input J;

port Direct : { input I;

output O : Byte;

inputoutput IO : value Byte; };

port Mirror : { output I;

input O : Byte;

inputoutput IO : value Byte; };

port P : { input J;

port Direct : { input I;
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output O : Byte;

inputoutput IO : value Byte; };

port Mirror : { output I;

input O : Byte;

inputoutput IO : value Byte; }; };

port Q : { output J;

port Direct : { output I;

input O : Byte;

inputoutput IO : value Byte; };

port Mirror : { input I;

output O : Byte;

inputoutput IO : value Byte; }; };

end inter face

inter face Intf4;

input J;

port Direct : { input I;

input O : Byte;

input IO : value Byte; };

port Mirror : { input I;

input O : Byte;

input IO : value Byte; };

port R : { output J;

port Direct : { output I;

output O : Byte;

output IO : value Byte; };

port Mirror : { output I;

output O : Byte;

output IO : value Byte; }; };

end inter face

There is no name conflict in Intf3 and Intf4, since there is no confusion between J,
P.J, Q.J, etc. However, extending both Intf2 and “mirror Intf2” in the same interface
would generate a name conflict for all the components of Intf2.

6.3.2 Selective interface extension

Selective interface extension or port definition extends or defines a port with only the
inputs or outputs of an interface, descending port interfaces recursively to gather these
inputs or outputs. The extends keyword is followed by an optional mirror, by input,
output, or inputoutput, and by the interface name.

For “extends input Intf”, all the input signals of Intf are imported, the ports of
Intf being imported with interface restricted to their input components. For “extends mirror output Intf”,
all the output signals and port components of Intf are imported mirrored, i.e. as inputs.
Extension is symmetrical with output instead of input.
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Building observers by selective extension

A common practical usage is to transform all outputs of an interface into inputs. This is
useful to build observers of programs, i.e. additional modules that take all interface signals
of a given module as input and compute some properties of the whole set of signals. Here
is an example:

module M :

input I;

output O;

...

end module

module Observer :

extends input M;

extends mirror output M;

sustain assert O_only_if_preI = O => pre(I)
end module

the first extends directly imports the input I. The second extends imports O as an input,
since M’s interface is mirrored before extracting the inputs. The Observer module inputs
I and O and checks their temporal dependency.

Selective extension examples

Let us exemplify further extensions with ports. With Intf1, and Intf2 as above, consider
the following selective extensions, which can be seen as restrictions of Intf3:

inter face Intf3In :

extends input Intf3;

end inter face

inter face Intf3Out :

extends output Intf3;

end inter face

These interfaces are stripped versions of Intf3 reduced to input or output signals. They
can be pictured as follows, using curly brackets as interface delimiters:

inter face Intf3In :

input J;

port Direct : { input I; };

port Mirror : { input O : Byte; };

port P : { input J;

port Direct : { input I; };

port Mirror : { input O : Byte }};

port Q : { port Direct : { input O : Byte };

port Mirror : { input I; }};

end inter face

inter face Intf3Out :

port Direct : { output O : Byte; };

port Mirror : { output I; };

port P : { port Direct : { output O : Byte; }

port Mirror : { output I }};
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port Q : { output J;

port Direct : { output I };

port Mirror : { output O : Byte; }};

end inter face

Finally, consider the following interface:

inter face Intf4 :

extends input Intf2;

extends inputoutput Intf2;

port P : output Intf2;

port Q : mirror input Intf2;

end inter face

Then, Intf4 can be pictured as follows.

inter face Intf4 :

input J;

inputoutput IO : value Byte;

port Direct : { input I; };

port Mirror : { output O : Byte; };

port P : { port Direct : { output O : Byte; }

port Mirror : { output I }};

port Q : { port Direct : { output I; };

port Mirror : { output O : Byte; }};

end inter face

6.3.3 Data renaming for generic interface extension

If an interface has generic components, one can instantiate them at instantiation time
using the same syntax as for data extension:

inter face Intf :

generic constant N : unsigned;

input I[N];

output O : unsigned[N];

end inter face

inter face Intf32 :

extends Intf [constant 32 / N];

end inter face

6.3.4 Interface extension does not share components

.
Signal extension differs from data extension on another point. There is no sharing

between common base interfaces, cf. Section ??. For instance

inter face Intf:

input I;

end inter face

inter face Intf1 :
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extends Intf;

end inter face

inter face BadIntf :

extends Intf;

extends Intf1;

end inter face

Here, it is considered that I is declared twice and the program is rejected. Multiple
inheritance for interfaces would be much more complicated than the same for data because
of ports.

6.4 Relations

A relation is a possibly named simple instantaneous (combinational) predicate bearing
either on statuses of input signals only for an input relation or on statuses of output signals
only for an output relation. For reasons explained later on in this section, inputoutput
signals cannot appear in relations and there can be no mixed relation involving both inputs
and outputs.

The predicates involve the signal operators defined in Chapter ??, i.e. the classical and,
or, xor, and not connectives plus multiplexor mux, implication ‘=>’, equivalence ‘<=>’, and
exclusion ‘#’.

When taking the mirror of an interface, an input relation becomes an output relation
and conversely.

6.4.1 Input relations

An input relation of an interface Intf is a possibly named predicate on input signal
statuses. It expresses an assumption over the environment of a module: at any instant,
the signals sent by the main or local environment of a module or port of interface Intf

are assumed to satisfy all input relations. This can be checked in simulation or assumed
in verification and optimization. In verification, a property may be valid only if the
input relations are satisfied. In optimization, input relations can be used as input don’t
cares [?, ?] to optimize circuits further. Here are examples:

input re lat ion Minute => Second;

input re lat ion RadioButtons: A # B # C;

The first unnamed relation expresses a basic fact about time units. The second named
relation expresses that the input button signals A, B, and C are exclusive, i.e. that at most
one of them can be present at each instant.

Relation names are semantically unimportant, but they can be useful in programming
environments, for example to report violated relations in simulations.

Port components and explicit array elements can appear in relations, but full arrays
cannot. Here is an example of a relation involving ports and arrays:

inter face Intf1 :

input I[4] : integer ;
output O;

end inter face
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inter face Intf2 :

input J;

port P : Intf1;

port Q : mirror Intf2;

input re lat ion J => (P.I[2] or Q.O)

end inter face

In practice, ‘#’ exclusion input relations are very useful for optimization and verification,
since they drastically restrict the input event space. For example, with n inputs declared
exclusive, the number of input events is n+ 1 (the empty event and all one-signal events)
instead of 2n. One can also use input relations to momentarily stick a signal at present or
absent, which is often useful to debug programs. Here is a way to stick A present and B

absent:

input re lat ion A and not B;

6.4.2 Output relations

Dually, an output relation is a predicate on outputs which must hold for any state of a
module and any input that satisfies the input relations:

output re lat ion (O1 and OA[1]) => not O2;

Ports and arrays are handled as for input relations.

Unlike input relations, output relations are not assumed to hold by default for a module
or port which extends the interface, since their truth results of the behavior of the module
itself. They should be checked at simulation or formal verification time. They can also
serve as output don’t care conditions for logic synthesis, see [?].

Output relations of an interface Intf become input relations of the mirror interface
“mirror Intf”. Therefore, they are essential for optimization and verification of modules
that extend “mirror Intf”.

6.4.3 Relation inheritance

Relations are automatically imported by interface extension, and they are mirrored if the
extension is mirrored: the mirror of an input relation is an output relation with the same
expression and conversely.

There is a more subtle extension scheme: a relation declared in an interface Intf is
automatically propagated to all ports and port arrays of interface Intf or “mirror Intf”.
Consider the following example;

inter face Intf :

input I, J;

output X[2];

input re lat ion I => J;

output re lat ion X[0] # X[1];

end inter face

inter face Intf2 :

port P : Intf;

port Q[2] : mirror Intf;

end inter face
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Then the following leaf signal relations are automatically inferred for Intf2

input re lat ion P.I => P.J;

output re lat ion P.X[0] => P.X[1];

output re lat ion Q[0].I => Q[0].J;

output re lat ion Q[1].I => Q[1].J;

input re lat ion Q[0].X[0] # Q[0].X[1];

input re lat ion Q[1].X[0] # Q[1].X[1];

6.4.4 Why not allowing more general relations

Esterel v7 interface relations are voluntarily limited in expressive power. One could con-
sider much more elaborate relations, involving simultaneously inputs and outputs and
sequential pre operators, but it would not be clear where to stop and intuition might get
lost.

First, by defining relations between input and outputs, one could fully specify the
behavior of a module without the need to give it a body. Here is an and-gate example:

inter face AndIntf :

input I, J;

output O;

re lat ion (I and J) <=> O;

end inter face

However, notice that the mirror relation does not define a deterministic behavior and
cannot be used as a module specification.

Second, using the pre operator, one could state that an input signal I alternates
between present and absent:

input re lat ion I xor pre(I);

But where should we stop? Should we also include arbitrary temporal logic predicates,
including fairness ones? Our decision is to stick to simple but proven useful combinational
input-only and output-only relations within the language. We leave the more elaborate
mixed and sequential relations to the programming environment, where fancy temporal
assumption can be used to define complex sequential environment or conditions to check,
see for example reference [?].

6.5 Module headers

Module headers contains the declaration of all objects used by the module. They are
similar to interface declarations, except that all attributes are allowed in input, output,
and inputoutput signal declarations, and that refinement declarations can be added to
specify module attributes for interface signals imported either by interface extension or
by port declarations.

We have seen refinement examples in Section ??. Here is another example:

inter face Intf :

input I[32] : integer ;
output O : integer ;

end inter face
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module M :

extends Intf;

re f ine I mem in i t {32{0}};

re f ine O : reg combine +;

port P : mirror Intf;

re f ine P.I : reg1;
...

end module

Notice that array dimensions do not appear in refinement of signals or port arrays.

When considering M as an interface, i.e. in an “extends interface M” declaration,
only the directionalities and interface attributes of signals (type, temp and value) are
retained, the other module attributes being discarded.

Last, local signals and ports can be declared in a module header with the signal

keyword. The interest is to make them visible by observers, see Section ??. The scope of
local signal and ports declared in a module header is the module body. The syntax is the
same as the local signal declaration statement in module body (see Section ??), except
that the declaration finishes with ‘;’ instead of the “in ... end signal” bracketing the
local declaration statement scope. Here is an example:

inter face Intf :

input I[32] : integer ;
output O : integer ;

end inter face

module N :

s ignal extends Intf ,

re f ine I mem in i t {32{0}} ,

re f ine O : reg combine +;

s ignal port P : Intf , re f ine P.I : reg1;
...

end module

6.5.1 Memory assignment control by mem and reg refinements

In hardware designs, it is frequent to broadcast a valued signal generated by a producer
module to a set of consumer modules, with the producer generating the value from a
memory and the consumers viewing the value as temporary and not memorizing it. In
this case, it is best to declare the signal as temp in a common interface, with a mirror for
either the producer or the consumer, and to refine it either mem or reg in the producer.
Here is an example where two signals are exchanged in this way between two modules:

inter face Intf :

input X : temp unsigned;

output Y : temp unsigned;

end inter face

module GenY :

// reads X as temp , generates Y from own memory

extends Intf;

re f ine Y : mem;
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...

emit ?Y <= ...

...

end module

module GenX :

// reads Y as temp , generates X from own memory

extends mirror Intf;

re f ine X : reg;
...

emit next ?X <= ...

...

end module

Here, Y keeps a defined value from its first emission by GenY on, while X keeps a defined
value from the tick that follows its first emission by GenX on. ‘



Chapter 7

Expressions

Expression are built from literal, Boolean signal status tests, signal values, variables,
literals, and enumeration values using operators and function calls. They are strongly
typed, with limited operator overloading and implicit conversion to avoid ambiguities.
They can be freely parenthesized. Expressions are either simple expressions of non-array
type or array expressions of array type. An expression of type bool is called a test , an
array expression of base type bool is called an array test .

Signals and variables can be fully indexed by simple expressions, yielding a simple
result, or they can be sliced if they are arrays, returning an array of the same base type
and reduced dimension. One can slice several dimensions, as in X[3..5][6..10].

An expression is statically evaluable if it only involves constants operators, and pre-
defined functions. A dimension expression is a statically evaluable simple expression of
unsigned or signed type, with result bigger than 1 (dimension 0 is disallowed).

Assume the following declarations:

input S : unsigned;

input T;

output X[8][10];

input Y[10]

var V : unsigned in ... end

Here are well-typed expression examples illustrating the various kinds of objects:

S and T // status expression

S and ?S>0 // status + value test

X[1][2] and S // full array indexation , status and

X[1] [or] Y // pointwise array expression

X[1][2..3] [xor] Y[9..10] // slice expressions

V + ?S // addition of a variable and a signal value

mux(?S>0, V+1, bin2u(Y)) // mux between data expressions ,

// bitvector -to -unsigned conversion

Remark: unlike in the previous version Esterel v7 10, expressions now freely mix signal
statuses and values. A signal status is simply wiewed as a Boolean or as an array of
Booleans. However, compilers can internally perform very different calculations on sta-
tuses and values because data and control optimization rely on different algorithms. For
instance, to optimize control, the Esterel v7 60 optimizer for Esterel Studio performs sta-
tus extraction, sequential reachability analysis, and status expression optimization, while
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leaving value expression basically unchanged. This has performance impacts for the gen-
erated code and on formal verification, but no impact on meaning.

7.1 Expression Leaves

Expression leaves are the terminal elements of expressions. There are literals, already
described in Chapter ??, signal status tests and pre tests, and signal values or pre values,
and variable values.

7.1.1 Signal status tests

The status of a signal S is tested by the trivial expression ‘S’, possibly indexed if the signal
is an array. The base type of the result is bool.

Assume that S is a signal array such as S[M][N]. Then, one can return a Boolean
by fully indexing S and a Boolean array by slicing S. A slice is specified by a pair [k..l]
of statically evaluable unsigned or positive signed numbers k and l with k ≤ l. A slice
with k = l such as S[2..2] defines a array of type bool[1], not a bool. A full slice
for a dimension [M] is written [..]. It spans the entire dimension, i.e. is equivalent to
[0..M−1]. There can be slices on several dimensions, and full indexations and slices can
be mixed. The dimension of a sliced array is obtained by concatenating the elementary
slice dimensions from left to right. For instance, X[2..5][3..12] has dimension [4][10].

An indexation is called partial if not all dimensions are indexed or sliced, in which case
the missing slices are assumed to be full.

Here are legal indexations for S[5][6]:

S[1][3] : bool

S[1..3][2] : bool[3]

S[1][2..4] : bool[3]

S[..][2] : bool[5]

S[1] : bool[6] = S[1][..]

S[1..3][2..5] : bool[3][4]

S[k..l] : bool[l-k+1][6] k and l statically evaluable, k ≤ l

Slices are renumbered from 0 for furter indexations. For instance,

(S[3..5][2]) [1] = S[4][2]

Notice that the parentheses that isolate S[3..5][2] are mandatory, since the indexation
S[3..5][2][1] would be considered a 3-dimensional indexation and therefore ill-typed.

7.1.2 Testing the previous status of a signal

The previous value of a signal is tested using the pre and pre1 operators, with S indexed
or sliced as before if it is an array. For pre, the initial value at signal life first instant is
true, while it it false for pre1. The initial value applies elementwise for arrays.

Here are legal expressions for S simple and T[5][6] an array:
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pre(S)
S and not pre(S) // rising edge of S

not S and pre1(S) // falling edge of S

pre1(T) // array pre1(T)[5][6]

pre(T[2][5..7]) // slice of dimension [3]

Consider the second expression above, falling edge: because of the use of pre1, the edge
is considered falling at index i, j if T[i][j] is absent at first instant. Using pre instead of
pre1 would make the edge never falling at first instant.

The pre and pre1 operators can be extended to expressions containing only signal
status terms, with the following rules:

pre(not E) = not pre1(E)

pre1(not E) = not pre(E)

pre(E1 or E2) = pre(E1) or pre(E2)

pre(E1 and E2) = pre(E1) and pre(E2)

pre(E1 xor E2) = pre(E1) xor pre(E2)

pre(E1 # E2 # ... # En) = pre(E1) # pre(E2) # ... # pre(En)

Nesting pre is not possible. Therefore, pre(pre(S)) is disallowed. One must use an
auxiliary signal to compute it, as in the following example:

s ignal preS in
sustain {

preS <= pre(S),
O <= pre(preS)

}

end s ignal

To build a more general pre array, one usually builds a shift register. This is very easy in
Esterel:

module ShiftReg :

generic constant M : unigned;

input S;

output PreArray[M];

sustain {

PreArray [0] <= S,

PreArray [1..M-1] <= pre(PreArray [0..M-2])
}

end module

7.1.3 Reading signal values

Given a valued signals S, the expression ?S reads the value of the signal in the current
instant. If S is a simple signal of basic type, the expression ?S has the type of S. If
S is a signal array or if it has an array type, then ?S is a data array expression with
dimension the full dimension of S, i.e. the concatenation of the signal dimensions and the
data dimensions of S. Consider the following declarations:
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input I[12] : bool;
type Word = bool [32];
output
O : Word;

s ignal S[3] : Word in ... end

Then ?I has type bool[12], ?O has type Word = bool[32], and ?S has type bool[3][32].
The distinction between status and value dimensions disappeard when reading the value
of a signal.

Full indexation and slicing is exactly as for statuses, see Section ??. Here are slices
and their types:

?I[2..4] : bool[3]

?O[12..23] : bool[12]

?S[..][12..23] : bool[3][12]

?S[1..2] : bool[2][32]

?S[1..2][12..23] : bool[2][12]

7.1.4 Reading signal previous values

The previous value of a signal S is read using the expression pre(?S). Value pre applied
to a single signal and cannot be extended to expressions, unlike for status. For instance,
pre(?S + ?T) is disallowed. As for status, valued pre cannot be nested.

If S is a signal array, one use indexing and slicing inside pre, as for pre(?S[2][3..4]).
Indexation and slicing works exactly as for standard value read.

7.1.5 Reading variable values

The value of a variable V is read by the trivial expression V, indexed and sliced as for signal
status and value if the type is an array type.

7.1.6 Port component access

For ports, one read the status or value of a leaf signal using the dot notations P.S and
?P.Q.S.

If the final signal S is an array, one can index and slice it as any other signal array. If the
port is an array, one must index it fully, as in P[12].S or ?P[12][4].Q[k].S[5]. One can
index or slice the final signal if it is an array, as in P[1].S[3..4], or ?P[12].Q[k].S[5..7].
but one cannot slice the port array itself: P[1..2].S[3] is disallowed.

The status and value pre operators can be applied to ports, as for pre(p.S[2]) or
pre(?P[1].X).

7.2 Operators

Operators apply to basic objects and can be extended to arrays by putting them into
brackets, as for [or] and [+]. Note that array extension is not automatic to avoid
ambiguities.
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operator symbol type assoc.
negation not bool right

unary minus - numerical right
unary plus + numerical right

power ** numerical right
multiplication * numerical left

division / numerical left
modulo mod unsigned left

addition + numerical left
subtraction - numerical left

left shift << bitvector none
signed left shift <<< bitvector none

right shift >> bitvector none
signed right shift >>> bitvector none

less than < numerical none
less than or equal to <= numerical none

greater than > numerical none
greater than or equal to >= numerical none

equality = basic, bitvector (non-array) none
unequality <> basic, bitvector (non-array) none

exclusive or xor bool left
conjunction and bool left
disjunction or bool left
implication => bool right
equivalence <=> bool left

exclusion # bool truly n-ary

Figure 7.1: Data operators, ordered by decreasing precedence.

The operators and their precedence table are presented in Figure ??. In this figure,
‘left’ means left-associative, ‘right’ means right-associative, ‘none’ means non-associative
(i.e. one cannot write “X <= Y <= Z”), and “truly n-ary” means that the operator has
no associative character and takes all arguments as a single list, as for “X # Y # Z”. An
integral type is defined as a signed or unsigned type, and a numerical type is an integral
type, float, or double. When used on mixed types, integral operators promote unsigned
to signed, and numerical operators promote unsigned to signed to float to double.

The operator <=> is another way of writing Boolean equality =, often more conventional
and more readable.

.

7.2.1 Applying operators to arrays

All operators are extended to arrays in a pointwise way, provided they are enclosed in
square brackets as for [+]. Extension is not fully implicit to avoid ambiguities. The
argument array dimensions must match, and the resulting array has the same dimension.
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function type
bin2u (bitvector) : unsigned

(bitvector, unsigned) : unsigned
binsize (unsigned) : unsigned
extends (bitvector) : bitvector
gray2u (bitvector) : unsigned

(bitvector, unsigned) : unsigned
lcat (bitvector, . . . , bitvector) : bitvector
mcat (bitvector, . . . , bitvector) : bitvector
mux (bool, T, T ) : T

onehot2u (bitvector) : unsigned
(bitvector, unsigned) : unsigned

reverse (bitvector) : bitvector
sextends (bitvector) : bitvector

u2bin (unsigned) : bitvector
(unsigned, unsigned) : bitvector

u2bool (bool) : unsigned¡2¿
u2gray (unsigned) : bitvector

(unsigned, unsigned) : bitvector
u2onehot (unsigned) : bitvector

(unsigned, unsigned) : bitvector

Figure 7.2: PredefinedFunctions.

Its base type is given by that of the operator when applied to single arguments of array
argument base types.

Here is a way to add two arrays and to check whether each position is positive, returning
an array of Booleans:

(X [+] Y) [>] 0

7.3 Function calls

Function calls are performed in the usual way by passing comma-separated arguments to
the function. Figure ?? gives the list of predefined functions.

The mux(c, x, y) multiplexor function takes a first Boolean argument and is type-generic
in its second and third arguments. It returns x if c is true, and y if c is false.

7.4 Array indexation

Array indexation or slicing cannot be applied to arbitrary expressions. Here are the cases
where they are meaningful:

• Constant indexation or slicing, for instance C[i] where C is a constant of array type.

• Variable indexation for a variable of array type, for instance V[1..3][j]].
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• Signal status indexation for a signal array, for instance S[..][1][2..3].

• Signal value indexation for a signal array or for a signal or signal array of array type,
for instance ?S[2][1]. Remember that signal and value dimensions are concatenated
for signal arrays, see Section ??.

• Encoding expressions, as for u2bin(u)[m], u2onehot(u)[2..5], or s2bin(x)[k].

For all other cases, one must use an auxiliary variable.
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Chapter 8

Statements

In this chapter, we presents the executable statements that define the behavior of Esterel
v7 programs.

8.1 Statement overview

Without redefining it here, we recall the basic Esterel statements behavior which is for-
mally defined in [?].

Statements have two inter-dependent roles: propagating the control and emitting sig-
nals. As far as control is concerned, a statement which is executed in an instant has one
of three exclusive elementary behaviors:

• Termination: the statement completes its execution and releases the control.

• Pausing: the statement holds the control at some point for the next instant, and it
restarts from that point at next instant, unless killed or aborted.

• Trap exit: the statement executes an “exit T” statement which provokes immediate
termination of the corresponding trap statement, killing all concurrent threads in
the trap scope.

Basic control propagation statements perform elementary control actions, see Section ??.
Assignment and procedure call deal with variables, see Section ??. Signal status and
value emission is performed by the emit and sustain statements, which can also check
for run-time assertions, assumptions, and coverage points, see Section ??. Sequencing
and looping provide basic control propagation, see Section ?? and Section ??. Control is
switched according to Boolean tests by if statements, see Section ??.

The parallel statements || and for-dopar fork the control into synchronous threads,
see Section ??. At each instant, they terminate when all the threads are terminated or
pause if at least one thread pauses, except if one of the threads exits a trap, in which case
the outermost exit is propagated.

Temporal statements wait for delays to start, suspend, or kill other statements, see
Section ??.

The trap statement provides structured forward gotos, useful to exit from loops and
parallel statements and for many other purposes, see Section ??.

The finalize statements allows cleanup actions when a statement is terminated or
killed, see Section ??.
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Finally, local signal declarations provide signal scoping, see Section ??, open port
declarations ease the use of ports, see Section ??, and local variable declarations provide
variable scoping, see Section ??.

The language is fully orthogonal: all statements can be freely mixed and in an arbitrary
way. One can sequence parallel statements or put sequences in parallel, one can subject
any statement to an abortion, etc. There is no limit to statement nesting.

8.1.1 Syntactic matters

All statements except sequencing ‘;’ and concurrency ‘||’ use bracketing keywords: one
writes “abort ... end abort”, etc. Repetition of the initial keyword is optional, so that
“abort ... end” is also correct. To resolve the remaining syntactic ambiguities, any
statement can be explicitly bracketed using curly brackets ‘{...}’.

In the sequel, we do not increment indentation for the parallel bars in parallel state-
ments. Therefore,

s ignal S in
p

||

q
end s ignal

is preferred to the more indented form

s ignal S in
p

||

q
end s ignal

8.2 Basic control statements

There are three basic pure control statements:

nothing
pause
halt

Their behavior is as follows:

• The nothing statement terminates instantaneously when started.

• The pause statement pauses for one instant. More precisely, it pauses when started,
and it terminates in the next instant

• The halt statement pauses forever and never terminates. Beware, any code that
follows a halt statement in sequence will be dead code.

Notice that halt is equivalent to “loop pause end”, see Section ??. Also, pause can be
written “await tick”, see Section ??.
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8.3 Variable handling statements

8.3.1 Assignment

An assignment “lhs := e” assigns the value of a data expression e to a left-hand side
variable cell lhs. For a simple assignment , the left-hand-side is a simple cell designator,
i.e. either a non-array variable V or a fully indexed array variable such as A[N+1][?S].
For an array assignment , the lhs can be a full array A or a slice such as A[1..2] or
B[..][1..4][2..5]. Then e must be an array expression of matching type and dimension,
see Section ??. Array assignment is performed cell by cell for the given variable indices.
Elementary and array assignments are instantaneous. Here are examples:

V := V+1

A[3][3] := 3.14f

A[1..2][2..5] := B[1..2][2..5] [xor] X[3..4][8..11]

8.3.2 Procedure call

Procedure calls have the form

c a l l P (e1, e2,. . ., en)

where P is a procedure name and the ei are expressions. The arity and expressions types
must match those of the declaration, see Section ??. The expression constraints are as
follows, distinguishing between simple non-array arguments and array arguments:

• For in simple arguments, the expressions are arbitrary provided their types match,
and they are passed by value.

• For out or inout simple arguments, the expression must refer to a simple variable
cell, as for the left-hand side of a simple assignment, see Section ??. The cell is
passed by reference.

• For in array arguments, the expression must be a single array identifier and the array
is passed by value (warning: this can be expensive; however, an implementation can
use passing by reference if it is guaranteed equivalent). One cannot pass slices nor
partially indexed arrays (because it would be too difficult to generate the code for
many host languages).

• For out or inout array arguments, the expression must be a simple array identifier.
The array is then passed by reference. One cannot pass slices nor partially indexed
arrays.

Consider the following procedure declaration:

procedure P ( in unsigned ,

inout T;

in T[5],

out T[5]);

Here is a legal call with X, Y, and Y arrays of base type T:

c a l l P (?I[2] + 1, // expression for in argument

X[1], // variable cell for simple inout

Y, // array variable for in array

Z); // array variable for out array
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8.4 Emit, sustain, assert, assume, and cover

Instantaneous signal emission is realized by the emit statement, while sustained emission
is realized by the sustain statement. The emit statement immediately terminates, while
the sustain statement never terminates and keeps emitting until preempted. Besides the
initial keyword, emit and sustain share the same syntax.

The emit and sustain statements can also define verification signals, which represent
a standard way of stating properties of programs or hypotheses about the environment
one wants to rely on (see Section ?? for the semantics of verification signals).

8.4.1 Emission overview

The body of an emit or sustain statement is composed of simple emissions, which are
equations dealing with the emission of one signal, simple emissions with case lists, where
the equation right-hand-side can be decomposed into a case list, concurrent emissions,
which group simple emissions in parallel, possibly within for-loops, and conditional emis-
sions which provide the user with conditional if-then-else, if-case, and switch-case

structures. Concurrent and conditional constructs can be freely merged to any depth.
Adding the seq keyword after emit or sustain makes the emission sequenced: the

simple emissions are taken in order instead of concurrently. This makes it possible to
define combinational carry structures.

8.4.2 Simple emission

A simple emission has one of the following four forms:

emit lhs
emit lhs i f t
emit lhs <= rhs
emit lhs <= rhs i f t

A sustained emission has exactly the same form, with sustain replacing emit.
In an emission, lhs is the left-hand-side, rhs is the optional right-hand-side, and t is the

optional test . The test is always a simple Boolean expression (not an array expression).
Signal emission, assertion, assumption or coverage point is said to be conditional if there
is a rhs or an if test, unconditional otherwise.

There are three kinds of simple lhs : pure emission, valued emission, and verification
signal definition.

• For pure emission, lhs is a status or next status designator such as S, “next R[1]”,
P.S, or “next Q[2].R[3][?I]” where P and Q are ports and R is registered. The
next keyword must be used if and only if the signal or port component is registered.
There are two pure emission subkinds:

– For pure simple emission, lhs is fully indexed to designate a terminal non-array
status component, and rhs is a Boolean expression.

– For pure array emission, lhs designates a signal array or slice, and rhs is a
Boolean array expression.

• For valued emission, lhs is a value or next value designator such as ?S, “next ?R[1]”,
?P.S, or “next ?Q[2].R[3][?I]” where P Q are ports and R is registered. As for
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status, the next keyword must be used if and only if the signal or port component is
registered. The indices can correspond either to signal dimensions or to value type
dimensions. There are two valued emission subkinds:

– For valued simple emission, lhs designates a simple non-array value cell, and
rhs must be a data expression of the same type.

– For valued array emission, lhs is sliced or not fully indexed, and rhs must be a
data array expression of the same type.

• For verification signal definition, lhs has the form “assert A =”, “assume A =”,
or “cover A =”. It defines a verification signal, i.e. an assertion, an assumption, or
a coverage point. The verification signal has scope the module in which it is defined.
No two verification signals in the same module can have the same name.

If it exists, the test t is executed first and the emission is abandoned if the test returns
false. For a pure signal, the signal or signal component is emitted if the Boolean rhs
evaluates to true. For a valued signal, the signal is emitted with value the result of the
evaluation of rhs.

We details the difference cases in the sequel: signal emission from Section ?? to Sec-
tion ??, and verification signals in Section ??. Grouping conventional signal emissions and
verification signal definitions is very convenient in practice, since verification properties
are most often about the status or values of signals.

8.4.3 Pure simple emission

A pure simple emission emits or sustains a pure signal. The lhs is a simple status desig-
nator, and the rhs is a simple Boolean expression. Here are examples:

emit S // pure simple signal

sustain next A[1] // pure array full indexation

emit A[?X][0] <= I and not J // pure array full indexation

sustain P.X <= I and (?I > 0) // pure simple port component

emit P[0].Y[0] i f not I // indexed component

// of indexed port array

emit next S <= (?I > 0) i f I

sustain S <= pre(I) i f (X = Y)

If there is no rhs and no test, the signal is emitted. If there is a rhs or a test clause but
not both, the rsh or t predicate is evaluated and the signal is emitted only if the predicate
is true. If there is both a rhs and a test, then the “if t” test is evaluated first. If t is
false, the signal is not emitted; otherwise, the rhs expression is evaluated and the signal is
emitted if rhs evaluates to true. Notice that the rhs and t predicate are equivalent if they
do not appear together. This will not be true any more for array and valued emission.

For a sustain statement, evaluation is done in the same way at each tick, with fresh
recomputation of rhs and t.

Notice that one can use an if clause to protect the evaluation of e from run-time
errors. For instance, the following expression provokes a runtime error if X is absent and
yet uninitialized:

emit S <= X and (?X > 0)
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The subexpression ?X is evaluated to evaluate rhs, which provokes the error. The following
protected statement never provokes an error:;

emit S <= (?X > 0) i f X

8.4.4 Pure array emission

A pure array emission emits or sustains a pure signal status array or array slice. The lhs is
a status array designator, and the rhs is a Boolean array expression of the same dimension.
Emission is performed as for a pure simple emission for each terminal array component,
with matching lhs and rhs indices. Here are examples with A[M][N] a bidimensional
signal array:

emit A // full array emission

emit A i f (?I > 0) // full array conditional emission

sustain next A[1] // slice emission

emit A[..][3..5] <= X[1..M+1] [and] Y

// slicing , array expression

sustain P.A // port array component

emit P[0..2].A[3..5] i f not I // complex slice emission

As we shall see in Section ??, a pure array emission can always be written as a pure simple
emission enclosed in explicit for–dopar loops, see Section ??. For instance, the fourth
emission above is equivalent to

for i < M dopar
for j < 3 dopar

emit A[i][j+3] <= X[i+1][j] [and] Y[i][j]

end for
end for

Or also, as we shall see in Section ??, to

emit {

for i < M do
for j < 3 do

A[i][j+3] <= X[i+1][j] [and] Y[i][j]

end for
end for

}

8.4.5 Valued simple emission

A valued simple emission emits a simple non-array value. The lhs is a simple signal value
designator, the rhs is a data expression of the same type as the signal that defines the
emitted value. Here are examples of valued signal emissions:

output X : f l oa t ;
output Y[1] : unsigned <256 >;

output Z : bool [8];
emit ?X <= 3.14f

sustain ?Y[1] = 5 i f I

emit ?P[3].B[2] <= true i f (?I > 0)

A simple value emission is performed as follows:
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• If there is no if clause, rhs is evaluated and the signal is emitted with its value.

• If there is an “if t” test, the expression t is evaluated and there are two subcases:

– If t is true, then rhs is evaluated and the signal is emitted with its value.

– If t is false, then rhs is not evaluated and the signal is not emitted. Notice that
this protects rhs from generating run-time errors.

Emitting a full signal also sets its status present (for next instant if the signal is registered).
For a single valued signal, if an emit or sustain statement is executed, it must be

the only one in the instant; for a single or inputoutput single signal, no emit or sustain

statement can be executed if the signal is received in the input event. For a combined
signal, the emitted value is combined with those emitted by other emit or sustain state-
ments executed in the instant using the signal’s combination function. For a submodule
input or inputoutput combined signal that is received from the caller module and locally
emitted in the same instant, the received and emitted values are combined.

8.4.6 Valued array emission

A valued array emission emits a signal value array or array slice. The lhs is a signal array
value designator, and the rhs is a data expression of the same type as the signal that
defines the emitted value. Here are examples of valued signal emissions:

input I: bool [3][4];
input J[2][3] : bool
output O[3] : bool [4];
emit
emit ?O[1] <= ’xA

emit ?O[1..2][2..4] = J [and] ?J

Notice that the expression “J [and] ?J” returns an array of Booleans which are true if
the corresponding component of J is present with value true.

8.4.7 Verification signal definitions

Assertions are characterized by the assert keyword that starts the left-hand-side. The
general syntax is

assert Ident = e
assert Ident = e i f t

where e, and t are Boolean expressions. For instance:

emit assert Exclusive = A[0] # A[1]

sustain assert PositiveIfPresent = ?X > 0 i f X

Assumptions and coverage points share the same syntax, except that the assert keyword
is replaced with respectively the assume and cover keyword. The scope of a verification
signal name is the module. When evaluated, a verification signal evaluates the test t if
it exists. If t is false, an assertion or assumption fails, a coverage point is not covered.
Otherwise, the expression e is evaluated. If the result is true, an assertion or assumption
passes, a coverage point is covered. If the result is false, an assertion or assumption fails,
a coverage point is not covered.
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One can abbreviate “emit assert” into assert, “emit assume” into assert, and
“emit cover” into cover An “emit assert” statement is evaluated once in the instant,
while a “sustain assert” is evaluated at each instant. Beware of a potential pitfall:
because of this convention, assert alone is not sustained. Consider the following program
fragment:

s ignal On, Off in
...

||

assert OnOffExclusive = On # Off

end s ignal

Here, the assertion checks a very common property, exlusivity of On and Off signals.
However, since assert is “emit assert”, the assertion is tested only once when the
signal declaration is entered. To check it as long as the On and Off signals are alive, one
must write “sustain assert”.

Note: having assert as a synonym for “sustain assert” would lead to another pitfall:
assert would never terminate, which is obviously also a bad default. Maybe we should
only allow the explicit forms.

8.4.8 Simple emissions with case lists in rhs

If is often useful to extend the right-hand-side into a case list. For any type of simple
emission, this can be done using the ‘|’ case separator:

emit {

S <= A i f X

| B i f Y

| C,

?T <= ?A i f A

| ?B i f B

}

To avoid syntactic conflicts with if statements, curly brakets are mandatory after emit.
An if clause is mandatory for each case except the last one. The cases are examined in
sequence, and the first true case determines the computed rhs.

8.4.9 Concurrent emission

A concurrent emission statement puts in parallel comma-separeted signal emissions and
verification signal definitions in a block enclosed within curly brackets ‘{ }’. Emissions
and verification definitions can also be replicated by a for–do or for–dopar statement
with explicit indices declared as “i < e” as “i in [e1..e2]” where e, e1, and e2 are
statically evaluable expressions with e1 < e2. Here are examples:

emit {

S,

?X <= ?I[i][j],

for i < N dopar
for j in [5..7] dopar

Y[i][j] <= (?A[i] + ?B[2*j]) i f (A[i] and (?B[2*j] > 0)),

Z[i][j] <= Y[i][j] and not pre(Y[i][j-1]),
assert YZ_OK = Y[i][j] => X[i][j]
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end for ,
next ?Z[1..2][3] <= {2{0}} i f (?I > 0),

}

In the first emit above, notice that the assertion is replicated by the for loop. Here is a
way to swap the values of X and Y from previous tick:

sustain {

X <= pre(Y),
Y <= pre(X)

}

The individual emissions are all performed concurrently. There is no order between them,
and they can be shuffled arbitrarily. The following emissions are equivalent

emit {

X <= Y,

Z <= X

}

emit {

Z <= X,

X <= Y

}

The result is determined by concurrent evaluation controlled by lhs to rhs and test de-
pendency, not by equation ordering.

To simplify long list handling, a trailing comma is permitted but not mandatory after
the last emission in a concurrent emission statement or in a dopar emission list.

One can factor out the next keyword if all equations are for registered signals. For
instance, one can write

emit next {

R1 <= I,

R2 <= J i f K

}

instead of

emit {

next R1 <= I,

next R2 <= J i f K

}

8.4.10 Conditional emissions

Emissions groups can be made globally conditional by using:

• A prefix if condition, which is similar to the if-then-else and if-case statements
presented in Section ??.

• A prefix switch expression, which is similar to the switch statement presented in
Section ??.
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These constructs make it possible to factor out conditions for several simple emissions.

The conditional if emission has two main forms. The first form uses then and else

clauses, each being optional:

emit {

i f S then
X <= A,

?Y <= ?A +1

e l se
X <= B

end i f
}

emit {

i f S then
X <= A,

?Y <= ?A +1

end i f
}

emit {

i f S e l se
X <= B

end i f
}

If the emit body is composed of a single if clause, the curly brackets ‘{}’ can be omitted.
The second form uses case-do clauses, with an optional default clause:

emit {

i f
case S do

X <= A,

?Y <= ?A +1

case T do
X <= B

default do
X <= C

end i f
}

emit {

i f
case S do

X <= A,

?Y <= ?A +1

case T do
X <= B

end i f
}
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The cases are taken sequentially in order, the emissions corresponding to the first true
case being the only ones executed.

For both forms, the body of a then, else, or do clause can be an arbirary emission
body. Therefore, if constructs can be nested to any depth:
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emit {

i f S then
for i < N do

i f
case T[i] do

X[i] <= A,

?Y[i] <= i

case U do
?Y[i] <= i+1

end i f
end for

end i f
}

The conditional switch emission switches the control according to the value of the
switch expression. The emissions corresponding to the case that matches the switch ex-
pression value are the only ones executed. An optional default clause is executed when no
case matches the the switch expression value. The body of a do clause can be an arbirary
emission body. Here is an example:

input Addr : value temp unsigned <[8] >;

output Error , {X, Y} : unsigned <[4]>, Ignore;

sustain {

switch ?Addr

case 0 do // illegal address

Error

case [0x10 ..0 x1F] do // X address space

?X <= trunc <[4] >(? Addr)

case [0x20 ..0 x2F] // reserved for future usage

case [0x30 ..0 x3F] do // Y address space

?Y <= trunc <[4] >(? Addr)

default do // ignored address

Ignore

end switch
}

8.4.11 Sequenced emission “emit seq”

Consider the following module:

module OrCarry :

generic constant M : unsigned;

input I[M];

output O[M];

emit {

O[0] <= I[0],

for i < M-1 do
O[i+1] <= O[i] or I[I+1]

end for
}

end module

Here, O behaves as an or-carry chain: the output O[i] is present if I[j] is present for
some j ≤ i.
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Generating C or HDL code for such a carry chain is easy provided one accepts to expand
up to bit-level, i.e. to compute the for loop entirely at compile-time. Clearly, more clever
compilers should not perform bit-level expansion that easily blows up, but they should be
capable of generating host language for loops. For this, Esterel v7 provides its user with
“emit seq” and “sustain seq” sequenced emission constructs. With “emit seq”, one
can write

emit seq {

O[0] <= I[0],

for i < M-1 doup
O[i+1] <= O[i] or I[I+1]

end for
}

In for loops, one must replace do by either doup or dodown. The idea is that the equations
are evaluated one by one in the given order instead of being concurrent, and that the for

loop indices increase or decrease as indicated by the doup or dodown keyword.
One can define mutually iterative equations as follows:
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emit seq {

X[0] <= I[0],

Y[0] <= J[0],

for i < N-1 doup
X[i+1] <= I[i+1] or Y[i],

Y[i+1] <= J[i+1] and X[i+1]

end for
}

Notice that X[i+1] depends on Y[i] only while Y[i+1] depends on X[i+1]: the X equation
is computed before the Y equation for each loop iteration. The following form would not
work:

emit seq {

X[0] <= I[0],

Y[0] <= J[0],

for i < N-1 doup
X[i+1] <= I[i+1] or Y[i],

end for
for i < N-1 doup

Y[i+1] <= J[i+1] and X[i+1]

end for
}

Sequenced emission is also available for valued signals:

module IterativeSum :

generic constant M : unsigned;

input I : unsigned [M];

output O : unsigned [M]

emit seq {

?O[0] <= ?I[0],

for i < M-1 do
?O[i+1] <= ?O[i] + ?I[I+1]

end for
}

end module

We impose the following restrictions on emit seq:

• Only array elements can be emitted.

• Input signals cannot be emitted.

• If an array is emitted in an “emit seq” statement, it cannot be emitted elsewhere;
this either directly by another emit statement, indirectly by a submodule connection,
see Chapter ??, or indirectly by reincarnating the “emit seq” statement,because
that would amount to having two “emit seq” statements, see Section ??.

Semantically speaking, seq, doup, and dodown are irrelevant. They can be seen as im-
plementation pragmas embodied in the language as first-class citizen since they are very
useful. The semantics should be exactly the same as with a normal emit statement, and
it is the compiler responsibility to check that the given order is indeed compatible with
host language possibilities.
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8.4.12 Which case or concurrent structure to choose?

The rich syntax available in emit and sustain bodies makes it possible to write the same
thing in different ways. These ways actually correspond to different styles and tradeoffs.

Prefix vs. postfix if conditions

Prefix and postfix conditions have the same effect. It is identical to write

emit {

i f S then
X <= A,

Y <= B

end i f
}

or

emit {

X <= A i f S,

Y <= B i f S

}

The first form may be preferred because the condition is duplicated in the second form
while factored out in the first form.

Rhs cases w.r.t. if-based cases

For the emission of one signal, case lists can be written in two ways. Here is an example

emit S <= A i f X

| B i f Y

| C

emit {

i f
case X do

S <= A

case Y do
S <= B

default
S <= C

end i f
}

In this case, the first form is obviously lighter. Assume now that some more complex
conditions drive two signals:

emit {

S <= A i f X and ?X >0

| B i f Y

| C

?T <= ?B i f X and ?X >0

| ?C+1 i f Y

| 3

}
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Then, factoring out the condition can make code better and especially more maintainable
since things are written only once:

emit {

i f
case X and ?X >0 do

S <= A,

?T <= ?B

case Y do
S <= B,

?Y <= ?C+1

default
S <= C,

?T <= 3

end i f
}

Which way to choose really depend on the application and user. We think one should try
to minimize copy-paste of expressions and conditions, and there is no optimal way to do
that.

Case lists vs. concurrent ifs

Case lists as above are very readable, but they can lead to inefficient implementation if
the cases are always disjoint for reasons extraneous to the statement itself. For example,
assume that the signals A, B, and C are always exclusive due to global program behavior.
A case-based emission is written as follows:

emit {

i f
case A do < emA >
case B do < emB >
case C do < emC >

end i f
}

where < emA >, < emB >, and < emC > are arbitrarily complex emissions. The
following parallel emission can be more efficient:

emit {

i f A then < emA > end,
i f B then < emB > end,
i f C then < emC > end

}

Of course, the above case-based and parallel emissions are equivalent only if A, B, and C

are exclusive. This can be checked by adding “assert Excl = A # B # C” in the emit

statement body. Notice that there is no need to define a specific “parallel case statement”:
the combination of parallel emissions using ‘,’ and of if-based tests does the job.

Conditional emissions w.r.t. emissions in conditionals

There is a subtle but important difference between placing conditionals within emissions
or emissions within conditionals. Consider the following statement:
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emit {

i f S then
X <= A,

Y <= B

end i f
};

p

Here, the if test occurs within the emit statement, whose execution is unconditional.
Therefore, execution of p is also viewed as unconditional, and it does not depend on
testing S. Using a conditional statement, the code would be written as follows:

i f S then
emit {

X <= A,

Y <= B

}

end i f ;
p

In that case, the execution of p is dependent on the test for S, which introduces extra
dependencies. In particular, if p is “emit S”, then the second form generates a causality
cycle while the first form is innocuous (see [?] for an in-depth analysis of dependency
issues).

Therefore, using an if condition enclosed within an emit statement is much more
lightweight than using a full conditional statement with emit in branches. The use of true
conditional statemens should be restricted to real branching in the control flow.

Concurrent sustain vs. sustain sequences

Remember that sustain statements never terminate. A classical mistake is to write:

sustain X <= A and B;

sustain Y <= pre(I or J)

Since the first sustain never terminates, the second one is never started and is dead code.
The right statement is a concurrent emission:

sustain {

X <= A and B,

Y <= pre(I or J)

}

8.5 Sequencing

Sequencing is performed by the ‘;’ sequence operator:

p ; q

the first statement p is instantaneously started when the sequence is started, and it is
executed up to completion or trap exit. If p terminates, q is immediately started and
the sequence behaves as q from then on. If p exits some enclosing traps, the exits are
immediately propagated and q is dead code since never started, see Section ??. For
instance, “exit T; emit S” does not emit S.
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8.6 Looping

8.6.1 Basic loops

A basic loop has the following form:

loop
p

end loop

The body p is instantaneously restarted afresh upon termination, this forever. If p exits
some enclosing traps, the exit is propagated instantaneously and the loop stops. This is
the only way to exit a loop from inside. Of course, a loop can also be killed by an external
preemption statement, see Section ?? and Section ??.

Here is a way to achieve C-like break and continue statements for a loop:

trap Break in
loop

trap Continue in
...

exit Continue

...

exit Break

...

end trap
end loop

end trap

This is slightly heavy, but has the advantage that break and continue positions of nested
loops can be explicitely named. One always knows which level a break or continue refers
to, and, for nested loops, one can break the outermost loop with a single exit.

8.6.2 Instantaneous loops

The body of a loop is not allowed to be able to terminate instantaneously when started.
In full generality, this condition can be tested in very precise ways if an implementation
has clever ways to detect false paths. Consider for instance the following loop:

loop
i f I then

i f not J then
p

end i f
e l se
q

end i f ;
end loop

where p and q are non-instantaneous statements. There is a potential instantaneous path
in the loop body corresponding to the case where I and J are both present. However, if I
and J are inputs declared incompatible by the input relation “I # J”, the instantaneous
path is a false one since it cannot be taken in any valid input configuration. The same
holds if I and J cannot be simultaneous for any kind of dynamic reasons. However, since
programs can involve arbitrary data, simultaneity of I and J is undecidable in general.
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Implementations can be more stringent and reject programs with static potential false
paths such as the one above. In this case, we say that they reject statically instantaneous
loops. There is always a simple way to make a loop body non-instantaneous without
altering its semantics: adding a pause statement in parallel. Here is the transformation
of the previous example:

loop
i f I then

i f (not J) then
p

end i f
e l se
q

end i f
||

pause
end loop

8.6.3 Always loops

An always loop is used to transform an instantaneous statement into a permanent one.
It is written as follows:

always
p

end always

The semantics is simply that of “loop p each tick”, but the statement is much more
readable (and familiar to HDL users). Notice that sustain is simply “always emit”. but
again more readable.
Note: We used to recommend the always statement in conjunction with decision trees to

factor out conditions in emission statements:

always
i f I and not pre(J) then

emit {

X <= A or B,

Y <= A and B

}

e l se
emit {

X <= pre(X),
Y <= A

}

end i f
end always

This form is now subsumed by the even clearer use of if-then-else within sustain

statements, see Section ??:
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sustain
i f I and not pre(J) then

emit {

X <= A or B,

Y <= A and B

}

e l se
emit {

X <= pre(X),
Y <= A

end i f
}

Note for Esterel Studio 5.3 users there is currently no requirement for the body p of
an always statement to be instantaneous. Because of the semantics of always which aborts
p at each tick, a delay statements in p will never become active, and all the statements
that depend on delays will be unreachable. Only unreachable code warnings are issued by
the Esterel Studio v7 60 compiler in this case.

8.6.4 Repeat loops

A repeat loop executes its body for a finite number of times. The body is not allowed
to terminate instantaneously, static or dynamic detection of this property being as in
Section ??.

Simple repeat loop

The simplest form of repeat loop is:

repeat e times
p

end repeat

The data expression e must be of unsigned type or must be a positive signed constant,
then automatically converted into unsigned. It is evaluated only once at starting time,
yielding a result m. The body is then executed m times. It is not executed if m = 0.

Repeat counter

One can also declare a counter in a repeat loop.:

repeat i := e times
p

end repeat

The counter i goes down from e to 0, performing e iterations. As for simple repeat, e is
computed only once, when the repeat statement is entered. If e is a statically evaluable
constant with value m, the type of the counter variable is unsigned<m+ 1>. Otherwise,
the type of the counter is the type of the expression.

The counter value can be read within the loop body, but the counter cannot be assigned
to: it is read-only.
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Positive repeat

Although its body cannot terminate instantaneously, a repeat statement is considered as
possibly statically instantaneous since it can be executed 0 times. Therefore, it cannot
be put itself in a loop if not preceded or followed by a delay, this even if its own body is
non-instantaneous. For example, the following statement can be rejected as a potentially
instantaneous loop, independently of the body p:

loop
repeat e times
p

end repeat;
emit O

end loop

Esterel compilers are not required to perform static analysis and discover that e is always
strictly positive, which is undecidable anyway. To solve this problem, the user may assert
that the body will be executed at least once by adding the ‘positive’ keyword:

loop
pos it ive repeat e times

...

end repeat
end loop

loop
pos it ive repeat i := e times

...

end repeat
end loop

In the “positive repeat” statement, the test for repetition is performed only after the
first execution of the body. The body is not allowed to be able to terminate instanta-
neously, and the whole “positive repeat” statement inherits the same property. The
body is executed once if e evaluates to 0.

8.7 The if statement

The if statement branches according to the instantaneous values of a Boolean expression.
Each of the then and else branches can be omitted, but at least one of them must be
specified. An omitted branch is implicitly nothing:

i f S then p e l se q end i f
i f Second and Meter then p end
i f S[2] then q end
i f S and (?S >0) e l se q end i f
i f pre(P.S[2]) e l se q end

See Section ?? for the difference between the if-then-else statement and if clauses in
emit and sustain.
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8.7.1 Case tests

The case form tests several signal expressions in sequence:

i f
case Meter do

emit ?Distance <= pre(? Distance) +1

case Second do
emit ?Speed <= ?Distance

end i f

The tests are taken in order, and the first true expression starts immediately its do clause.
If the do clause is omitted, the if statement simply terminates. If none of the expressions
is true, the if statement terminates. One can add an default keyword to be executed in
that case:

i f
case (Op[0] and Op[1]) do

emit Load

case (Op[0] and not Op[1]) do
emit Store

case (not Op[0] and Op[1]) // no-op

default do
exit WrongOpCode

end i f

Notice that at most one do or default clause is executed in an if-case statement.

See Section ?? for the difference between the if-then-else statement and if clauses
in emit and sustain.

8.7.2 The if static statement

The if static statement has the same semantic as the classic if statement but requires in
addition the Boolean condition expression to be statically evaluable. An error is triggered
if the condition expression cannot be evaluated. According to the condition value, the
unreachable then or else branch is discarded at compile-time.

The if static statement makes it possible to write configurable code. For example,
the following code snippet outlines a configurable DMA design. The DMA instantiates
channels, which perform concurrent data transfers on a bus, and an arbiter, which ar-
bitrates the bus access between channels. The arbitration strategy can be configured to
be either round-robin or static priority. The arbiter is instantiated only if the design has
more than one channel.

// declaration of generic parameters

data generic_parameters:

generic constant nb_channels : unsigned; // number of channels

generic constant use_round_robin : bool; // true if use round -robin

// arbitration; false if use

// static priority arbitration

end data

// configurable arbiter module: either round -robin or static priority

// strategy can be used

module arbiter:
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extends generic_parameters;

i f static use_round_robin then
run round_robin_arbiter // implements round -robin strategy

e l se
run static_priority_arbiter // implements static priority strategy

end i f
end module

// configurable dma module: number of channels and channel arbitration

// strategy can be configured

module generic_dma:

extends generic_parameters;

i f static nb_channels <> 1 then
run arbiter // arbiter instantiated if two channels or more

e l se
... // trivial code that always gives the channel access to the bus

end i f
||

for i < nb_channels dopar
run channel

end for
end module

// dma configured with one channel

module one_channel_dma:

constant nb_channels : unsigned <> = 1; // use one channel

extends generic_dma;

run generic_dma

end module

// dma configured with four channels and round -robin arbitration

module four_channels_round_robin_dma:

constant nb_channels : unsigned <> = 4; // use four channels

constant use_round_robin : bool = true; // use round -robin strategy

extends generic_dma;

run generic_dma

end module

Here, the generic_dma module can be configured thanks to the constants nb_channels

and use_round_robin. The value of use_round_robin determines whether the arbiter
implementing the round-robin strategy or the arbiter implementing the static priority
strategy is instantiated. When configured with nb_channels = 1, no arbiter module is
instantiated.

Furthermore, the if static statement makes possible static run module recursion,
where the recursion condition is based on generic constants of the module. The if static

statement is used to distinguish terminal and recursion cases according to the constants’
values. In the recursion case, the generic constants are renamed in recursive run state-
ments in order to move towards the terminal case. Owing to the if static statements,
run module recursion can be fully performed at Esterel compile-time. For example, the
following recursive module performs a n-ary boolean or operation using a binary tree
structure. The recursion is based on the number of inputs: if there is only one, the mod-
ule simply outputs its unique input; otherwise, the module recursively instantiates itself
twice in dividing its inputs into two, and it performs the Boolean or operation on the two
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submodule outputs.

// the interface of the n-ary Boolean or operation

inter face intf:

generic constant n : unsigned;

input a[n];

output x;

end inter face

// the module performs a n-ary Boolean or operation;

// the module recursively describes a binary tree

module or_binary_tree:

extends intf;

i f static n = 1 then // terminal case

sustain x <= a[0]

e l se // recursion case

s ignal x0, x1 in
run binary_tree [ constant (n/2) / n; s ignal a[0..n/2 -1]/a, x0/x ]

||

run binary_tree [ constant (n-n/2) / n; s ignal a[n/2..n-1]/a, x1/x ]

||

sustain x <= x0 or x1

end s ignal
end i f
end module

// the module performs a 64-bit or operation using a binary tree

module or_binary_tree_64:

constant n : unsigned = 64;

extends intf;

run binary_tree

end module

Like an if statement, the if static statement has a case form: the case expressions are
evaluated at compile-time in sequence and only the first do clause whose case expression
is true is kept. If no case expression is true, the default do clause is kept if there is one.
For example:

constant N : unsigned;

...

i f static

case N=0 do
... // code for N=0

case N<10

... // code for N<10

default do
... // code for N>=10

end i f

8.8 The switch statement

The switch statement switches the control according to the value of an expression called
the switch expression, which can be of type enum, unsigned, signed or bitvector. It starts
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with switch and ends with end or “end switch”. Its body is made of cases starting with
the case keyword, each involving a comma-separated list of case values or case ranges for
unsigned or signed switch; the case definition is optionally followed by the do keyword
and an arbitrary statement called the case statement. The case statement is triggered if
the switch expression value is in its value list. An optional default case starting with the
default keyword is activated if no explicit case is. If there is a case statement following
the do keyword, this statement is started and determines the behavior of the switch

statement from then on; if there is no case statement to trigger, the switch statement
terminates. If no case is activated and no default is given, the switch statement simply
terminates .

A case expression must be statically evaluable and it must be compatible with the
switch expression type. If the switch expression is of enum type, a case expression must be
either an enum value identifier or a generic constant identifier. Values of case expressions
must not overlap.

Here are switch examples:
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type T = enum {A,B,C};

input I : T;

output O;

switch ?I

case A // "do nothing" is implicit

case B,C do
emit O

end switch

constant N : unsigned <20> = 1;

input I : unsigned;

output O : unsigned;

switch ?I

case 0 do
nothing

case N do
emit ?O <= ?I

case N+1 do
emit ?O <= ?I+1;

pause
case [N+2..7] do

pause;
emit ?O <= ?I-1

case [8..11] , 13, [15..19] do
pause;
emit ?O <= ?I;

pause
default do

emit ?O <= 0

end switch

In the last example, case values are given in increasing order. This is not compulsory.

8.9 Concurrency

There are two concurrency constructs: the explicit parallel statement ‘||’ and the repli-
cation construct ‘for...dopar’.

8.9.1 The parallel operator

The parallel operator ‘||’ puts statements in synchronous parallel. The signals emitted
by any of its branches or by the rest of the program are instantaneously broadcasted to
all branches in each instant.

A parallel can be binary, as in p || q, ternary, as in p || q || r, or of any arity. Syntac-
tically, the sequencing operator ‘;’ binds tighter than the parallel operator ‘||’. There-
fore, p; q || r means { p; q } || r, which is different from p; {q || r } where the brackets
are mandatory.

A parallel statement forks its incoming thread when it starts, starting instantaneously
one thread per branch. All threads behave synchronously until termination or trap exit.
The parallel terminates when all its branches have terminated, waiting for the last one if
some branches terminate earlier. The parallel propagates a trap T as soon as one of its
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branches exits T, weakly aborting all its branches at that time. See Section ?? for the case
where several traps are simultaneously exited.

There are restrictions for sharing variables among parallel branches, see Section ??

8.9.2 The for-dopar replication statement

The for-dopar replication statement can be written in one of two forms:

for i < e dopar
p

end for

or

for i in [e1..e2] dopar
p

end for

where i is an integer variable called the iterator and where e, e1, and e2 are statically
evaluable expressions.

In the first form, replication goes from 0 to e − 1 included and e is called the repli-
cation count. If e statically evaluates to m, The iterator is implicitely declared of type
unsigned<m+ 1>.

In the second form replication goes from e1 to e2 included, these two expressions being
called the replication bounds. If e1 and e2 statically evaluate to m1 and m2, the iterator
is of type unsigned<m2 −m1 + 1>.

In both cases, the value can be read in the body p, but it is read-only and cannot be
assigned to.

Assume that there are m replications. Then the construct conceptually builds m
parallel copies of p, which act concurrently with each other. The copies have independent
control, communicate witch other, and need not terminate at the same time. The whole
replication construct behaves exactly as this conceptual parallel statement: it terminates
when all the copies of p have terminated; it exits a trap if one of its p copies exits a trap;
if several copies of p exit different traps at the same time, only the outermost one matters,
all other ones being discarded.

Beware: parallel replication is very different from repeat loop. In a loop, the body
is repeated in sequence and it is not allowed to be instantaneous. In a dopar statement,
the body is instantiated in parallel and there is no timing restriction for it. Instantaneous
statements can be freely replicated.

8.9.3 Replication examples

The classical ABO automaton terminates and emits O when it has received A and B, either
simultaneously or in succession, initial instant excluded. Its code is as follows:

module ABO :

input A, B;

output O;

{ await A || await B };

emit O

end module

Here is how to put N copies of ABO in parallel, feeding them with elements of input arrays
and sending their outputs to an array, with global termination detection:
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module NABO :

generic constant N : integer ;
input A[N], B[N];

output O[N], Done;

for i < N dopar
run ABO[ s ignal A[i] / A, B[i] / B, O[i] / O]

end for ;
emit Done

end module

Since a dopar statement terminates when all its branch are terminated, the Done signal
is output exactly when all the inputs A[i] and B[i] have been received.

Here is an amazing way of computing the N ! factorial for any integer N using a dopar

and a combined signal:

module SynchronousFactorial :

constant N : integer ;
output Fact : unsigned combine *;

for i < N dopar
emit Fact(i+1);

end for
end module

The concurrent emissions of Fact(i+1) are combined by multiplication, yielding the fac-
torial value N ! = 1× 2× . . .×N for the Fact signal.

To illustrate how branches can synchronize in a fancy wasy, here is a computation of
(N !)N in one tick

module SynchronousFactorialPower :

constant N : integer ;
output Fact : unsigned combine *,

PowFact : unsigned combine *;

for i < N dopar
emit Fact(i+1);

emit PowFact (?Fact)

end for
end module

Within the instant, the N concurrent emissions of PowFact have to wait for the value of Fact
to be entirely computed before being able to act. When ?Fact finally evaluates to !N , still
in the instant, each emission of PowFact emits !N , yielding the final result PowFact= (N !)N

by *-combination. The necessary waiting and synchronization mechanism is built-in the
language semantics.

8.10 Delays

Delay expressions are used to denote occurrence of future events in temporal statements
such as abort, await, every, etc.

8.10.1 Simple delays

A simple delay expression is a Boolean test:
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await X

abort p when X and ?X>0

every X and Y[2] do p end

The delay expression then elapses at the first instant in the strict future where the test is
true.

8.10.2 Immediate delays

An immediate delay consists of a Boolean test preceded by the immediate keyword:

await immediate X

abort p when immediate X and ?X>0

every immediate X and Y[2] do p end

The delay expression then denotes the first instant where the test is true, current in-
stant included. For instance, in the above examples, the await statement immediately
terminates if X is present, the body of the abort statement is not started and the abort

immediately terminates if X is present with a positive value, and the every statement
immediately starts its body if its condition is true.

8.10.3 Count delays

A count delay consists of an integer expression called the count expression, and a simple
delay. There are two possible syntactif forms:

• The count is an arbitrary unsigned expression or a positive constant signed expres-
sion. It is followed by the times keyword and a Boolean test.

• The count is an unsigned constant, a simple identifier denoting an unsigned variable
or constant, or a signed positive constant or a parenthesized expression of unsigned
type. It is immediately followed by the simple delay which must be a single identifier,
possibly indexed.

The second form makes it possible to forget about the times keyword in simple cases.
Here are examples:

await 3 Second

await (f(?I)+1) Second

await 3 times Second

await 3 times Second or Meter

every f(?I) times (X and Y[1]) do ... end

Remember that the timeskeyword is mandatory if the test is not trivial

When the statement that bears the count delay starts, the integer expression is eval-
uated into a value called the count. Every future instant where the test is true, the count
is decremented. When the count becomes less than 1, the delay elapses. Beware: this
means that an initial count value strictly less than 1 is equivalent to 1. A statement with
a count expression always takes time. This can be misleading if the count starts at 0 !

Notice that the count is evaluated only once, whence the delay is initially started, while
the test is re-evaluated independently at each instant. Consider for instance

await ?S times S and ?S>0
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When the await statement starts, the count expression ‘?S’ is evaluated to define the
count. It will not be re-evaluated during the delay. On the opposite, the expression ‘?S’
in the if part of the delay is re-evaluated at each instant.

In Section ??, we give the exact definition of a delay by macro-expansion into simpler
statements.

8.11 Temporal statements

8.11.1 The await statement

The await statement is the simplest temporal statement. In its basic forms

await d
await immediate d

it simply waits for a delay. Here are examples:

await Second

await immediate Second

await immediate ?I > 0

await pre(Second)
await immediate pre(S[2]) and (?S[1] > 0)

await 2 Second

await 2 times P[1].S[1][2]

await X+1 times (?S > 2)

await f(Y) times (Second and not pre(Meter ))

The delay is started when the await statement is started. The statement pauses until the
delay elapses and terminates in that instant. An immediate await statement terminates
instantaneously if the signal expression is true in the starting instant. Be careful: the
sequence

await immediate Meter;

await immediate Meter

terminates instantaneously if Meter is present in the starting instant (this is why making
immediate the default would be misleading).

A do clause can be used to start another statement when the delay elapses, with the
following syntax:

await d do p end await

This is simply an abbreviation for “await d ; p” which makes the dependency of p on d
more explicit. For instance:

await 2 times Second do
emit Beep

end await

As for if, one can introduce a case list, where do clauses can be omitted:

await
case d1 do p1
case d2
...

case dn do pn
end await
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An absent do clause is equivalent to “do nothing”. When the first delay elapses, the
corresponding do clause is started and the whole await statement terminates when the
clause terminates. If several delays elapse simultaneously, only the first one in the case
order is considered. Consider for instance:

await
case 2 Second do p
case immediate Meter

case Button do q
end await

The above statement immediately terminates if Meter occurs at start time. Otherwise,
the first delay to elapse determines the subsequent behavior: p is started if “2 Second”
elapses first, the await statement simply terminates if Meter occurs first, and q is started
if Button occurs first. If Meter and Button occur simultaneously, then the await statement
terminates and q is not started since the first delay takes priority.

Unlike for if, no default clause is allowed for an await statement, which is not
supposed to terminate right away. One can use “case tick” to achieve the same effect.

8.11.2 The abort-when statements

An abortion statement kills its body when a delay elapses. For strong abortion, performed
by abort, the body does not receive the control at abortion time. For weak abortion,
performed by weak abort, the body receives the control for a last time at abortion time.
Simple abortion syntax is as follows, where d is a delay:

abort p when d
weak abort p when d

For instance:

abort p when 2 Meter

abort p when 3 times Meter or Second

weak abort p when Meter

weak abort p when immediate Meter

For both constructs, the body p is run until termination or until the delay elapses. If p
terminates before the delay elapses, so do the abort and weak abort statements. Other-
wise, p is preempted when the delay elapses; in that instant, p is not executed with strong
abortion, and it is executed for a last time with weak abortion (p has rights to its “last
wills”).

If the delay is immediate and elapses immediately at starting time, the body is not
executed at all with strong abortion, and it is executed for one instant with weak abortion
For instance, in

abort
sustain O

when immediate I

the abort statement terminates immediately without emitting O if I is present at starting
time. If abort is replaced by weak abort, the whole statement also terminates instanta-
neously but O is emitted once.

As for await, one can add a do clause to execute a statement q in case of delay elapsing:
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[ weak ] abort
p

when d do
q

end abort

With both weak and strong abortion, q is executed if and only if p did not terminate
strictly before delay elapsing. At abortion time, with strong abortion, p is not executed
and q is immediately started. With weak abortion, the first instant of q is done in sequence
after the last instant of p. This behavior is different from that of

[ weak ] abort
p

when d;
q

where q is executed wheter p terminates or d elapses. As for await, one can introduce an
ordered list of abortion cases:

[ weak ] abort
p

when
case d1 do p1
case d2
...

case dn do pn
end await

An absent do clause is equivalent to “do nothing”. Here, p is immediately strongly or
weakly aborted if an immediate delay elapses at start time. Otherwise, p is run for at
least one instant. The elapsing of any of the delays strongly or weakly aborts p and the
corresponding do clause is immediately started; the whole statement terminates when the
clause terminates. If more than one of the delays elapses at abortion time, then the first
one in the list takes priority as for the await statement. If p terminates before any of the
delays elapses, then no do clause is executed and the whole construct terminates. Here is
an example:

abort
p

when
case Alarm do r
case 3 Second do q
case immediate Meter

end abort

Nesting abort statements automatically builds outside-in priorities. In the statement

abort
abort
p

when I do
q

end abort
when J
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the signal J takes priority over I if they occur simultaneously, and q is not started in that
case. This is no special rule, but just a consequence of the strong abortion semantics of
abort.

Finally, notice that “await S” can be defined as “abort halt when S”.

8.11.3 The abort-after statements

The abort - after statements use the termination of a statement as the abortion condition.
It has the following form:

[ weak ] abort
p

after
q

end abort

where p and q are arbitrary statements. The statements are started in parallel, and the
whole construct terminates when q terminates. In the abort strong form, p is strongly
preempted (not executed) when q terminates. In the weak abort weak form, p is executed
at the tick in which q terminates. This new statement is particularly useful to define
equations valid during a statement, as in:

weak abort
sustain RisingS = S and nor pre(S)

after
...

await RisingS;

...

await RisingS;

...

end abort

The weak form is equivalent to the following trap construct:

trap T in
p ; halt

||

q; exit T

end trap

The strong form is slightly more complex:

trap T in
s ignal S in

abort
p;
halt

when immediate S

||

q;
emit S;

exit T

end s ignal
end trap
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8.11.4 Temporal loops

Temporal loops are loops over strong abortion statements. The first form is

loop
p

each d

where d is a non-immediate delay. At start time, the body p is started right away, and
it is strongly aborted and immediately restarted afresh whenever the delay d elapses.
If p terminates before d elapses, then one waits for the elapsing of d to restart p. The
loop-each statement is simply an abbreviation for

loop
abort
p; halt

when d
end loop

The delay cannot be immediate, otherwise the loop body would be instantaneous. The
second temporal loop has the form

every d do
p

end every

The difference is that d is initially waited for before starting the body p. The delay d
can be immediate. In that case, in the starting instant, p starts immediately if the delay
elapses immediately. The statement

every 3 Second do
p

end every

abbreviates

await 3 Second;

loop
p

each 3 Second

The statement

every immediate Centimeter do
p

end

abbreviates

await immediate Centimeter;

loop
p

each Centimeter

All temporal loops are infinite. The only way to terminate them is by exiting a trap, see
Section ?? or by the elapsing of an enclosing abortion delay.
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8.12 Traps

A trap defines an exit point for its body. The basic syntax is

trap T in
p

end trap

The scope of T is the body p and scoping is lexical. A redeclaration of a trap hides the
outer declaration.

The body p is immediately started when the trap statement starts. Its execution
continues up to termination or trap exit, which is provoked by executing the “exit T”
statement. If the body terminates, so does the trap statement. If the body exits the
trap T, then the trap statement immediately terminates, weakly aborting p.

The “weak abort” statement can be defined using traps. The construct

weak abort
p

when S

is an abbreviation for

trap T in
p;
exit T

||

await S;

exit T

end trap

8.12.1 Nested traps

When traps are nested, priority is inside-out. Consider for example

trap U in
trap T in
p

end trap;

q
end trap;

r

If p exits T, then q is immediately started. If p exits U, then q is discarded and r
is immediately started. If p exits simultaneously T and U, for example by executing
“exit T || exit U”, then U takes priority and only r is executed. From the point of
view of the “trap T” statement, T is discarded and U is propagated.

8.12.2 Trap Handlers

A handler can be used to handle a trap exit, with the following syntax:

trap T in
p

handle T do
q

end trap
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If p terminates, so does the trap statement. If p exits T, then p is weakly aborted and q is
immediately started in sequence.

8.12.3 Concurrent Traps

Several traps can be declared using a single trap keyword:

trap T, U, V in
p

handle T do q
handle U do r
end trap

In this case, the traps are called concurrent traps and they must have distinct names.
Concurrent traps are at the same priority level, and any of them can have a handler. If
several traps are simultaneously exited, then the corresponding handlers are executed in
parallel.

Here, q and r are executed in parallel if p exits T and U simultaneously. Since they
are concurrent, the q and r handlers cannot share variables, see Section ??. The trap

statement simply terminates if p exits V that has no handler. Here is the translation of
“weak abort p when S do q end” using concurrent traps:

trap Terminate , WeakAbort in
p;
exit Terminate

||

await S;

exit WeakAbort

handle WeakAbort do
q

end trap

8.12.4 Valued Traps

Traps can be valued. Valued traps are useful to pass a value to the handler. The value
is emitted within parentheses, as in “exit T(3)”. The value is read as the result of the
expression ‘??S’, which is allowed only in the handler. Combined traps are allowed.

Trap value initialization and the expression pre(?S) are not available for traps; they
would make no sense since a statement that exits a trap dies instantaneously.

trap Alarm : unsigned combine + in
... exit Alarm (3) ...

... exit Alarm (5) ...

handle Alarm do
emit Report (?? Alarm)

end trap

Concurrent traps can be valued and combined, but their value cannot be initialized:
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trap T,

U : integer ,
V : integer combine + in

p
handle T do
q

handle U and V do
emit O(??U + ??V)

end trap

Here, the second handler starts if and only if U and V are exited in parallel, in which case
O is emitted with values the sum of the values of U and V.

Note for discussion: valued traps are quite complex. Are they really necessary
in Esterel v7? Their usage seems to be fairly rare.

8.13 Suspension statements

Abortion or trap exit violently preempts a statement and kills it, in the same way as ˆC
kills a process in Unix. Suspension has a milder action, simply freezing the statement for
the instant. There are two suspension statements:

• For “suspend p when t”, the body p is frozen and does not react when the test t is
true. This is similar to ˆZ in Unix for the current instant only.

• For “weak suspend p when t”, the body p acts for the instant but its state change
is frozen. For hardware, this is the effect of clock-gating p’s registers by t.

The name weak suspend comes from the similarity with abort and weak abort: at abor-
tion time, the body is not executed with abort while it is executed with weak abort. The
weak suspend statement was first introduced in [?]. It is fundamental for clock-gating
and for multiclock simulation, see Chapter ??. Since its behavior is less intuitive than
that of suspend, we present it it great details with examples.

8.13.1 The suspend statement

The syntax of suspend is as follows:

suspend
p

when t

where t is any test (Boolean expression). When the suspend statement starts, its body p
is immediately started. If p terminates or exits a trap at that instant, so does the suspend
statement. If p pauses, the behavior is chosen as follows at each subsequent instant:

• If t is true, then p remains in its current state without being executed. No signal is
emitted and no state change is performed. The suspend statement pauses for the
instant.

• If t is false, then p is executed for the instant. If p terminates or exits a trap, so does
the suspend statement, and suspension is over. If p pauses, so does the suspend

statement, and suspension is re-examined in the next instant.



134 CHAPTER 8. STATEMENTS

For instance, the statement

suspend
abort

sustain O

when J

when I

emits O in the first instant and in all subsequent instants where I is absent, until the first
instant where I is absent and J present. Then the suspend statement terminates, with O

is not emitted because of the abort statement.
The default suspend statement is delayed, in the sense that the signal expression is

not tested for in the first instant. The immediate form performs that test:

suspend
p

when immediate t

Here p is not started in the first instant if t is true. The immediate form can be macro-
expanded as follows:

await immediate not t;
suspend
p

when t

8.13.2 The weak suspend statement

When the suspension test of a “suspend p when t” statement is true, the body p is not
activated and it keeps its state. With the “weak suspend p when t” statement, when t is
true, the body p is activated in the instant, but no state change is performed for it unless p
exits an enclosing trap. In other words, the combinational part acts, but the state is kept
unchanged unless the statement commits suicide (or is killed by a concurrent statement,
of course).

In hardware, weak suspension has exactly the effect of clock-gating by t the registers
generated by p, with synchronous reset performed by trap exit. Of course, hardware
implementations without clock-gating are possible. One can for example use disabling
logic to keep the register state unchanged. Implementation is not studied here, and we
concentrate on the behavior of the weak suspend statement, using hardware vocabulary
since weak suspend is most useful for hardware.

As for suspend, there is a delayed and an immediate form. The delayed form is written

weak suspend
p

when t

where p is any statement and t is a Boolean test.
When the weak suspend statement starts, the body p is immediately started. If p

terminates instantaneously, so does the whole weak suspend statement. Otherwise, at
any further instant, the test t is evaluated and the behavior is selected as follows:

• If t is false, p is evaluated, and its termination, pausing, or trap exits are propagated
to the whole weak suspend statement. The state change of p is propagated if p
pauses, otherwise weak suspension is over.
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• If t is true, p is also evaluated. If p exits a trap, so does the weak suspend state-
ment. Otherwise, state change and potential termination are ignored, and the whole
weak suspend statement pauses. It will restart from exactly the same state in the
next instant, unless preempted by an enclosing preemptive statement in the current
instant.

Section ?? for details and examples on trap exit.
For the immediate form

weak suspend
p

when immediate t

the test t is also performed at first instant. If t is true at first instant, p is executed for
the instant but its termination and state change are ignored unless p exits an enclosing
trap, in which case so does the whole statement. Otherwise, from next instant on, the
statement behaves just as a weak suspend statement.

The immediate form can be obtained from the standard form by the following macro-
expansion:

trap Done in
loop

trap Immediate in
{

weak suspend
p;

when t;
||

i f t then exit Immediate end
};

d exit Done;

end trap // Immediate

pause
end loop

end trap

The loop ensures fresh restart if t is true at first instant. If t is false at first instant, the
whole statement behaves as the inner weak suspend statement.

8.13.3 Suspension and weak suspension examples

Effect of suspension on control

Consider the following example

suspend
pause; // A

emit X;

pause; // B

emit Y

when Susp;

emit Z

where S is an input and X, Y, Z are outputs. Here is a sequence of reactions to inputs,
with ‘-’ denoting an empty input or output:
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Figure 8.1: control suspension waveforms

1. - → - new state A

2. Susp → - new state A

3. - → X new state B

4. Susp → - new state B

5. Susp → - new state B

6. - → Y Z done

This behavior is pictured in timing diagram form in Figure ??. There is no output when
Susp is present.

Let use replace suspend by weak suspend:

weak suspend
pause; // A

emit X;

pause; // B

emit Y

when Susp;

emit Z

Then, the outputs are generated at each instant since the body keeps being activated:

1. - → - new state A

2. Susp → X new state A

3. - → X new state B

4. Susp → Y new state B

5. Susp → Y new state B

6. - → Y Z done

See also the timing diagram form in Figure ??.

Consider steps 5 and 6. At step 5, execution resumes from pause labeled B. The “emit Y”
statement is executed, Y is emitted, and the weak suspend body terminates. Since Susp

is present, body termination is discarded, the weak suspend statement pauses, and there
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Figure 8.2: control weak suspension waveforms

is no control state change. Therefore, step 6 also starts from state B. In that step,
“emit Y” is executed again, Y is emitted, and the weak suspend body terminates. This
time, since Susp is absent, termination propagates to the whole weak suspend statement,
and “emit Z” is executed.

Effect of suspension on data

To understand how suspension and weak suspension act on data, consider the following
example:

module SuspendCount :

input Susp;

output Count : temp unsigned;

suspend
var C : unsigned := 0 in

loop
emit ?Count <= C;

pause;
C := C + 1

end loop
end var

when Susp

end module

The program counts ticks in the following way:

• At first instant, the C variable is initialized to 0 and Count is emitted with that
value.

• At any subsequent instant, if Susp is present, nothing happens and control stays
paused at the pause statement; if Susp is absent, control resumes from the pause
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Figure 8.3: count suspension waveforms

statements. The assignment to C increments its value, the loop is looped, Count

is emitted with the incremented C value, and control pauses again on the pause

statement.

Here is an execution, with ‘-’ denoting a blank input or output, also pictured as waveforms
in Figure ??:

1. - → Count (0)

2. - → Count (1)

3. Susp → -

4. - → Count (2)

5. Susp → -

6. Susp → -

7. - → Count (3)

8. - → Count (4)

Replace suspend by weak suspend:

module WeakSuspendCount :

input Susp;

output Count : temp unsigned;

weak suspend
var C : unsigned := 0 in

loop
emit ?Count <= C;

pause;
C := C + 1

end loop
end var

when Susp

end module

The behavior is exactly the same at first instant or when Susp is absent. It differs when
Susp is present after first instant. Then, control propagates exactly as when Susp is
absent, and Count is emitted with the incremented value of C. However, since C is within
the scope of the weak suspend statement, the incremented value is not stored in C’s state
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Figure 8.4: count weak suspension waveforms

memory, and the next execution will resume from the same value. In hardware terms, C’s
register is disabled or clock-gated by Susp. Execution is as follows:

1. - → Count (0)

2. - → Count (1)

3. Susp → Count (2)

4. - → Count (2)

5. Susp → Count (3)

6. Susp → Count (3)

7. - → Count (3)

8. - → Count (4)

Waveforms are shown in Figure ??. Consider step 2: the value of C before the step is 1, set
and stored by step 1. Since Susp is absent, C is incremented and its new value 1 is emitted
as the value of Count. Consider step 3: control propagates as usual, incrementing C to 2
and emitting Count with this value. However, the new value 2 is not stored in the state
but discarded; in hardware terms, the combinational computation results are discarded
when the registers are clock-gated). Step 4 will be performed with C = 1. The next steps
are similar.

Relative placement of signal and variable declarations and suspension

The relative placement of declarations and suspensions is crucial. In our previous example,
things would be different if C was declared outside the weak suspend statement:
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module BadWeakSuspendCount :

input Susp;

output Count : temp unsigned;

var C : unsigned := 0 in
weak suspend

loop
emit ?Count <= C;

pause;
C := C + 1

end loop
when Susp

end var
end module

Then, C’s state (hardware register) is not subject to weak suspension (clock gating) and
the new value of S is stored at each cycle, yielding the execution

1. - → Count (0)

2. - → Count (1)

3. Susp → Count (2)

4. - → Count (3)

5. Susp → Count (4)

6. Susp → Count (5)

7. - → Count (6)

8. - → Count (7)

Since there is no suspended data state and only one control state bit (generated by the
every statement), the weak suspend statement has no effect at all here.

Notice that there would be no behavior change for the same declaration/ suspension
inversion with suspend instead of weak suspend, since the Count incrementation would
not be performed either when S is present. The suspend and weak suspend statements
are very different in this respect.

Notice finally that the intended behavior cannot be acheived without declaring an
auxiliary variable (or signal) local to the weak suspend body. The following programs
also performs a continuous incrementation instead of a suspended incrementation, since
the value of O is declared at top-level and not subject to suspension:

module BadWeakSuspendCount :

input Susp;

output O : unsigned in i t 0;

weak suspend
loop

pause;
emit ?O <= pre(?O) + 1

end loop
when Susp

end module

Here also, the weak suspend statement is ineffective since it only acts on the unique
control bit.

8.13.4 Interaction with traps

For WeakSuspendCount above, assume that we want to stop the count when value 3 is
reached, irrespectively of the value of Susp. We can do this using an external trap:
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module WeakSuspendCountWithTrap :

input Susp;

output Count : temp unsigned;

output Done;

trap DoneTrap in
weak suspend

var C : unsigned := 0 in
loop

emit ?Count <= C;

i f ?Count = 3 then exit DoneTrap end i f ;
pause;
C := C + 1;

end loop
end var

when Susp

end trap;

emit Done

end module

With the same input sequence as before, the behavior is as follows:

1. - → Count (0)

2. - → Count (1)

3. Susp → Count (2)

4. - → Count (2)

5. Susp → Count (3) Done

6. Susp → -

7. - → -

8. - → -

The “exit Done” statement reached at step 5 provokes immediate termination of the
whole weak suspend.

Behavior is different with trap declared inside the weak suspend statement:

module WeakSuspendCountWithTrap2 :

input Susp;

output Count : temp unsigned;

output Done;

weak suspend
trap Done in

var C : unsigned := 0 in
loop

emit ?Count <= C;

i f (? Count = 3) then exit Done end i f ;
pause;
C := C + 1;

end loop
end var

end trap
when Susp;

emit Done

end module

1. - → Count (0)

2. - → Count (1)
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3. Susp → Count (2)

4. - → Count (2)

5. Susp → Count (3)

6. Susp → Count (3)

7. - → Count (3) Done

8. - → -

Here, the inner trap is exited at steps 5, 6, and 7, provoking termination of the weak suspend

body. however, at step 5 and 6, the body termination is discarded because of weak sus-
pension, and Done is not emitted.

8.14 The finalize statement

The finalize statement has the following form:

f i n a l i z e
p

with
q

end f i n a l i z e

where the statement q is called the finalizer. The finalizer can contain only instantaneous
statements: emit, assignment, call, possibly placed in sequence or in parallel.

When the finalize statement is started, it immediately starts p. If one of the following
event occurs, the finalizer q is immediately executed and the whole finalize statement
immediately terminates:

• p terminates, in which case q is executed in sequence after p;

• the finalize construct is strongly aborted by an an enclosing abort statement,
in which case q is executed but not p (of course, unless the abort statement is
immediate and immediately aborted, in which case the finalize statement is not
started).

• the finalize construct is weakly aborted by an enclosing weak abort statement or
by a concurrent exit of an enclosing trap, in which case the execution of q follows
the last execution of p in the instant.

The finalizer is executed only once even if there are several reasons to execute it. Notice
that the finalizer is executed even in the body of a strongly aborted statement, while
strongly aborted normal statements are not executed. Finalizers allow the user to perform
cleanup when a statement terminates or is aborted for any reason, or to broadcast a
message as in the following example:

...

f i n a l i z e
p

with
emit IamDead

end
...

Consider the following example of a complex finalization context:
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input I, J, K;

output X : integer ,
Y : integer ;

abort // immediate I

trap T in
weak abort // J

f i n a l i z e
emit ?X <= 1;

await L;

emit ?X <= 2

with
emit ?Y <= ?X + 1

end
when J

||

await immediate K;

exit T

end trap
when immediate I

Here are some typical finalization cases:

• Termination: if I, J, and K do not occur, then X(1) is first emitted, followed at next
tick by the simultaneous emissions of X(2) and Y(3) when L occurs.

• Strong abortion, with two subcases:

– If I occurs at first instant, then the finalize statement is not executed at all
and the finalizer is not called.

– If I does not occur at first instant but occurs before J, K, and L or at the same
time as them, then X(1) is emitted at first instant and Y(2) is emitted by the
finalizer when I occurs.

• Weak abortion by weak abort: if I and K do not occur but J occurs after the first
instant, then X(1) is emitted at first instant and there are two termination cases
when J occurs:

– if J occurs without L, then Y(2) is emitted.

– if J and L occur simultaneously, then X(2) and Y(3) are emitted.

• Weak abortion by trap–exit: if I and J do not occur but K occurs at first instant
or before L, then X(1) and Y(2) are emitted; if K and L occur simultaneously after
the first instant, then X(2) and Y(3) are emitted.

In all cases, the whole finalize statement terminates.
When nested finalization occur, a cascade of finalizers can be executed. They are

executed in inside-out order:
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var X : integer := 1 in
abort

f i n a l i z e
f i n a l i z e
p

with
X := X+1

end;
X := X*2

with
X := X+3

end
when I

end var

If p terminates before I occurs, the innermost finalizer is executed, then the multiplication
by 2, then the outermost finalizer, yielding 7. If I occurs before p terminates, the innermost
finalizer is executed before the outermost one and the multiplication is bypassed, yielding
X=5.

Beware: finalize is a difficult statement to compile, and it can generate nasty cycles in
cases a finalizer re-triggers itself in some way. Keep finalizers simple!

8.15 Local signal declaration

8.15.1 Local signal and port declaration and refinement

In Chapter ??, we have seen the form of a local signal declaration “signal decls in p end”
that declares a list of signals and ports with all attributes allowed for signals. Here is a
example with signals only:

s ignal S,

R : reg1 unsigned <[32]>,

A[M][N] : bool [8] i n i t ’0,

B[M] : temp value Byte i n i t 0 combine + in ,

extends Intf ,

port P : Intf

...

end s ignal

An interface extension such as “extends Intf” locally declares all signals and ports de-
fined at toplevel in Intf, ignoring their input / output directionalities. Here is an example:

inter face Intf :

input I : unsigned;

output O;

end inter face
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module M :

...

s ignal extends Intf in
emit ?O <= 1;

emit I;

...

end s ignal
end module

The “extends Intf” declaration is equivalent to the declaration sequence

s ignal I : unsigned , O in ... end

Mirroring Intf in the extension is allowed but ineffective since directionalities are ignored.

A local port declaration such as “port P : Intf” declares a local port P of interface
Intf, where the interface input / output directionalities are ignored. Here, two signals
P.I and P.O are declared. Mirroring Intf is accepted but has no effect. The port can be
opened using the open statement of Section ??.

For local extension and port declaration, since only interface attributes are declared in
the interface, one can add refine declarations to specify the remaining module attributes
needed for interface or port components. Here is an example, with Intf as in the previous
example:

module M :

...

s ignal S,

extends Intf ,

re f ine O : reg ,

port P : Intf ,

re f ine P.I : reg in i t 0 combine +,

// reg OK since I not input any more

re f ine P.O : reg ,

in
...

end s ignal
end module

Notice that I has been refined reg, which would not be allowed in a module header since I
is declared input in the interface. In the signal context, the input declaration is ignored.
Note that refinements can be grouped using curly brackets as for interface refinements. In
the previous example, one could write:

s ignal extends Intf ,

port P : Intf ,

re f ine {O, P.O} : reg in
...

end s ignal

Local signals and ports can be declared in module headers (see Section ??). In this
case, the scope is the module body. The syntax is the same as the local signal and port
declaration statement, except that the declaration finishes with ‘;’. Here is an example:

module N :

s ignal extends Intf ,

port P : Intf ,
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re f ine {O, P.O} : reg;
...

end module

8.15.2 Local signals and suspension

Suspension interacts with taking the pre operators for a signal declared within the sus-
pension body, as in
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suspend
s ignal S in

...

i f pre(S) then ...

...

end s ignal
when I

The expression pre(S) refers to the status of S in the previous instant where the signal
declaration statement was activated, not to the status of S in the previous absolute instant
or tick. Instants where I suspends the signal statement do not count for pre. In some
sense, the suspend statement steals the tick from its body. This is obvious when expanding
the pre operators as explained in Section ??:

suspend
s ignal S, preS in

loop
i f S then

pause;
emit preS

e l se
pause

end i f
end loop

||

...

i f (preS) then ... end
...

end s ignal
when I

The pause statements used to compute preS are indeed suspended by I.

On the opposite, the absolute pre is taken if the signal is declared outside the suspend
statement:

s ignal S in
suspend

... pre(S) ...

when I

end s ignal

Here the expression pre(S) in the suspend body refers to the previous instant of the
signal statement, independently of the presence or absence of I.

8.15.3 Local signal reincarnation

Because of instantaneous looping of loops, local signals can have several simultaneous
instances that we call reincarnations. They pose no particular problem, but one has to be
aware of their existence, in particular to understand causality issues. Here is an example:
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loop
s ignal S in

i f S then emit O1 e l se emit O2 end;
pause;
emit S

end s ignal
end loop

In the first instant, the local signal S is declared. It is absent since there is no emitter
for it. Therefore, the else branch of the if statement is taken and O2 is emitted. In the
second instant, the pause statement terminates and S is emitted and set present. The
loop body terminates and it is rest arted afresh right away. The local signal declaration
is immediately re-entered. It declares a fresh incarnation of S, distinct from the old one,
whose status is lost since the declaration has been exited. The fresh incarnation is absent,
unlike the old one. The if statement tests the fresh incarnation and only O2 is emitted.
Everything happens as if the loop body was duplicated:

loop
s ignal S in

i f S e l se then emit O1 e l se emit O2 end;
pause;
emit S

end s ignal ;
s ignal S in

i f S then emit O1 e l se emit O2 end;
pause;
emit S

end s ignal ;
end loop

In this obviously equivalent statement, the old and fresh incarnations are split into two
syntactically distinct signals that happen to bear the same name S and the if statement is
duplicated. In the original form, the single S generates two distinct dynamic incarnations,
and the if statement dynamically tests the current incarnation of the signal.

The pre and pre(?S) operators always refer to the current incarnation. For example,
in

loop
s ignal S in

i f pre(S) then emit O1 e l se emit O2 end;
pause;
emit S

end s ignal
end loop

the O2 signal is continously emitted. The S emitted at the end of the loop body is not
matched by pre, which matches the new incarnation, with pre(S) initially absent, as
specified in Chapter ?? and Section ??.

See [?] and [?] for thorough analyzis of reincarnation.

8.16 Open port declaration

Access to ports is normally done using the dot notation P.I, or P[2].Q.I, etc, see Sec-
tion ??. The open declaration makes it possible to make port field names directly visible,
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forgetting about the port name. The syntax is

open port-name-list in p end open

where port-name-list is a list of port names. For each port P in the list, the port field
names N become synonym to the field P .N . A field name can hide a signal with the
same name that already exists in the scope. Opening is not recursive. If a port Q is a
field of P that itself has a field S, then “open P” declares Q as a synonym of P.Q but does
not declare S as a synonym of P.Q.S. For this, one can open P and Q in sequence, typing
“open P, Q in p end”.

For a simple instance of open consider the following interface and module:

inter face Intf :

input I;

output O;

end inter face

module M :

extends Intf;

port P : Intf;

input A;

open P in
emit O <= I and A

end open
end module

Within the open declaration, I is a synonym to P.I and O is a synonym to P.O. Therefore,
the emit statement is equivalent to

emit P.O <= P.I

If we add “input I” to the module header, then the open statement makes I an abbrevi-
ation of P.I, thus hiding the input I in the open scope.

An important usage of open is to call a submodule that extends an interface with
argument a port with that interface. Without open, one must write such a call as follows:

inter face Intf :

input I;

output O;

end inter face

module Sub :

extends Intf;

...

end module

module Master :

port P : Intf;

...

run Sub [P.I / I, P.O / O]

...

end module

which is really cumbersome if Intf has many fields. With open, one can use implicit
binding:
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open P in
run Sub

end open

The implicit binding “I / I” then means “P.I / I”. See for instance the memory ex-
ample in Section ??.

8.17 Local variable declaration

In Section ??, we have presented local variable declarations. We recall that they start
with var followed by a list of individual variable declarations. The variable scope is the
variable declaration body, which is an executable statement that determines the behavior.
Here is an example:

var V : unsigned ,

W : unsigned in i t 0,

VarArray1 : unsigned[5] := {0,1,2,3,4},

VarArray2 : temp bool [32] := ’0 in
...

end var

Variables can be initialized at declaration time using the := symbol. If the type is an
array type, the initializer can be either an array literal or a simple literal of the array base
type, see Section ??. It the variable is declared temp, the initialization is performed at
each cycle before any usage of the variable.



Chapter 9

The run module instantiation
statement

A module can be instantiated within another module using the run executable statement.
The instantiated module is called the submodule, generically called Sub, the other one
being the master module, generically called Master. The basic conceptual principle is that
run executes the code of Sub in Master, after instantiating all generic data parameters
of Sub if there is any, and after directly or indirectly binding the signals of the master
module to the signals of the submodule. Recursive run statements are allowed, under the
condition that the recursion is static: the recursion must be based on generic constants of
the submodule; terminal and non-terminal recursion cases must be tested using if static

statements, see Section ??.

The run statement is a normal statement that can be used anywhere a statement
can, without restriction. A run statement starts the submodule body when it starts,
terminates when its body terminates, and aborts its body when it is aborted. Therefore, a
run statement can be put in sequence or in parallel with other run statements or with any
other statement, it can be placed in any abortion context which will abort the submodule
execution, etc.

9.1 Basic syntax

The run statement makes it possible to explicitly or implicitly pass data parameters to
generic submodule data objects, and to pass reset signals to the submodule. Data param-
eters, signals, and reset parameters are passed in a bracketed list. Here is an example:

run Sub [type unsigned <8> / T1, bool / T2;

constant 12 / N;

s ignal X / I, Y / O;

reset R ]

Since signal binding is the most frequent, the signal keyword can be omitted. Therefore,
one can write

run Sub [type unsigned <8> / T1, bool / T2;

constant 12 / N;

X / I, Y / O;

reset R ]

151
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which is most useful when there are only signal renamings:

run Sub2 [X / I, Y / O]

For generic submodule data objects, there is a similar implicit substitution mode: if a
generic parameter of Sub is not substituted, there must exist a data object of the same kind,
name, and type in Master, which then replaces the generic parameter in the submodule
interface and body.

There is a default mode for signal binding called implicit mode: when a signal argument
is not explicitly bound in the run statement, it is assumed that a signal with the same
name exists in Master and the binding is done to this master signal. Therefore, an absence
of binding for an interface signal S is viewed as a binding “S / S”.

There is also a null binding of the form ‘/ S’ for a submodule interface signal or port
S, see Section ?? for details.

All submodule generic data objects must be explicitly substituted or bound when
running the submodule. A run statement does not make the data objects declared in the
submodule visible.

9.1.1 Naming a submodule instance

The same submodule can be run several times in a master module. It is not necessary but
often convenient to explicitly name the submodule instances, for instance to trace them
back from the generated code or to display them in debuggers and browsers. This is done
with the following syntax:

module Master :

...

run Sub1 / Sub

...

run Sub2 / Sub

...

end module

This form of instance naming applies to all all forms of run described below, with or
without argument lists.

9.2 Argumentless run statement

The simplest form of run statement consists of the run keyword followed by the submodule
name.

module Sub :

generic type T;

input I : T;

output O;

...

end module

module Master :

type T = unsigned <16>;

type U;

input I : T;

s ignal O in
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...

run Sub

...

end s ignal
end module

Here, binding is done implicitly: the generic type paramemer T of Sub is bound to the
actual type “T = unsigned<16>” of Master, the input signal I of Sub is bound to the input
I of Master, and the output signal O of Sub is bound to the local signal O of Master. The
precise behavior of data and signal bindings are presented in Section ?? and Section ??
below.

9.3 Data substitution

Each generic data object declared in the module header of Sub (directly or by extension)
must be substituted at module instantiation time using the syntax already presented in
Chapter ??:

run Sub [ type integer / T;

constant 0 / Initial ,

1 / Increment;

function MyMult / Mult ,

F / SubF;

procedure P / SubP ]

Data substitutions lists consist of a data kind keyword followed by an arbitrary number
of comma-separated substitution items. There can be any number of substitution lists,
themselves separated by semicolons. As for generic data extension, a substitution “X / Y”
is read “X is substituted to Y”, or “X renames Y”. The left argument X must be a predefined
data object (constant, operator) or a data object declared in Master, which can itself be
generic or defined generic. The right argument Y must be a generic data object of Sub.
Both X and Y must be of the same kind (type, constant, function, or procedure). For
constants, the types must agree after type renaming in Sub. For functions and procedures,
the argument lists must match after type renaming in Sub.

All generic data objects of the submodule must be either explicitly or implicitly bound
to data objects of the master module. Therefore, for any submodule generic parameter
which is not explicitly bound, there must exist a data object ot the same name and kind
in the master module, with matching type for constants, functions, and procedures. The
master data object can itself be generic or defined generic.

Unlike for generic data extension presented in Section ??, the data object declared in
the submodule data part are not imported in the master module, Therefore, only generic
data objects can be substituted in a run statement. Remember that data extension also
permits renaming of defined generic data objects, in order to change their name when
importing them. This facility is not needed here since there is no data import. Therefore,
it is disallowed to rename generic defined data objects in a run statement.

9.4 Signal binding

The signal keyword that starts a signal binding list is optional and can be omitted.
Signals are implicitly bound by name or explicitly bound using the same “X / Y” notation
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as for data, in which case we say that Y is bound to X or that X renames Y, or using the
null binding notation “/ Y”, in which case we say that Y is unbound.

Unless null-bound, all the interface signals of Sub must be implicitly or explicitly
bound to signals of Master visible in the scope where the run statement is executed. If
an interface signal X of Sub is not explicitly bound in the run statement, then implicit
binding by name is used, the binding being assumed to be X / X where X must be defined
in Master. There are several variants of signal bindings, described below.

9.5 Expression binding

Expression binding has the form

run Sub [ s ignal (e) / I ]

run Sub [ (e) / I ]

where I is an input of Sub, which must be either pure or value-only, and e is an expression
valid in the the run context within Master. Binding an expression to a full signal or
to an output signal of Sub is disallowed. Parentheses around e are mandatory to avoid
ambiguity with other forms of binding. The expression is evaluated e at each instant when
Sub is active. In particular, an access-to-uninitialized-signal-value run-time error occurs if
e refers to a signal with undefined value at an instant when Sub is active.

9.5.1 Expression binding to a pure input

If I is a pure input signal or pure input array of Sub, then e must be a Boolean expression
or Boolean array expression. For arrays, dimensions must match.

For example, “run Sub [ (S.X[1] or T or ?T) / I]”. is a correct signal binding
for S a port with a pure signal array field X and for T a signal of type bool.

At each instant where Sub is active, the expression binding sets I in Sub present if the
the current value of e is true in Master.

9.5.2 Expression binding to a value-only input

If I is a value-only input signal or value-only input signal array of Sub, then the type and
dimension of e must match the type and dimension of ?I. At each instant where Sub is
active, the expression binding sets the value of I in Sub to the the current value of e in
Master. Here is an example:

module Master:

type T = bool [16];
map T {A[0..3] , B[4..7] , C[8..15]};

input I : T;

...

run Sub [(bin2u(?I.A))/J, (?I.B [or] ?I.C[0..3])/K]

...

module Sub:

input J : value unsigned <[4] >;

input K : value bool [4];
...
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9.6 Input binding

Input binding has the form

run Sub [ E / I ]

where I is an input signal or signal array of Sub and E has one of the following forms:

• A simple signal, for instance S.

• A partially or totally indexed or sliced signal array identifier, for instance S[1],
S[..][2][1..3].

• A port name, possibly indexed or sliced, followed by an expression of the same form,
for instance P.S or P[1..2].S[1].

In all the cases above, the master S can be either standard or registered. Of course,
dimensions must match for arrays and slices. The submodule input can be declared temp

independently of the characteristics of the master signal. It cannot be declared registered.

One can forget status or value attributes of the master signal in input binding. If the
submodule input is pure, the master signal can be pure or full, in which case its value is
forgotten. If the submodule input is value-only, the master signal can be value-only or full
with the same type, its status being forgotten in the latter case. If the submodule input
is full, then the master signal must also be full.

9.6.1 Full signal input binding

For a pure or full submodule input I, the status of I receives the status of the master argu-
ment. If I is an array, each component of the submodule input receives the corresponding
component of the master array or slice.

Therefore, the status of the submodule input I signal is set present whenever the
module is active and the status of the master signal or signal component is present . The
status of I can also be set present by Sub’s body.

At Sub starting instant, pre(I) is absent and pre1(I) of I is absent.

Value transmission and initialization for full signal

Assume I is a full input signal of Sub. Then, the master signal or array component must
also be a full signal. The value transmission laws follows from the general fact that value
emission is controlled by the status for a full signal. The general law is as follows:

A full input is like a local signal of Sub for which the master module acts as
an extra emitter.

In the sequel, we detail the consequences of this general rule by an in-depth study of all
the derived subcases.

Any emission of the master signal or signal component in the master module triggers
an emission of I in the submodule with the master value. If I is combined in Sub, then
the master value is combined with the values internally emitted in Sub if there are any.
Value definition and initialization is as follows:
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• If I is persistent (non-temp) and has no init attribute, its value ?I is undefined
until the first reception from the master module or the first local emission. The
value pre(?I) is undefined until the first instant that follows that instant.

• If I is persistent and has an “init E” attribute, the values ?I and pre(?I) are
initialized to that of E. The initial value of ?I is overwritten by the first reception
or internal emission of I, which may occur at starting instant.

• If I is declared temp and has no init attribute, its value is defined only when the
signal is present, i.e. received from Master or emitted in Sub. Remember that the
expression pre(?I) is disallowed for a temp signal.

• If I is temp and initialized using a “init E” attribute, its value is always defined.
At each instant, it is equal to that of E if I is neither received from Master nor
internally emitted, and as the emitted value otherwise.

9.6.2 Value-only input binding

For a value-only input, the laws directly follow form the laws of full signals by considering
the master status as always present. Therefore, the value of the master signal is imported
at each instant into Sub. For I combined, the master value is combined with the values
locally emitted in Sub when Sub is active. If I is not combined, then it cannot be locally
emitted in Sub.

The value pre(?I) can be used for a persistent (non-temp) signal. It can be initialized
using an “init E” attribute in the declaration of I. Notice that init then acts only on
pre(?I) since ?I is input from Master at Sub start time. Since this last point can be
confusing, it is advisable for compilers to generate warnings stating that the initial value
will never be used if pre(?I) is never used.

9.6.3 Input initialization examples

Single input initialization example

Consider submodule valued inputs of the form

module Sub :

input I : integer ;
input Iinit : integer i n i t 5;

input IV : value integer ;
...

end module

with a binding of the following form in Master:

run Sub [S / I, S / Iinit , S / IV]

We use a single master signal S to simplify the explanation; one could of course use three
distinct master signals. Assume first that S is emitted in Master when Sub starts:

emit ?S <= 2;

run Sub [S / I, S / Iinit , S / IV]

In this case, the value 2 of S is passed from S to I, Iinit, and IV. The value of pre(?Iinit)
at that start instant is 5, while the values of pre(?I) and pre(?IV) are undefined.

Consider now the case where S is not emitted in Master when Sub starts:
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emit ?S <= 2;

pause;
run Sub [S / I, S / Iinit , S / IV]

In this case, at the second instant, I is left undefined, Iinit is initialized to its explicitly
given initial value 5, and IV takes the value 2 of S. As before, the value of pre(?Iinit)
at that instant is 5, while the values of pre(?I) and pre(?IV) are undefined.

Assume now that we remove the initial “emit ?S <= 2” statement in this last example
and that S is not initialized in Master when Sub starts. Then, there is a undefined signal
run-time error for S since one tries to read the value of S in order to initialize that of IV.

Combined inputs initialization examples

Consider now the case where the submodule inputs are combined:

module Sub :

input I : integer combine +;

input Iinit : integer i n i t 5 combine +;

input IV : value integer combine +;

input Combine;

i f Combine then
emit {

?I <= 6,

?Iinit <= 6,

?IV <= 6

}

end i f ;
...

end module

The behavior is exactly as before if Combine is not emitted by Master module when Sub

starts. If Combine is emitted, Then, when Sub starts, initialization is disabled because of
internal emission. There are two cases according to the status of S. Consider first the case
where S is emitted.

emit {

?S <= 2,

Combine

};

run Sub [S / I, S / Iinit , S / IV]

Then, combination of master and internal values is performed for all inputs, which all take
value 8.

Consider next the case where S is not emitted when Sub starts:

emit ?S <= 2;

pause;
emit Combine;

run Sub [S / I, S / Iinit , S / IV]

The signal S and Iinit take value 6, while IV takes combined value 8 since a valued signal
is always viewed as emitted by the environment.
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9.7 Output binding

Output binding has the forms

run Sub [ E / O ]

run Sub [ next E / O ]

where O is output signal or signal array of Sub and E is a signal component, array, or slice
of the same form as for input binding, see Section ??. With no next keyword, the binding
is called an immediate output binding and E must be a non-registered signal component;
with the next keyword, the binding is called a delayed output binding and E must be a
registered signal component; Since output binding acts like a signal emission in an emit

or sustain statement for the master signal (see output binding behavior below), the next

keyword is mandatory in the syntax of an output binding for a registered master signal
exactly like for the emission of a registered signal in an emit or sustain statement. The
submodule output O can be standard or registered. Types must match for typed signals,
and array dimensions must match for signal arrays.

One can forget signal attributes of O in the binding: if O is full, then E can be a pure
or value-only signal or signal array. If E is pure, the value of O is discarded. If E is
value-only, the status of O is discarded. One cannot add attributes from O to E: if O is
pure, then E must be pure; if O is value-only, then E must be value-only.

9.7.1 Output binding behavior

Output binding behavior is simpler than input binding:

• As far as Master is concerned, whenever Sub is active, there are two cases:

– If O is pure or full, presence of O in Sub triggers emission of E in Master provided
Sub is alive. This emission of E can be combined with other emissions of E in
Master.

– If O is value-only and Sub is alive, then O triggers an emission of E in Master

with the same value at each instant when the run statement is active. This
emission is combined with other emissions of E in Master if E is combined.

Signal emission acts the same as with an emit or sustain statement: for an im-
mediate output binding, emission of E in Master impacts status and value of E in
the current cycle; for a registered output binding, emission of E in Master impacts
status and value of E in the next cycle, since E is registered.

• As far as Sub’s body is concerned, O is viewed exactly in the same way as a local
signal. Its value is initialized by an init attribute (declared directly or by a refine

declaration), or undefined until the first emission, See Section ??. Because of the
second rule above, only a full signal can be left undefined. A value-only output signal
must always have a defined value.

Notice that an emission of the submodule output is propagated only when the submodule
is alive. Consider the following case:

module Sub :

output R : reg;
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emit next R;

end module

module Main :

output X;

s ignal S in
run Sub [S / R]

||

await S;

emit X

end s ignal
end module

Here, Sub is started at first instant, emits R for next instant, but immediately dies. Since
Sub is dead at second instant, the registered emission of R is not propagated to Main and
S and X are not emitted.

9.7.2 Output signal initial value transmission

Notice that the initial value of O in Sub is visible to Master in two cases detailed below
In the first case, O is declared reg1. In that case, O must be initialized by an init

attribute. Since O is emitted at first instant in Sub, its initial value is passed to Master.
Here is an example:

module Sub :

output O : reg1 unsigned in i t 3;

...

end module

module Main :

output X : unsigned;

run Sub [ X / O]

end module

At first instant, X is output with value 3. Omitting the init attribute would provoke an
undefined value run-time error. If, instead, O is declared reg, there is no value transmission
at initial intant and no undefined value error if there is no init attribute.

In the second case of initial value transmission, O is declared value-only. Then, unless
it is emitted in the first instant of Sub, O must have an init attribute, and its initial value
is passed to Master at first instant.

9.8 Inputoutput binding

Inputoutput binding has the form

run Sub [ S / IO ]

where IO is an inputoutput interface signal or array of Sub and S is a signal, signal array,
or port component valid in the run context within Master, just as for input and output
bindings. The inputoutput signal IO cannot be initialized in Sub. All the attributes of IO
must match those of S: type, array dimension, temp or persistent character, combination
function if any. Array dimensions must match. The S and IO signals must be both standard
or both registered. If any of the signals is valued (resp. value-only), the other must be
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valued (resp. value-only) and with the same type (there is no forgetting for inputoutputs).
Each component of IO is identified to the corresponding component of S.

In some sense, inputoutput binding acts as passing by reference in traditional software
languages.

9.9 Port binding

Port binding has the form

run Sub [ Q / P ]

where Q is a port or port component of Master (i.e. Q.R, Q[4].R[2], etc.), and P is a port
interface signal or array of Sub having the same interface as P. Each signal component
of P is bound to the corresponding signal component of Q according to the signal binding
rules above.

9.10 Signal binding example

Here is an example of valid signal binding:

inter face Intf :

input A;

output B;

end inter face

module Sub:

constant N : integer ;
input I, J, K[N], L;

output O1, O2[5], O3;

inputoutput IO;

port P : Intf;

end module

module Master :

input X [5];

s ignal Y, Z[12], IO , port Q : Intf in
...

run Sub [ constant 12 / N;

(Y or Z[1]) / I,

Y / J,

Z / K,

Z[1] / L,

Y / O1,

X / O2,

Z[1] / O3,

Q / P ]

...

end s ignal
end module

Here, (Y or Z[1]) / I is an expression binding; Y / J and Z / K are input bindings,
the latter binding arrays; Z[1] / L is an array to input binding; Y / O1 and X / O2 are
output bindings, the latter binding arrays; Z[1] / O3 is an output to array binding; Q / P
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is a port binding; finally, there is an implicit inputoutput binding IO / IO. Notice that
master signals can appear several times in bindings, and even in both input and output
bindings.

9.11 Null binding

Assume that S is an interface signal of Sub subject to a null binding “/ S” in a run

statement:

run Sub [ / S, ...]

Then S is not bound to any master module signal and is made local to the instance of Sub
generated by the run statement. If S is an input (resp. an output), no status or value is
propagated from (resp. to) the master module.

Null binding is also available for ports. For an interface port P of Sub, “/ P” recursively
means that all components of P are null-bound.

Warning: the Esterel Studio v7 60 compiler currently puts a restriction on null binding:
it is not available for valued inputs nor for inputoutput signals when Sub is compiled
modularly into VHDL or Verilog. This is because only only null output binding is available
for these languages. However, a pure input can be null-bound since this is equivalent to
receiving 0 from Master. There is no restriction if Sub is inlined instead of being compiled
modularly.

9.12 Value passing rules

We give examples of value passing between a master module and a submodule.

9.12.1 Value passing examples

Consider the following submodule:

module Sub :

output O : integer ;
output O1 : integer i n i t 1;

pause;
emit {

?O <= 2,

?O1 <= 3

}

end module

and the following signal binding:

run Sub [ X / O, Y / O1]

Assume first that X and Y are standard signals. Then, values are passed only when the
output signals are emitted in Sub. Therefore, when Sub starts, no value is passed from Sub

to the master module. The initialization of O1 only applies within Sub; at next instant,
value 2 is passed to X and value 3 is passed to Y. If the pause statement is removed,
the values are passed at Sub start time, and the initialization of O1 is discarded since the
signal is emitted. Valus passing is the same if X and Y are value-only, the status of O and
O1 being ignored.
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9.12.2 Passing values from registered submodule outputs

Consider the following submodule with registered valued outputs :

module Sub :

output R : reg integer ;
output R1 : reg1 integer i n i t 1;

emit next {

?R <= 2,

?R1 <= 3

};

pause
end module

and a call for this submodule of the form

run Sub [X / R, Y / R1 ]

where X and Y are integer signal, full or value-only. The value of R is exported to X when
R is present, one tick after being emitted. Since R1 is declared reg1 it is also present when
Sub starts, passing value 1 to Y. Remember than the trailing pause in Sub is mandatory,
otherwise the values of R and R1 would not be exported since Sub would be dead at second
instant.

9.13 Resetting submodules

One must specify a reset signal in a run statement that instantiates a module within a
multiclock unit. There are two kinds of reset, strong reset, which acts at the beginning
of the instant and is the default, and weak reset, which acts at the end of the instant
(the terms weak and strong have the same meaning as for abort). In the hardware
classical terminology, strong reset corresponds to “asynchronous reset”, and weak reset
corresponds to “synchronous reset”. We do not use these ambiguous terms, since the
semantics is synchronous is both cases.

9.13.1 Strong reset

Strong reset conceptually resets the module at the beginning of the instant and maintain
it in its reset state. It is written as follows:

run Sub1 / Sub [ reset R; clock C; ...]

The semantics is that of the following statement:

loop
weak suspend

run Sub1 [...];

when immediate R or not C

each R

When R occurs, Sub1 is strongly aborted, restarted, and weakly suspended.
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9.13.2 Weak reset

Weak reset conceptually resets the module at the end of the instant when the clock is
present. It is written as follows:

run Sub1 / Sub [ clock C; weak reset R; ...]

The semantics is that of the following statement:

weak suspend
loop

weak abort
run Sub1 [...]

when immediate R;

pause
end loop

when immediate not C

When C is present, when R occurs, Sub1 is weakly aborted, and it is restarted afresh at
next instant.

9.13.3 Why passing reset signals

The interest of passing reset signals shows up in hardware synthesis: one can realize the
above behavior in a way that is electrically much simpler and much more efficient than
the Esterel expansion.

9.14 Transforming submodule assumptions and assertions

It is possible to transform submodule assumptions and assertions in a run or mcrun state-
ment. Submodule assumptions can be transformed using an assumption renaming:

• The renaming ‘assert/assume’ transforms Sub assumptions into assertions for Master.

• The renaming ‘/assume’ discards Sub assumptions in Master.

• The renaming ‘assume/assume’ leaves Sub assumptions unchanged for Master. It is
implicit when no assumption renaming is specified in the run or mcrun statement.

Likewise, submodule assertions can be transformed using an assertion renaming:

• The renaming ‘assume/assert’ transforms Sub assertions into assumptions for Master.

• The renaming ‘/assert’ discards Sub assertions in Master.

• The renaming ‘assert/assert’ leaves Sub assertions unchanged for Master. It is
implicit when no assertion renaming is specified in the run or mcrun statement.

Here is an example based on an initiator-target protocol. Modules TargetAssertions

and InitiatorAssertions are intended for the protocol verification respectively on the
target side and master side. Assertions in TargetAssertions are actually assumptions in
InitiatorAssertions and conversely, hence the use of assertion and assumption renam-
ings.
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inter face TargetIntf:

input Valid;

output Ready;

input Data : value temp unsigned;

end inter face

module TargetAssertions:

port T : observe TargetIntf;

open T in
sustain {

assert ReadyStable = Ready i f pre(Ready and not Valid),

assume ValidStable = Valid i f pre(Valid and not Ready)

}

end open
end module

module InitiatorAssertions:

port I : observe TargetIntf;

run TargetAssertions [ I/T; assert /assume, assume/ assert ];

end module

9.15 Capture and connection of submodule interface signals

Warning: this section is specific to the Esterel Studio v7 60 compiler. It details an
implementation-related issue which is independent of the language definition proper.

The rest of the chapter details a point which is central to understand how the Es-
terel v7 60 compiler handles signals and generates registers to compute their pre status
and value: the connection of submodule interface signals to their master signal in a run

statement.
Semantically speaking, only inputoutput signals in submodules loose their identity in

the run statement since they are identified with their master signal. Input and output sub-
module signals keep their identity and are appropriately connected to their master signal
using the rules presented above. This is essential when input signals are locally emitted or
output signals are locally tested in the submodule, which makes perfect semantical sense
and is often useful. Consider the following example:

module Sub1 :

input I;

output OSub;

emit I

||

i f I then emit OSub end
end module

module M1 :

output OM, OSub;

s ignal S in
i f S then emit OM end

||
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Figure 9.1: input connection

run Sub1 [ S / I]

end s ignal
end module

Then, at first instant, M1 outputs OSub but not OM: the input declaration in Sub1 acts as a
diod, preventing the emission of I in Sub1 of percolating into M1 and provoking emission
of S. (notice that emission of S would indeed occur in M1 if I was declared inputoutput in
Sub1). Consider now the dual example with an output signal binding:

module Sub2 :

output O;

output OSub;

i f O then emit OSub end
end module

module M2 :

output OM, OSub;

s ignal S in
emit S

||

run Sub2 [ S / O]

end s ignal
end module

Here, S is emitted in M2 but does not traverse the output connection barrier: O is not
present in Sub. Therefore, OSub is not emitted. Here also, S in M1 and O in Sub1 have
distinct statuses.

9.15.1 Implementing connection

We explain how pure signal connection is implemented in Esterel v7 60. The full handling
of valued signals is similar but much more technical and will not be detailed here.

The status of a signal is implemented by an or-gate, to which emitters are connected
and which is connected to if statements that test the signal. The wirings for modules M1
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Figure 9.2: output connection

Figure 9.3: input connection

and M2 above are respectively pictured in Figure ?? and Figure ??.

9.15.2 The hidden cost of connection

Connection wiring is obviously correct and quite cheap as long as things remain com-
binational. But there is a cost issue with the pre operator and with persistent signal value
handling. Assume that I is valued in M1 above, and assume one computes ?S and pre(S)

in M1 on the one hand and ?I and pre(I) in Sub on the other hand. In the same way
as S and I have distinct statuses, they must have distinct value cells and pre registers, as
pictured in Figure ??. This means a doubling of the number of registers in the circuit,
which may be unacceptable for performance reasons.

9.15.3 Replacing connection by capture

The idea of capture wiring is to wire the circuit as if the submodule signal was an inputout-
put, keeping only one status, one pre register, and one value cell for the master module



9.15. CAPTURE AND CONNECTION OF SUBMODULE INTERFACE SIGNALS 167

and submodule. Capture is obviously much cheaper when correct since registers and value
transfers are spared. As M1 and M2 above show, capture is incorrect in the general case.
Therefore, it is essential to understand all the cases where capture is correct. For instance,
in M1, capture becomes correct if emission of I in Sub1 is removed, while in M2 capture
becomes correct if test for O is removed in Sub2.

Technically, it is simpler to detail all the cases where connection is mandatory and why
this is the case. The Esterel v7 compiler automatically detects all the cases and warns
when connection is performed if the -eiclink:-connection_info option is used.

Capture obviously makes sense only for signal-to-signal binding. It is irrelevant for
expression binding.

Capture is not available in a multiclock context, see Chapter ??.

Potential emission, testing, and reading of a signal

We say that a signal S is potentially emitted in a module in the following cases:

• There is an “emit S” or “sustain S” statement for the signal in the module.

• The module runs a submodule with S bound to an output or inputoutput signal of
the submodule

We say that a signal S is potentially tested in a module in the following cases:

• There is an expression that reads the signal status S, the previous status pre(S), or
the next status next(S).

• The module runs a submodule with S bound to a pure or full input or inputoutput
signal of the submodule.

We say that a signal S is potentially read in a module in the following cases:

• The value ?S, the previous value pre(?S), or the next value next(?S) is read within
the module.

• The module runs a submodule with S bound to a valued input or inputoutput signal
of the submodule.

9.15.4 Input and output signal shared connection cases

A submodule input or output signal X in Sub cannot be captured by S in M and must be
connected to it in the following cases:

1. The run statement is not toplevel.

2. X is declared with an initial value in Sub.

3. One of X and S is declared combined but not the other one or X and S are declared
combined with different combination functions. Connection is required since values
may differ in case of multiple emissions.

4. S is declared temporary in M but X is not temporary in Sub.
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5. S is declared registered in M.

6. X is declared registered in Sub.

7. There is a suspend or weak suspend statement in M between the declaration of S and
the run Sub statement. This case is more delicate. Consider the following program:

module Sub3 :

input I, J;

... pre(I)...pre(J)...
end module

module M3 :

input X, Susp;

suspend
s ignal Y in

... pre(X)...pre(Y)

... run Sub3 [ X / I, Y / J]

when Susp

Then, Y can be captured by J but X cannot be captured by I because suspension
acts on pre. In M3, pre(I) is relative to the global tick, while, in Sub3, pre(X) is
relative to the ticks where Sub3 is alive, i.e. the initial tick and those where Susp is
absent. Therefore, pre(I) 6= pre(X) and the signals cannot be identified There is
no problem for the Y-J pair since both signals are subject to the same suspension.

9.15.5 Input signal specific connection cases

A submodule input signal I in Sub cannot be captured by S in M and must be connected
to it in the following cases:

1. I is potentially emitted in the submodule. This is example M1 of Section ??.

2. I is declared full and S is declared with an initial value in M.

9.15.6 Output signal specific connection cases

A submodule output signal O cannot be captured by its master signal S and must be
connected to it in the following cases:

1. O is declared full in Sub and S is declared pure or value-only in M.

2. O is potentially tested or read in Sub and S is potentially emitted in M outside the
“run Sub” statement. This is example M2 / Sub2 of Section ??.

3. O is potentially tested or read in Sub, the “run Sub” statement is replicated, and
there is a single master signal S for the replicated outputs.

4. O is potentially read in Sub and S has an init attribute.

5. S is emitted in M and O is defined by an “emit seq” or “sustain seq” statement in
Sub.
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Figure 9.4: main module inputoutput

Figure 9.5: submodule inputoutput

6. O is declared value-only in Sub and S is potentially emitted in M outside the “run Sub”
statement.

7. O is declared value-only in Sub, the “run Sub” statement is replicated, and there is
a single master signal S for the replicated outputs.

9.15.7 Note on inputpoutput signals

In Esterel v7, we currently reject declaring an inputoutput signal IO in a main module
Main, while we did accept it in Esterel v5. In v5, IO was output by Main at some tick
either if it was input from the environment or if it was internally emitted within Main.
This corresponds to the wiring pictured in Figure ??. This behavior turned out not really
useful in practice, and this is why we rejected it for Esterel v7. Furthermore, inputoutput
signals do exist in HDLs and chip design, but with a quite different semantics and be-
havior. They are generally tri-state objects with implementation-dependent features, not
straigthforward RTL objects.
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An inputoutput IO in a submodule Sub bears a different intention: it is meant to be
captured by some master signal S specified in the “run Sub” statement. This is fully
consistent with Esterel semantics. No tri-state object is required for the implementation,
which simply works as specified in Figure ??. Modular Esterel v7 compiling can also be
performed by declaring the appropriate status / data interface between the master module
M and the submodule HDL function.
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Oracles

This chapter deals with oracles, which are special hidden input signals used to model
non-deterministic behavior.

Warning: oracles are experimental in Esterel v7 20. They are only supported by verifica-
tion, for experiment purposes. Simulation is not yet available for them.

Oracles are special signals assumed not to be on the user control. They are declared
with a special signal declaration. They can be valued, but only the interface features temp
and value can be used for them. The modules features reg, init, and combine are not
available.

The status and value of an oracle are supposed to be freely determined by the envi-
ronment in any execution. Oracles are meant to help modeling non-determinism. Here is
how to write a choice between two statements p and q:

oracle Oracle in
i f Oracle then
p

e l se
q

end i f
end oracle

Oracles are broadcast as any other signals. Here is a way to perform a coordinated choice
in two branches of a parallel:

oracle Oracle in
...

i f Oracle then
p1

e l se
q1

end i f

...

||

...

i f Oracle then
p2

e l se
q2

end i f
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...

end oracle

If the two concurrent if statements are executed simultaneously, they both take their
then branch or their else branch in a coordinated way since they test the same oracle.

Coordinated choice can be very useful in modeling non-deterministic applications and
is usually not available in asynchronous concurrent formalisms.

Valued oracles return any value in the type:

oracle Oracle : integer in
emit ?O <= ?Oracle

end oracle

The value of O can be any integer. The way the integer is chosen is left to the implemen-
tation.

Beware: one cannot choose a “random” integer, because such a thing cannot exist! Ran-
domness makes sense only when a probability distribution is chosen, and no distribution
exists for all integers. However, in makes perfect sense to choose randomly a bounded
signed or unsigned integer.

It is also possible to explicitly emit an oracle using ususal emit or sustain statements,
to explicitly gain control over the oracle if needed.
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Macro-expansion of Derived
Constructs

11.1 Expansion of signal constructs

11.1.1 Expansion of pre

For a pure signal S, one can encode pre(S) using an auxiliary signal preS. Assume for
instance that S is declared in a block such as

s ignal S in
p

end s ignal

Then, call p0 the statement p where pre(S) is replaced by preS. The following program
has the same behavior:

s ignal S, preS in
trap Done in
p0;
exit Done

||

loop
i f S then

pause;
emit preS

e l se
pause

end i f
end loop

end trap
end s ignal

For a valued signal, one uses an auxiliary variable to store the value between the instants:
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s ignal S : T , preS : T in
trap Done in
p0;
exit Done

||

var X : T in
loop

i f S then
pause

e l se
X := ?S;

pause;
emit preS(X)

end i f
end loop

end var
end trap

end s ignal

11.1.2 Expansion of next

One can code a registered signal S using a standard signal nextS and the pre operator:

• One replaces “emit next S” by “emit nextS” and “emit next ?S <= exp” by
“emit ?nextS <= exp”.

• One replaces “if next(S)” by “if nextS” and ‘next(?S)’ by ‘?nextS’.

• One replaces “if S” by “if pre(nextS)” and ‘?S’ by ‘pre(?nextS)’.

• For an output registered signal, one must also connect pre(nextS) instead of S to
the output interface, see Chapter Chapter:Run.

11.2 Expansion of delays

Here is how delays described in Section ?? are expanded. Consider the following statement:

abort p when c times e

The expansion is as follows:

trap T in
var C := c : integer in

loop
await e;
C := C-1;

i f C <= 0 then
exit T

end i f
end loop

end var
end trap
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Run-time errors

Run-time errors are errors that make the program work incorrectly. In software or hard-
ware generated code, they can create erroneous behaviors. In software, they can also
provoke crashes. Therefore, Esterel v7 implementations should make every effort to help
the user detecting possible run-time errors before embedding the program. This can be
done by using good simulation tools, static analyzers, or verification systems.

12.1 Data-related errors

12.1.1 Unsigned subtraction error

There is an unsigned subtraction run-time error if the second argument of an unsigned ‘-’
operator is greater than the first one, see Section ??.

12.1.2 Unsigned division error

There is an unsigned division run-time error if the second argument of an unsigned ‘/’
operator evalulates to 0, see Section ??.

12.1.3 Unsigned modulo error

There is an unsigned modulo run-time error if the second argument of an unsigned mod

operator evalulates to 0, see Section ??.

12.1.4 Unsigned out of range error

A run-time occurs when a variable or a signal is assigned a value outside the range of an
unsigned type.

This error is raised by an explicit or implicit assertion about the required size. Explicit
assertions are calls to the assert<M> function, see Section ??. An implicit assertion is
generated by an assignment to an unsigned variable, a call to a function or procedure with
an unsigned argument, an emission of an unsigned signal, and an array indexation.

Note that run-time implicit assertions are necessary only if the type of the expression
is bigger than the type of the objet the result is used for. Otherwise, type-checking ensures
correctness. For instance, let A[M] be an array and S be a signal of type unsigned<N>.
The indexation A[?S] is guaranteed correct at type-checking if N ≤ M and it requires a
run-time implicit assertion otherwise.
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12.1.5 Signed division error

There is a signed division run-time error if the second argument of a signed ‘/’ operator
evalulates to 0, see Section ??.

12.1.6 Signed out of range error

A run-time occurs when the argument of an assert_unsigned function is not in the
required unsigned range, see Section ??, or when a variable or a signal of a signed type
is assigned a value outside the range of the type. As for the unsigned case of Section ??,
this can occur because of an explicit call to assert<M>, see Section ??, or because of
an implicit assertion. An implicit assertion is generated by an assignment to a signed
variable, a function or procedure call with a signed argument, or an emission of a signed
signal.

As for unsigned, there is no need for an implicit run-time assertion if the operation
can be shown safe at type-checking time.

12.1.7 Bitvector onehot2u conversion error

A run-time error occurs when a bitvector used as argument of onehot2u has either zero
or more than one 1-component, as for ’b000 or ’b101. In that case, the bitvector does
not represent a 1-hot encoded unsigned number.

12.1.8 Unsigned-to-enum conversion error

A run-time error occurs when an unsigned number used as argument of u2enum<E> is the
code of no enum constant in E. In that case, the number cannot be converted to an enum
constant of E.

12.1.9 Signed-to-enum conversion error

A run-time error occurs when a signed number used as argument of s2enum<E> is the
code of no enum constant in E. In that case, the number cannot be converted to an enum
constant of E.

12.2 Signal-related errors

12.2.1 Access to uninitialized signal value error

For each incarnation of an uninitialized valued signal S, the following operations are run-
time errors:

• If S is standard valued, reading the signal’s value ‘?S’ before the first instant where
S is emitted.

• If S is registered valued, reading the next signal’s value ‘next(?S)’ before the first
instant where a next emission of S is performed.

• If S is standard valued, reading the previous signal’s value ‘pre(?S)’ before the
instant immediately following the one where S is emitted for the first time.
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• If S is registered valued, reading the signal’s value ‘?S’ before the instant immediately
following the one where a next emission of S is performed for the first time.

12.2.2 Bad access to temporary signal value error

It is a run-time error to read the value of a temporary signal if this signal has not been
emitted nor received from the environment of from a submodule in the instant.

12.2.3 Multiple emission of single signal error

It is a run-time error to perform two emissions of the same incarnation of a single val-
ued signal. The signal must be declared combined to support multiple emissions, see
Section ??.

12.2.4 Bad access to a signal array error

It is a run-time error to access a signal array position out of bounds. This error is a
particular case of the unsigned out of range error of Section ??.

12.3 Variable-related errors

Remember that a variable is assigned to by an assignment statement or a procedure
call where the variable is passed by reference. For arrays, each position is considered
independent of the other ones.

12.3.1 Access to uninitialized variable error

At each instant, it is a run-time error to read the value of an uninitialized variable before
this variable has been assigned a value for the first time in the program execution.

12.3.2 Illegal access to temporary variable error

At each instant, it is a run-time error to read the value of a temporary variable before
this variable has been assigned a value for the first time in the instant. This error cannot
occur if the variable is initialized, since the initialization if performed at each instant.

12.3.3 Bad access to a variable array error

It is a run-time error to access a variable array position out of bounds. This error is a
particular case of the unsigned out of range error of Section ??.

12.3.4 Sharing a variable error

It is a run-time error to be in a situation where a variable can be read / write shared
between two concurrent control threads: one thread can execute an action that reads the
variables, the other threads can execute an action that writes the variable, and the actions
are not dynamicaly ordered by a causality path, see Section ??.

Notice that shared variables may be hard to detect. Implementations may put stronger
static requirements to ensure non-sharing at compile-time. What is forbidden by the
language definition is only to share variables at run-time.
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Chapter 13

Introduction to multiclock Esterel
design

This chapter informally presents multiclock design with Esterel. Multiclock design is
strongly related to hardware issues. Therefore, in this chapter, we shall use a much more
hardwarish vocabulary than in the previous chapters. Multiclock design is much trickier
than single-clock design and has be much less studied in the previous Esterel literature.
Therefore, we also present many more examples than before. We refer to the implicitly
single-clocked Esterel language presented in the previous chapters as Classic Esterel.

In Section ??, we first recall how one can generate single-clocked Register Transfer
Level (RTL) circuits from Classic Esterel programs. We discuss the simple relation between
timing closure issues and the synchrony hypothesis.

In Section ??, we discuss the need for multiclock circuits in modern design and we
present the Globally Asynchronous Locally Synchronous (GALS) model on which multi-
clock Esterel is based. We briefly discuss timing closure and metastability issues.

We informally present multiclock Esterel in Section ?? and discuss examples. We
discuss how to simulate multiclock designs using weak suspend in classic Esterel, and
how to synthesize multiclock circuits or single-cloked emulation from them.

13.1 RTL design

The simplest circuit design paradigm is single-clocked Register Transfer Level or RTL de-
sign. Circuits are composed of wires and gates. Gates can be combinational or sequential.
Combinational gates continuously compute their output voltage in function of their input
voltage. Sequential gates hold state and are called registers. They are driven by clocks,
which are electronic devices that generates electrical rising and falling edges. Here, we
only consider rising edges as meaningful clock events. A register changes state when a
clock rising edge occur: it samples its input voltage and keeps it on its output until the
next clock rising edge.

An essential requirement of RTL circuits is timing closure. For a state change to
be meaningful, the input of a register must be electrically stable when a clock rising
edge occurs. Similarly, a circuit primary output must be stable before being used by
the circuit external environment. For a given circuit technology and layout, the time
it takes to stabilize all register inputs and all primary outputs depends on the longest
delay path in the logic gates and wires, which is called the critical path. The critical

179
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Figure 13.1: Circuit and waveform of M1

delay can be statically computed, and it determines the maximal clock frequency for the
technology. Computing that frequency is performing the timing closure of the circuit.
Below that frequency, there is no difference between the electrical behavior once stabilized
and the logical behavior computed with delay 0 for all gates, wires, and state transitions.
Therefore, the Classic Esterel zero-delay abstract model is adequately implemented by the
actual circuit.

Notice that a clock needs not be regular in time: only its rising edge succession matters,
provided that any two rising edges are not closer than required by critical path stabiliza-
tion. For instance, irregular clocks result from shutting down clocks to save power when
a circuit part is unused.

13.1.1 Translating Esterel programs into RTL circuits

The translation from Esterel programs to RTL circuits is explained in [?, ?]. We illustrate
it with two examples that we shall later reuse in Section ?? to study communication in
muticlock designs. Consider first the following inputless module M1:
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module M1 :

output O1;

// Start

loop
emit O1;

pause; // FP

pause; // SP

end loop
end module

The corresponding circuit is pictured in Figure ??, together with a waveform denoting
its abstracted electrical behavior. Circuit registers implement control states. They are
named using the labels of the start condition or pause statement they implement1. Their
reset value is the one written inside the register symbol. A value 1 in a control register
means that control is currently paused at that point.

The logical behavior is the following sequence of tick executions:

t ick in out
1 : - → O1

2 : - → -

3 : - → O1

4 : - → -

5 : - → O1

6 : - → -

...

where ‘-’ means that all signals are absent.

Circuit execution mimics logical behavior. In Esterel semantics, at tick 1, M1 starts
from label Start , executes “emit O1”, and pauses at pause statement FP . For the circuit,
assume reset active level is high. Then, when reset falls, O1 is driven high by the Start
register initial value, until clock rising edge 1. At that edge, the Start register changes
state to 0 while the FP register changes state to 1.

In Esterel semantics, at tick 2, control moves from pause labeled FP to pause labeled
SP. In the circuit, at clock rising edge 2, register FP gets new state 0 while register SP
gets new state 1. This drives O1 to 1 until rising edge 3, i.e. during the electrical duration
of tick 3. At rising edge 3, register SP gets new state 0 while register SP gets state 1.
Being driven by SP , O1 falls to 0 until rising edge 4 where SP gets state 1 again and drives
O1 to 1. Alternation between these two behaviors follows, which means that O1 is kept
high every other clock cycle.

In Figure ??, waveforms depict the value evolution of signals over continuous time.
We use a classical convention: a change in a signal is drawn a little afer the clock edge
that provoked it. While logically equivalent to the 0-delay model, this “δ-delay model”
simplifies waveform reading. A stabilized signal value at initial Esterel tick 1 can be read
anywhere from the waveform start to value change 1, and, in particular, on the vertical
dotted line of clock rising edge 1. A signal value at Esterel tick 2 is read anywhere from
rising edge 1 excluded to rising edge 2 included. Generally speaking, signal values at
Esterel tick n can be safely read on the vertical dotted line that starts from rising edge
n, since all values are stable at that time. With a pure 0-delay waveform, a signal change

1In practice a better labeling could be pause@FP, as explained in Section ??; we do not use it here for
readability reasons.
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Figure 13.2: Circuit and waveform of M2

would be exactly synchronous with the clock edge, and it would be unclear whether the
value to consider is the one right before or the one right after the clock edge.

Consider now the following module M2 with input I2:

module M2

input I2;

output O2;

// Start

loop
await pre(I2); // FA

await pre(I2); // SA

emit O2

end loop
end module

The corresponding circuit is pictured in Figure ??. The pictured waveform corresponds
to the following logical behavior:

1 : - → -

2 : I2 → -

3 : - → - // pre(I2)

4 : I2 → -

5 : I2 → O2 // pre(I2)

6 : I2 → - // pre(I2)

7 : - → O2 // pre(I2)
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8 : - → -

The O2 output is set to 1 at every other edge where pre(I2) is 1. In the circuit, the pre
register adds a signal state to the control states. It takes I2 as input and returns pre(I2)
as output. We says that the pre register samples I2 at clock rising edge.

• Tick 1, start to rising edge 1: at start time, the Start register has value 1 and the
other registers have value 0. Thus, O2 has value 0.

• Tick 2: rising edge 1 to 2, At rising edge 1, the FA register changes state to 1, which
corresponds to the fact that control in tick 2 is driven by the FA pause statement.
The Start register state becomes 0, and the SA register state stays 0. The pre
register state keeps value 0 since since I2 is 0 at rising edge 1. The output O2 is 0
since SA is 0.

• Tick 3, rising edge 2 to 3: At rising edge 2, since the current value of pre is 0,
control stays at FA and control register states are unchanged. The pre register state
becomes 1 since I2 is 1. The O2 output is still 0 since SA is 0.

• Tick 4, rising edge 3 to 4: At rising edge 3, since the upper and lower and-gate
generated by the first await statement have respective value 1 and 0, FA becomes
0 and SA becomes 1. The pre register becomes 0 and drives the O2 output to 0.

• Tick 5, rising edge 4 to 5 : At rising edge 4, FA stays 0 and SA stays 1 because pre
is 0. The pre register becomes 1. Since SA and pre are both 1, the O2 output is
driven to 1 during the clock period.

• Tick 6, rising edge 5 to 6 : At rising edge 5, since pre is 1, the FA register becomes
1 and the SA register becomes 0, which corresponds to looping the loop. Thus, O2
falls to 0. The pre register stays 1.

• Tick 7, rising edge 6 to 7 : At rising edge 6, control moves from FA to SA because
of the leftmost upper and-gate; the pre state stays 1 since I2 is 1. The output O2 is
1 since SA and pre are 1.

• Tick 8, rising edge 7 to 8 : At rising edge 7, control moves back to SA since FA and
pre are both 1. The pre register state becomes 0, which drives O2 to 0.

In the waveform of Figure ??, the I2 input is supposed to be set exactly at state change and
to be kept constant during the whole cycle. It is called an early input Because of sampling
by the pre register, requiring an early input is actually not necessary: since sampling of
I2 occurs right at the clock cycle, only I2’s value at that point matters. Figure ?? shows
that an indentical behavior would be obtained with a more aggressive I2 waveform, which
I2 is late but polite enough to have stabilized to the right value just before clock rising
edges occur. This intinsic tolerance of sampling w.r.t. late inputs will be fundamental for
multiclock design.

13.2 The need for multiple clocks

Modern hardware designs usually have more than one clock and, in addition, can turn
clocks on and off. There are several reasons for this. First, it is difficult to distribute a
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Figure 13.3: waveform of M2 with impolite input

single clock on a large chip, because of clock skew and power dissipation. Second, Systems
on Chip (SoC) designs are usually composed of several IPs (Intellectual Property) modules
of different nature, which must obey different clocking requirements. Third, not all IPs in
a circuit are active at a given time, and it is essential to shut down the clock in inactive
parts of circuits to save power. Finally, inputs and outputs of a circuit may require being
clocked according to external protocols independently of how fast the circuit computes.
For instance, a video filter may use an internal clock to compute images while being forced
to obey a standardized video frame transmission protocol for I/O driven by an unrelated
clock.

13.2.1 Metastability issues

Mutliple clocks can be generated either by a single PLL (Phase-Locked Loops) or by
several distinct PLLs. In the second case, clocks are fully asynchronous, i.e. unrelated in
time, and there is a danger of metastability. Assume that a signal driven by an emitter
clock is the input of a register clocked by an asynchronous receiver clock. Then, if a change
in the signal occurs too close from a receiver clock rising edge, the register can take an
arbitrary non-Boolean metastable state for an arbitrary amount of time. In practice, noise
makes the state randomly stabilize to 0 or 1 after some time, but the stabilized value may
not be the intended one and stabilization time is not guaranteed. Therefore, metastability
cannot be controlled in a deterministic way.

Notice that getting some bits wrong may be acceptable in some applications: a wrong
bit in a large picture is usually not a problem, because there are many other physical rea-
sons to generate wrong bits in a photo or video chain. But wrong bits can be unacceptable
in more sensitive design, and in particular in control applications. Then, one must either
avoid metastability or deal with it. This can be done in two fundamentally different ways:

• Relying over absolute timing to avoid metastability by guaranteeing that signals
never change when clock rising edges occurs. This is only possible if there are
guaranteed relationships between clocks and clock phase drifts, i.e. if the clock front
positions remain comparable over time, and if propagation delays in the actual circuit
are well-mastered. We call this design style quasi-synchronous design below. Back-
end techniques to achieve quasi-synchronous design are outside of the scope of this
paper.
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• Relying over specific communication devices called synchronizers that cope with
metastability, possibly associated with handshake and error-correction protocols.

Quasi-synchronous design is direct in multiclock Esterel. Synchronizers are programmable
in Esterel, thus they do not need to be language primitives. There is a fairly wide variety
of them, see for instance [?]. Here are some:

• Simple synchronizers use a register or a small chain of registers clocked by the receiver
clock to reduce the probability of metastability for the last register; their output is
electrically stable with very high probability but can be wrong.

• Multiple synchronizers transmit the same bits several times, serially or in parallel,
and check consistency to detect errors due to metastability issues;

• Handshake synchronizers implement handshake feedback to acknowledge bit recep-
tion. They are often necessary if the clock frequencies are different enough.

• Dual-clock fifos are filled on a writer clock and read on a reader clock. They are
classical tools to maintain throughput in streaming-based systems.

Synchronizers are mostly used for truly asynchronous clocks. However, they can also be
used in cases where all clocks are generated by a single PLL and thus related in time, but
where one does not want to predict exactly how relative clock rising edges are arranged
because that depends on complex routing issues. In this case, one sticks to the worst case,
assuming the clocks unrelated as for the multiple PLL case.

13.2.2 Some multiclock design terminology

Unfortunately, there is no well-established and clear terminology in current multi-clock
design. Logic and electrical concerns are often mixed up. Since we mostly deal with the
logical level in Esterel, we propose a simple terminology sufficient for our purpose. A more
elaborate one can be found in [?].

Pure synchronous design

This is what the classic Esterel v7 language is about. There is a single clock. All register
inputs are sampled synchronously by the rising edges of this clock, and, in the actual
circuit, all signals are supposed to be stable when the rising edge occurs.

Clock-gated synchronous design

In synchronous designs, the clock can be gated to avoid sampling register inputs, this
either to save power or for purely behavioral reasons. Conceptually, there is no model
change w.r.t. pure synchronous design, only implementation improvements. The very
same design can be implemented without clock gating, using logic to retain the register
value instead of disabling the change. The Esterel suspend and weak suspend statements
presented in Section ?? are the Esterel way to deal with clock gating.
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Quasi-synchronous design

In quasi-synchronous design, a multiclock design deals with several clocks whose rising
edges have precise relations over time. Generally speaking, they come from a single PLL
by clock division or clock gating, but how they are built is inessential here. We distinguish
between three subcategories listed below (they may be other):

• Derived clocks: given a clock C, a clock C’ is derived from C if all rising edges of C’
are rising edges of C, see Figure ??. In practice, C’ is essentially obtained from C
by clock gating. Derived clocks are used to slow down clocks or to shut them down
to save power.

• Harmonic clocks: two clocks are said to be harmonic if they have a fixed frequency
and have simultaneous rising edges at some point in time. Then their coincidence
point repeats regularly over time. Figure ?? shows the case of a ratio 3:4, where the
first clock beats 3 times while the second clock beats 4 times. For harmonic clocks,
the distance between any two clocks rising edges is precisely predictable. Harmonic
clocks are common in designs where busses or memories have several frequencies
values that are multiple of a common base frequency.

• Phase-shifted clocks: two clocks beat at the same frequency but one is shifted by
some delay w.r.t. the other. In this way, the delay between rising edges is predictable.

• Phase-shifted harmonic clocks combine harmony and phase-shifting, as shown in
Figure ??. Timing relations become slightly more complex, but are still fully pre-
dictable.

Of course, other cases are possible. We speak of quasi-synchronous design for any case
where timing constraints are mastered enough to avoid the need for resynchronizers to
communicate between clock domains.

When the clocks are truly unrelated, i.e. generated by distinct analog devices, we
say that they are fully asynchronous. Notice that designing with asynchronous clocks is
different from what is usually called asynchronous designs. This name is used for something
totally different, i.e. designs that uses no clock at all [?, ?].

13.2.3 Globally Asynchronous Locally Synchronous (GALS) design

For multiclock design, the freedom for complex relative positioning of clock edges leads to
much larger state spaces and combinatorial issues than for single-clock design. Therefore,
multiclock design is intrinsically much more complex. To keep things manageable, one
often adopts the Globally Asynchronous Locally Synchronous (GALS) design paradigm:
the design is split into single-clocked purely synchronous islands that only communicate
through wires and synchronizers. In this way, sequential computations are only performed
by single-clocked modules and communication between clock domains is clearly identified.
A signal that goes from a clock domain to another clock domain is called a clock-domain
crossing signal or cdc signal.

13.3 Multiclock design in Esterel

For Multiclock Esterel, we adopt the GALS design paradigm together with the usual
zero-delay model for combinational computation.
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Figure 13.4: derived clock

Figure 13.5: harmonic clocks

Figure 13.6: phase-shifted clocks

Figure 13.7: phase-shifted harmonic clocks (falling edge coincidence is meaningless since
only rising edge smatter)
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13.3.1 Overview

We introduce a new kind of signal called a clock, declared using the clock keyword. Clocks
can only be used to clock registers in classic modules. No Boolean gates are available for
them, and they cannot be declared reg. New clocks can be derived from existing ones by
clock gating or clock muxing, using a specific clock definition statement.

We add a new multiclock unit declared using the multiclock keyword. A multiclock
unit models a GALS system. It has a header similar to that of a module. In addition, it
can declare input and output clocks. The multiclock body can declare local signals and
clocks. It is composed of concurrent elements that can be as follows:

• A classic module clocked by an explicitly given clock, which can be an input clock
or a derived clock.

• A combinational signal computation, which is assumed zero-delay and thus indepen-
dent from any clock.

• Recursively, another multiclock unit instantiated with appropriate bindings for data
clocks and signals.

• A clock gater used to derive an output or local clock from another clock and a signal,
by masking source clock rising edges when the signal is false.

• A clock multiplexer that builds a clock from two other clocks using a signal to select
between them.

Only multiclock units can deal with clocks, while only module units can perform compu-
tations, thus achieving the GALS separation of concerns.

Multiclock units can declare local signals and clocks. They are data-generic exactly in
the same way as module units.

Here is an example of a multiclock design based on M1 and M2 presented in Section ??.
Each module is driven by a different clock and their intputs and outputs are connected by
the multiclock unit MC:

module M1 :

output O1;

loop
emit O1;

pause;
pause;

end loop
end module

module M2 :

input I2;

output O2;

loop
await pre(I2);
await pre(I2);
emit O2

end loop
end module
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Figure 13.8: The MC multiclock structure

multiclock MC :

input {C1 , C2} : clock;

output X;

s ignal S in
run M1 [ clock C1; S / O1]

||

run M2 [ clock C2; S / I2, X / O2]

end s ignal
end multiclock

Here, S is a clock-domain crossing signal since it goes from M1 clocked by C1 to M2 clocked
by C2.

The MC multiclock unit structure is pictured in Figure ??. The local signal S is con-
nected to the output O1 of M1 and to the input I2 of O2. Connection is direct, which
means that O2, S, and I2 have exactly the same value over time.

Semantically speaking, multiclock units deal with signals by broadcasting them in zero
delay, exactly as for modules. Although emission is zero-delay, we must deal with a richer
time model to explain how signals are received by other modules. An emitted signal S is
kept high for a full clock period of their master clock C, so that this signal can be sampled
by modules functioning on other clocks at any time between two successive rising edges
of C. In other words, we must promote the continuous time model used for waveforms in
Section ??.

Multiclock behavior of MC

Even for such a simple multiclock design, behavior needs to be studied with great care.
While individual behaviors of M1 and M2 are quite simple, their multiclock combination is
not.
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In Figure ??, we picture the behavior of MC for the case of 3:4 harmonic clocks described
in Section ??. In Figure ??, we picture the behavior of MC for the case of 3:4 phase-shifted
harmonic clocks. The clocks do not have a half-cycle duty period and their falling edges
shortly follow their rising edge; this is no issue since only the position of rising edges
matters. In the waveforms, observe that O1 is emitted every other rising edge of C1, while
O2 is emitted every other time I2 is true when sampled on O2 rising edges. An emitted
signal is kept high for the whole clock cycle of the module that emits it.

Notice that a slight phase shift makes the initial single O2 event of the harmonic case
disappear, all O2 events now going by pairs. With these two clocking schemes, timing
closure is quite simple to achieve and there is no real risk of metastability: rising edges of
C1 and C2 are either simultaneous, which is no problem, or separated by a well-determined
minimal amount of time which must simply be bigger than the register output setup time2.

With less constraints clocking schemes, there may be a risk of metastability for the
pre(I2) register if O1 is changing during the rising edge of C2. In that case, one must use
a more clever synchronizing scheme discussed below.

13.3.2 The importance of input sampling

In MC, the intermediate signals O1 = S = I2 and X = O2 are well-clocked: O1 is clocked
by C1, i.e. remains low or high for full clock cycles of C1, while O2 is clocked by C2, i.e.
remains low or high for full clock cycles of C2. For O2, this follows from the use of pre(I2)
to sample I2 = O1 on rising edges of C2, which acheives reclocking of O1 from C1 to C2.
In circuit terms, pre(I2) inserts a sampling register on the input line, as pictured in
Figure ??. Notice that pre(I2) performs reclocking on C2 because it is written in the
body of M2 which is run with clock C2. No explicit mention of the actual clock is needed
for the pre operator which is always clocked by its module’s implicit clock.

It is interesting to see what happens if I2 is directly used in M2 instead of the sampled
pre(I2), as in the following code:

module M2_no_sampling :

input I2;

output O2;

loop
await I2;

await I2;

emit O2

end loop
end module

The new behaviors are presented in Figure ??. The output X is not well-clocked any more
and becomes much wilder: X = O2 is the conjunction of O1, clocked by C1, and of the
output of the SA register, clocked by C2. The combinatorial complexity of the relative
placements of C1 and C2 rising edges shows in full force, with a large difference between
the harmonic and phase-shifted harmonic clocking cases. Futhermore, the behavior shown
in Figure ?? is given in the logical zero-delay framework. Things are much worse in the
real world because of electrical delays in the combinational logic. Using X as an output of
another design would becomes really problematic.

2Ignoring more subtle timing issues that are out of the scope of this manual and well-handled by
synthesis systems.
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Using samplers is a good design principle that makes signals well-clocked and modules
nicely composable. However, this principle is not enforced by the Esterel language.

13.3.3 Synchronizers

Input sampling is so important that it is usually not done by the receiver module M2 but
by isolated specific modules called synchronizers. Here is the way in which one would
really write MC in practice, here with a simple synchronizer made of one single register:

module M1 : // as before

module Synchronizer :

input I;

output O : reg;
sustain next O <= I

end module

module M3 :

input I2; // assumes input already reclocked

output O2;

loop
await I2;

await I2;

emit O2

end loop
end module

multiclock MCsync :

input {C1 , C2} : clock;

output X

s ignal O1, I2 in
run M1 [ clock C1 ]

||

run Synchronizer [ clock C2 ; O1 / I, I2 / O ]

||

run M3 [ clock C2 ]

end s ignal
end multiclock

The MCsync multiclock unit structure is pictured in Figure ??. The M3 circuit is exactly
as theM2 circuit pictured in Figure ?? except that the register on the I2 input has been
removed. The register is now placed in the synchronizer, which is equivalent but often
preferred in practice. The new structure is pictured in Figure ??.

Notice that we use a registered output instead of a pre operator for Synchronizer.
This is equivalent but more readable since registration is more explicit.

When clocks schemes are less constrained, one usually places two registers in a row in
the synchronizer to decrease the probability of I2 being metastable:
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Figure 13.9: behavior of MC with harmonic clocks

Figure 13.10: behavior of MC with phased-shifted harmonic clocks

Figure 13.11: behavior of MC without input sampling

Figure 13.12: MCsync multiclock structure
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Figure 13.13: peripheral retiming of M2

module Synchronizer2 :

input I;

output O : reg;
s ignal Aux : reg in

sustain {

next Aux <= I,

next O <= Aux

}

end s ignal
end module

But this is still quite unsafe, and one may have to resort to more complex handshake
synchronizers. This is discussed in depth in [?].

Electrically speaking, it is also better to only compose modules whose output signals
are all true circuit register outputs to ensure that they are well-clocked and available as
early as possible. This is not true for the M2 circuit pictured in Figure ??. However,
an easy forward retiming can transform the circuit into the equivalent circuit pictured in
Figure ??, where O2 has become a direct register output. See [?] for details on retiming.

13.3.4 Clock definition

A multiclock unit can derive new clocks from old ones using signals. This is performed
by the clock definition mechanism, which has the form of a restricted sustain statement
using the clock keyword. Left-hand-sides are clocks names. Righ-hand sides are clock
names followed by if conditions that test a single pure signal, or mux clock expressions
that select a clock according to the value of a single pure signal. Clock derivation is very
useful to shut down parts of a design to save power:

module Compute :

output MemoryNeeded;

...

end module

multiclock PowerSaver :
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input clock C;

...

s ignal MemoryNeeded , MemoryClock : clock in
run Compute [ clock C ] // computC.E. Leiserson and J.B. Saxe. Retiming synchronous circuitry. Algorithmica , 6(1), 1991.

es MemoryNeeded

||

clock MemoryClock <= C i f MemoryNeeded

||

run Memory [ clock MemoryClock ]

end s ignal
end multiclock

Complex tests for clock derivation must be placed in separate sustain statements, that
must be combinational, i.e. involving no pre operators. Here is an example of local and
output clock derivation using an auxiliary signal:

multiclock ClockDerivation :

input {Cin1 , Cin2} : clock;

output Cout : clock
input I, J;

s ignal Cloc : clock , S, IandJ in
run M1 [ clock Cin; I / In , S / Out]

||

sustain IandJ <= I and J

||

clock {

Cout <= mux(IandJ , Cin1 , Cin2)

Cloc <= Cout i f S

}

||

run M2 [ clock Cloc]

end multiclock

Semantically speaking, if and mux in clock definitions are logical operators specific to
clocks. When generating hardware, they are implemented using special cells to ensure
clean electrical behavior and avoid clock glitches.

In practice, for true hardware multiclock design, it is not recommended to use signals
that are outputs of combinational logic as clock gaters or clock multiplexer drivers. It is
much better to use clean signals that are primary inputs of the whole design or direct out-
puts of registers generated in one of the submodules. Timing closure and glitch avoidance
is made easier. However, this is not enforced by the Esterel v7 language.

13.3.5 Hierarchical design

Hierarchical multiclock design is pictured in Figure ??, without mention of communication
signals to make things simpler. The main multiclock unit Multi inputs two clocks C1 and
C2. It invokes another multiclock unit MultiSub, passing the clocks to it, and it runs a
classic module Mod1 with clock C1. The multiclock unit MultiSub runs a module Mod2

driven by clock C2 and a module Mod3 driven by clock C1. All the registers of Mod1 and
Mod3 are clocked by C1, while all the registers of Mod2 are clocked by C2. The multiclock
units Multi and MultiSub generate no other registers than those of their leaf modules.

Signal renaming is as for modules. Clock renaming is available for multiclock units:
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Figure 13.14: hierarchical multiclock design



196 CHAPTER 13. INTRODUCTION TO MULTICLOCK ESTEREL DESIGN

multiclock Multi2 :

input C1 : Clock;

...

s ignal C2 : clock in
run Multi [ C1 / Cin , C2 / Cout , ...]

...

end s ignal
end multiclock

It is a simple name substitution operation, akin to signal renaming. Clock renamings
appear within the signal renaming list. This is very different from running a module with
a given clock, which determines how the module state changes are performed; this is why
the clock keyword does not appear in the renaming. It is impossible to rename a clock for
a classic module, which has no knowledge of the existence of clocks, and it is impossible
to “‘clock” a multiclock unit, which has no executable sequential actions by itself.

13.4 Semantics of multiclock designs in Classic Esterel

The new multiclock language requires no fancy new semantical tool for its semantics to be
defined. A multiclock design can be easily translated into a single-clocked one, and that
is enough to define its semantics.

13.4.1 Replacing clocking by weak suspension

The idea is to view clocks events as normal signal status presence events. For this, one
introduces a new simulation Classic Esterel toplevel module associating input signals with
input clocks. The tick of this module is used as a fictitious simulation tick, fast enough
to observe all events in the multiclock design. Remember that the role of clocks is to tell
when states should change. The same can be done with Classic Esterel signals using the
weak suspend statement described in Section ??. Here is how to translate the MC design
of Section ??:

module MC_sim :

input C1_sig , C2_sig; // clock signals

output X;

s ignal S in
weak suspend

run M1 [S / O1]

when immediate not C1_sig

||

weak suspend
run M2 [ S / I2 , X / O2]

when immediate not C2_sig

end s ignal
end multiclock

It is easy to check that the behavior of MC_sim exactly mimics that of MC. This simple
macro-expansion process is enough to define the semantics of multiclock designs. It is
automatically performed by the Esterel compiler when needed.
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13.4.2 The mcrun statement

To avoid the manual insertion of weak suspend statements, Esterel provides the user with
a new mcrun statement that runs a multiclock unit within a module, passing signals to
clocks. Using mcrun, the MC_sim simulation module of Section ?? is very simply written
as follows:

module MC_sim :

input C1_sig , C2_sig; // original clocks changed into signals

output X;

mcrun MC [ C1_sig / C1 , C2_sig / C2 ]

end multiclock

Then MC_sim can be run in any Classic Esterel simulator.

Here is a single-clocked execution of MC_sim with harmonic clocks simulating the mul-
ticlock execution of Figure ??:

1: C1 C2 → - // O1=I2

2: - → - // pre(I2)

3: - → - // pre(I2)

4: C2 → - // pre(I2)

5: C1 → -

6: - → - // O1=I2

7: C2 → - // O1=I2

8: - → X // O1 pre(I2)

9: C1 → X // O1 pre(I2)

10: C2 → X // pre(I2)

11: - → - //

12: - → - //

13: C1 C2 → - //

14: - → - // O1=I2

15: - → - // O1=I2

16: C2 → - // O1=I2

17: C1 → - // O1=I2 pre(I2)

18: - → - // pre(I2)

19: C2 → - // pre(I2)

20: - → - //

21: C1 → - //

22: C2 → - // O1=I2

23: - → X // O1=I2 pre(I2)

24: - → X // O1=I2 pre(I2)

25: C1 C2 → X // O1=I2 pre(I2)

26: - → -

This discrete-time single-clock simulation based on the fictitious simulation tick is equiva-
lent to the continuous-time simulation shown in Figure ??. The blank events in the above
simulation scenario do not provoke output or state change. They could be suppressed, but
the reading of clock relative frequencies would be much harder.

The relation between a signal and the clock it simulates is simple: There is a clock rising
edge for the clock at any simulation tick where the signal is present. Thus, intuitively, the
signal acts as a clock gater on the simulation clock to generate the clock of interest. In
hardware, mcrun instantiates appropriate clock gaters.
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13.4.3 Simulating clock generation

To study a particular clock pattern, it is often much simpler to generate the clocks in
Esterel than to write the testbenches by hand. Here is an easy simulation of MC for the
3:4 phase-shifted harmonic case:

module MC_sim_3_4 :

output X;

s ignal C1_sig , C2_sig in
loop emit C1_sig each 4 t ick

||

pause; // phase -shift

loop emit C2_sig each 3 t ick
||

mcrun MC [ C1_sig / C1 , C2_sig / C2 ]

end s ignal
end module

13.4.4 Simulating metastability issues

Although metastability issues are not handled in Esterel, they can be simulated (at log-
ical level only) for verification purposes. One can for example simulate potential wrong
sampling by the first register of a bit synchronizer using an oracle:

module LossyBitSynchronizer :

input I;

output O;

s ignal S in
oracle Oracle in

sustain {

S <= pre(I) xor Oracle ,

O <= pre(S)
}

end oracle
end s ignal

end module

Then, the Esterel verification engine will try all oracle configurations.

13.5 Hardware synthesis from multiclock designs

There are two ways to synthesize hardware from a multiclock Esterel design: true multi-
clock synthesis and simulated multiclock synthesis.

13.5.1 True multiclock synthesis

True multiclock synthesis generates a multiclock circuit from a multiclock Esterel design.
Synthesis consists in individually synthesizing HDL code for each executable module, and
synthesizing a global HDL wrapper to pass the clocks and link the signals as specified in
the multiclock unit. No register is generated by this wrapper.

Clock gater and clock muxer library modules are needed for clock operations. Synchro-
nizers may require a specific treatment: although they can be programmed as standard
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Esterel modules that can be directly synthesized, it can be better for circuit performance
to replace them by specific library gates that have better electrical characteristics than
the synthesized version. This is easy using modular compilation of Esterel programs.

13.5.2 Simulated multiclock synthesis

The other way is to synthesize a single-clock design that mimics operation of the multiclock
design. This is very useful for FPGA simulation of multiclock design. The idea is exactly
the same as in Section ??: using a simulation clock, one can directly implement the MC_sim
simulation design in hardware or FPGA. Clock-mimicking signals can be generated in
Esterel as in Section ?? or using any clock gating device available in the technology.

The advantage of simulated multiclock simulation is that one can simulate or execute
the multiclock design on a single-clocked platform without changing a line of code.

13.5.3 Dealing with falling-edge clocks

All our circuit implementation examples were given with rising edge clocks. At Esterel
logical level, what matters is only when clock events occur, and whether they are rising
or falling edge events is simply a question of HDL implementation. When dealing with a
falling-edge clock, simply think of its negation, which is a rising-edge clock that has clock
events at the same time.

Dealing with designs that react to both rising edges and falling edges of the same clock
is more problematic and we do not plan to model it for the time being.
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Chapter 14

Esterel clocks and multiclock units

14.1 Clocks

14.1.1 Clock declarations

A clock is a signal declared by a specific declaration “C : clock”, which can appear only
in a multiclock unit. A clock can be declared input or output in the multiclock unit
header or local in the multiclock unit body. All clocks are pure (i.e. not valued). Clock
arrays and inputoutput clocks are not available. Clock declarations can be mixed with
other signal declarations. Here are examples:

multiclock Multi :

input I; // standard pure input

input C : clock; // input clock

output {C1, C2} : clock; // output clocks

s ignal S : unsigned , // standard valued local signal

C3 : clock in // local clock

...

end s ignal
end multiclock

Any output or local clock declared in a multiclock unit must be uniquely defined by a
clock equation, see Section ??.

14.1.2 Clock usage

Clocks can only be used in multiclock units. They cannot occur in modules. Their usage
is retricted to the following cases:

• In right-hand sides of clock equations, to derive other clocks. See Section ??.

• In module clocked run instantiations of the form “run M [clock C; ... ]”. Such
statements can only appear in multiclock unit bodies. They define the clock for the
module’s state change. See Section ??.

• In clock renamings in multiclock run instantiation, which can only appear in other
multiclock unit bodies. See Section ??.

201



202 CHAPTER 14. ESTEREL CLOCKS AND MULTICLOCK UNITS

• In signal-to-clock bindings for “mcrun Multi [ S / C ...]” statements that run
multiclock units inside modules. See Section ??.

Unlike pure signals, clocks cannot be used in signal expressions in right-hand-sides of signal
or clock equations.

14.2 Multiclock units

A multiclock unit starts with multiclock and ends with “end multiclock”. It is com-
posed of a header and a body that bear many similarity with module headers and bodies.

14.2.1 Multiclock headers

A multiclock header declares data and interface signals and extend data and interface
units exactly as for a module, except for restrictions mostly due to the absence of registers
generated by a multiclock unit:

• All declared valued signals are implicitly declared temp.

• When interfaces are extended, all imported signals are made temp.

• Signal mem, reg and init declarations and refinements are not available.

In addition to data and signals, multiclock units can also declare clocks using clock decla-
rations “C : clock”, see Section ??. Clock declarations can be mixed with signal decla-
rations.

Multiclock units can be data-generic in the same way as module units, and generic
data instantiation is done exactly in the same way as for modules. See Section ?? for
details.

Here is an example of a multiclock header:

data D :

generic constant N : unsigned;

end data

inter face Intf :

input I : unsigned;

output O : bool [4];
end inter face

multiclock Multi :

extends data D; // multiclock unit becomes generic

extends Intf; // I and O are imported as temp

input {C1 , C2} : clock; // declaration grouping is as usual

output O,

C3 : clock; // mix of signal and clock declarations

...

end multiclock
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14.2.2 Multiclock unit extension

As for a module, the declarations of a multiclock unit Multi can be imported in another
module or multiclock unit using “extends Multi”.

• If “extends Multi” appears in a multiclock unit Multi2, all declarations of Multi
are imported in Multi2, including clock declarations.

• If “extends Multi” appears in an interface unit or a module unit, only the data
and signals declared in Multi are imported, clock declarations being discarded.

• If “extends Multi” appears in a data unit, only the data components of Multi are
imported, signals and clock declarations being discarded.

• To import only the data components of Multi in another unit, including in a mul-
ticlock unit, one can use “extends data Multi”.

• To import only the data and signal components of Multi in another unit, including
in a multiclock unit, one can use “extends interface Multi”.

Notice that there is no “multiclock interface” unit. This is generally not a problem since
clocks are far less numerous than signals. Because of the way multiclock unit extension
is defined, multiclock units with body nothing can play the role of multiclock interface
units.

14.2.3 Multiclock body structure

The body of a multiclock unit can be either nothing, in which case the unit has no
behavior, or composed of the following elements:

• Local signal declarations, including local clock declarations.

• Combinational sustain statements, detailed in Section ??.

• Clock equations, detailed in Section ??.

• Module instantiations, detailed in Section ??.

• Multiclock instantiations, detailed in Section ??.

• Parallel compositions of the above elements.

Here an example of multiclock unit body:

s ignal C : clock in
sustain X <= I or J

||

clock C <= Cin i f X

||

s ignal S in
run Mod [ clock C ]

||

run Multi2

end s ignal
end s ignal
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14.2.4 Combinational computations in multiclock units

Combinational computations in multiclock units are simply sustain statements where
next is disallowed in the left-hand-side and pre is disallowed in the right-hand-side ex-
pressions. Besides these restrictions, all the features of sustain statements are allowed,
see Section ??. Here are legal multiclock combinational computations:

sustain X

||

sustain ?Y <= 1 i f I

||

sustain {

i f
case A do

X <= I

case B do
?T <= 1 i f C

default do
?Y <= 2

end i f
}

Notice that we use sustain, which acts permanently as does hardware combinational
logic, instead of emit, which would act once and terminate. There is no control flow in
multiclock units, and only lasting operations are allowed.

As mentioned in Section ??, clocks cannot appear in multiclock combinational com-
putation expressions.

14.2.5 Clock equations

Clock equations define local or output clocks in function of other clocks and signals. Each
output or local clock must be defined by exactly one clock equation. A clock equation or
equation set starts with the clock keyword and contains a comma-separated list of clock
definitions. There are three kinds of clock definitions:

• Clock synonym: a synonym definition “C2 <= C1” defines clock C2 as a synonym for
C1.

• Clock downsampling: a downsampling definition “C2 <= C1 if S” defines the clock
C2 as the subsampling of C1 by the signal S. In the discrete multiclock semantics,
C2 has a clock event at any global tick where C1 has a clock event and S is present.
Notice that the if test is limited to a single pure signal. If a more complex expression
is needed, declare a local signal and use a combinational definition for it. But, in
hardware implementation, beware of timing closure issues for this signal.

• Clock muxing: a muxing definition “C3 <= mux(S, C1, C2)” defines the clock C3

as the mux of of C1 and C2 according to presence of S. In the discrete multiclock
semantics, C3 has a clock event whenever S is present and C1 has a clock event or
S is absent and C2 has a clock event. As for clock downsampling, the mux test is
limited to a single pure signal.

Here are examples of clock equations:
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clock C2 <= C1 i f I

||

clock {

C3 <= C1 ,

C4 <= mux (J, C2, C3)

}

For a clock downsampling or muxing, it is semantically safe for the signal S to change
status exactly when the selected clock front occurs: the new status of S is then taken
into account as always in the 0-delay model. However, such an operation would almost
certainly lead to metastability if actually synthesized to hardware. In practice, controlling
the change time of S w.r.t. the edges of the argument clocks is critical for correct electrical
behavior.

14.2.6 Running modules in multiclock units

To achieve GALS behavior, a classic module unit can be instantiated within a multiclock
unit body using the run statement. This statement is as for module instantiation in other
modules, except that a clock must be explicitly passed using a “clock C;” specification in
the substitution list. Moreover, a reset must be also explicitly passed using a “reset R;”
or “weak reset R;” specification.

run M [ clock C; // mandatory argument

reset R; // mandatory argument

constant 2 / N; // usual data substitution

X / I, Y / O ] // usual signal binding

The only place where a clock can occur is the clock specification. Refer to Chapter ?? for
data and signal substitution, which is unchanged. Implicit substitution by equal names is
of course available.

The behavior of M is run with clock C to clock M’s state. See Section ?? for monoclock
expansion of the run statement with weak suspend. Signal binding is always done by
connection, see Section ??.

14.2.7 Running multiclock units in multiclock units

To achieve hierarchical multiclock design, a multiclock unit body can instantiate another
multiclock unit using the run statement. In multiclock run, clocks can be bound to clocks
in the same way as signals are bound to signals. Unlike for module run, no clock is passed
as mandatory first argument since a multiclock unit has no sequential computation per se.
Here is an example:

run Multi [ constant 3 / N; // usual data renaming

C1 / C2 , // clock renaming

X / I ] // usual signal binding

Notice that clock binding can occur anywhere in the signal binding section since it is a
normal signal binding.

14.2.8 Running multiclock units in modules

Finally, a multiclock unit can be instantiated in a module body using the mcrun state-
ment, which has the same form as a run statement. All input and output clocks ot the
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instantiated multiclock unit must be bound to pure signals in the caller. The other data
and signal objects are bound as usual. Here is an example:

multiclock Multi :

constant N : unsigned;

input CI : clock;

output CO : clock;

input I [N];

output O;

...

end multiclock

module Mod :

output SO;

input I [3];

output X;

s ignal SI in
loop emit SI each 2 t ick

||

mcrun Multi [ constant 3 / N;

s ignal SI / CI, // SI generates events of CI

SO / CO, // SO records events of CO

X / O ]

See Section ?? for the semantics of mcrun and for its used in multiclock design debugging.



Chapter 15

Observers

15.1 General

Observers give users a non-intrusive way of associating verification code with design code.
The purpose of observers is to enhance modularity, clarity, and reuse of verification code.
Using observers, it is possible to write and modify verification code without changing
design code and, conversely, to change design code, for instance when fixing bugs, without
impacting verification code.

The basic brick for building observers is an observer binding, which associates an
observing (verification) module to an observed (design) module. Observer bindings are
not restricted to observe main modules but can observe any submodule in the design
hierarchy. An observer unit declares a set of observer bindings intended for observing
the design. An observer unit can be seen as verification code, which is defined from the
observer bindings, and which runs in parallel with design code. Like for modules, a main
observer has to be chosen. The main observer specifies observing code to be compiled, in
particular the assertions, assumptions, and coverage points that are declared in observing
modules.

15.2 Observer bindings

15.2.1 General

An observer binding makes it possible to observe a design module or multiclock unit, called
the observed unit, using a verification module or multiclock unit, called the observing unit.
The syntax is as follows:

observe M with VMI / VM [ <renamings > ] ;

where:

• M is the observed module or multiclock unit.

• VM is the verification module or multiclock unit observing M. All interface signals of
VM must be input.

• VMI is an optional instance identifier for the verification module instance. If not
specified, it is implicitly VM.
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• <renamings> are data renamings, signal renamings, assert and assume renamings,
clock and reset definition, exactly like in a run statement, where M would be the
master and VM would be the sub. Renaming signals are allowed to be local signals
declared in the header of M (see Section ??). Implicit renaming by name-capture is
allowed as for a run statement.

Considering the classic ABRO design, here is an example of verification module and associ-
ated observer binding:

module AImpliesNotBVerifier:

input A, B;

sustain assert AImpliesNotB = (A => not B)

end module
...

observe ABRO with OImpliesNotRVerifier/AImpliesNotBVerifier [ R/A, O/B ];

In an observer binding, one can specify a particular instance for the module to be observed
by giving the absolute name of the instance. The syntax is as follows:

observe M in MI with VMI / VM [ <renamings > ] ;

where MI designates the observed instance in the main instance tree.
The instance absolute name MI is a list of instance identifiers separated with the

hierarchy delimiter ‘/’ for example MAIN/N1/M2, where MAIN is the name of the main
module or multiclock unit, N1 is an instance name of a unit N in MAIN, and M2 is an
instance name of M in N. Since instance names are not required to be unique in Esterel, an
absolute name may refer to several instances. In this case, the observer binding applies to
all the instances.

An observer binding that uses an observed instance absolute name is called an instance
observer binding. An observer binding that specifies no instance absolute name is called
a global observer binding.

15.2.2 Semantics

We consider the observer binding:

observe M with VMI / VM [ <renamings > ] ;

Assuming that M is a module, we note <header> and <body> respectively its header
and body:

module M:

<header >

<body >

end module

In the semantics, the effect of the observer binding is to modify the module M as follows:

module M:

<header >

weak abort
run VMI / VM [ <renamings > ]

after
<body >

end abort
end module
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In the case of an instance observer binding, the expansion is semantically performed only
for the specified instance of the observed module.

Notice that the observer binding does not impact the header of M but only the body,
without changing the behavior of M: interface signals of VM are all inputs and the termi-
nation of M is preserved thanks to the weak abort statement. If M is a multiclock unit
with header and body also noted <header> and <body>, then the body of M is modified
as follows:

multiclock M:

<header >

run VMI / VM [ <renamings > ]

||

<body >

end multiclock

The weak abort statement is not used here, since M cannot terminate. If M is observed by
several observer bindings, then run statements of observing modules are performed in par-
allel in the body of M. For example, if M is a module observed by VM1I / VM1 [ <renamings> ],
VM2I / VM2 [ <renamings> ] ... VMNI / VMN [ <renamings> ], then the body of M is
modified as follows:

module M:

<header >

weak abort
run VM1I / VM1 [ <renamings > ]

||

run VM2I / VM2 [ <renamings > ]

||

...

||

run VMNI / VMN [ <renamings > ]

after
<body >

end abort
end module

The observing unit in an observer binding is not allowed to be a multiclock unit if the
observed unit is a classic module. The converse is allowed, provided that the clock and
reset of the observing unit are defined.

15.3 Observer units

15.3.1 General

An observer unit is a set of observer bindings which are intended to specify together a
consistent and full observer for the design. An observer unit can be viewed as verification
code, specified by the bindings, running in parallel with design code. An observer unit is
declared with the observer keyword followed by the observer name. Here is an example:

observer O:

observe MAIN with VMAIN;

observe M with VM;

observe N in MAIN/N1 with VN1;
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observe N in MAIN/N2 with VN2;

end observer

15.3.2 Observer extension

An observer unit can import all the observer bindings declared by another observer with
the extends keyword. Here is an example:

observer O:

observe MAIN with VMAIN;

observe M with VM;

...

end observer

observer O2:

extends O; // O2 imports all observer bindings from O

// this is equivalent to:

// observe MAIN with VMAIN;

// observe M with VM;

...

end observer

Assert and assume renamings are allowed in observer extension. They apply to the observer
bindings imported from the extended observer unit. Here is an example:

observer O3:

extends O [ assert /assume ]; // transforms assumptions of O

// into assertions for O3

// this is equivalent to:

// observe MAIN with VMAIN [ assert/assume ];

// observe M with VM [ assert/assume ];

...

end observer

Diamond observer extension is not allowed. For example, the following is forbidden,
because observer O would be extended twice:

observer O4:

extends O2; // O is extended through O2

extends O3; // error: O is extended again through O3

end observer

15.3.3 Main observer

A main observer unit has to be chosen. It specifies observing code to be compiled with
the design that is specified by the main module. Observer units that are not directly or
indirectly extended by the main observer are discarded. An observer unit can be declared
as the main observer with the main keyword. Naturally, it is possible to select no main
observer for compiling; in this case, all observer units are discarded.
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15.4 FIFO observers example

We take the example of a simple FIFO, which extends the following control interface.
Making abstraction of the rest of the FIFO design, we show how to use observers to
associate verification code to FIFO code.

inter face FifoCtrlIntf:

input Put; // put words into the FIFO

output Full; // FIFO is full

input Get; // put words into the FIFO

output Empty; // FIFO is empty

end inter face

It is obvious that signals Full and Empty must not be present at the same time. To
verify the FIFO implementation, one can write the following verification module and the
following observer:

module FullEmptyExclusiveChecker:

input Full , Empty;

sustain assert FullEmptyExclusive = Full # Empty;

end module

observer FullEmptyObserver:

observe Fifo with FullEmptyExclusiveChecker;

end observer

Now let us write verification code to check that the module that instantiates the FIFO
makes a good usage of it, i.e. does not put words into the FIFO if it is full, and does not
get words from the FIFO if it is empty:

module FifoUsageChecker:

extends observe FifoCtrlIntf;

sustain {

assert NoFullError = not(Full and Put),

assert NomptyError = not(Empty and Get)

}

end module

observer FifoUsageObserver:

observe Fifo with FifoUsageChecker;

end observer

Last, assume that the FIFO module declares a local signal Size in its header, which is
the number of currently stored words:

s ignal Size : value reg unsigned <MaxSize+1> i n i t 0;

where MaxSize is a constant declared in the FIFO module. For profiling purpose, we want
to observe when the FIFO reaches a threshold of MaxSize, MaxSize/2 and MaxSize/4
stored words. Here is corresponding verification code:

module FifoSizeProfiler:

generic constant MaxSize : unsigned;

input Size : value temp unsigned <MaxSize +1>;

generic constant Threshold : unsigned <MaxSize +1>;

sustain cover ThresholdReached <= ?Size >= Threshold
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end module

observer FifoSizeObserver:

observe Fifo with Profiler1/FifoSizeProfiler [constant MaxSize/Threshold ];

observe Fifo with Profiler2/FifoSizeProfiler [constant (MaxSize /2)/ Threshold ];

observe Fifo with Profiler4/FifoSizeProfiler [constant (MaxSize /4)/ Threshold ];

end observer

15.5 Protocol observer example

This example shows how to use observers for modular verification based on the assume-
guarantee principle. We consider a simple initiator-target protocol. The target interface
is given below; the initiator interface is simply a mirror of it.

inter face TargetIntf:

input Valid;

output Ready;

input Data : value temp unsigned;

end inter face

The following modules are intended to verify protocol properties on target and initiator
sides.

module TargetAssertions:

extends observe TargetIntf;

sustain {

assert ReadyStable = Ready i f pre(Ready and not Valid),

assume ValidStable = Valid i f pre(Valid and not Ready)

}

end module

module InitiatorAssertions:

extends TargetAssertions;

run TargetAssertions [ assert /assume; assume/ assert ];

end module

Now consider the following design, which uses initiator and target ports at toplevel and
submodule boundaries.

module Top:

port T : TargetIntf;

port I : mirror TargetIntf;

s ignal port P : TargetIntf in
run M1 [ T/T1 , P/I1 ]

||

run M2 [ P/T2 , I/I2 ]

end s ignal
end module

module M1:

port T1 : TargetIntf;

port I1 : mirror TargetIntf;

...

end module
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module M2:

port T2 : TargetIntf;

port I2 : mirror TargetIntf;

...

end module

At toplevel boundary, the design has an initiator port I and a target port P. The main
module Top instantiates two submodules M1 and M2. Module M1 is directly connected to
the toplevel initiator port I and module M2 is directly connected to the toplevel target
port P. Modules M1 and M2 are connected together through a target-initiator protocol on a
port P. We want to verify the protocol implementation in M1, M2, and Top in the following
three steps. We will show how to design the main observer for each step.

1. Check in every submodule that protocol assertions are valid, based on submodule-
level protocol assumptions.

2. Check that submodule-level protocol assumptions (used in step 1) are valid, based
on toplevel protocol assumptions. Submodule-level protocol assertions (verified in
step 1), are used as auxiliary assumptions in order to help the verification engine.

3. Check that toplevel protocol assertions are valid, based on toplevel protocol assump-
tions. Submodule protocol assertions are used as auxiliary assumptions like for step
2.

For step 1, we check that protocol assertions are valid in M1 using the following observer
as main:

observer M1Observer: // take as main for step 1

observe M1 with TargetAssertions [ T1/T ];

observe M1 with InitiatorAssertions [ I1/I ];

end observer

To complete step 1, we do the same for M2 using the following observer:

observer M2Observer: // take as main for step 1

observe M2 with TargetAssertions [ T2/T ];

observe M2 with InitiatorAssertions [ I2/I ];

end observer

The following observer unit is used as main to perform the verification step 2. Notice how
assert and assume renamings make it possible to re-use the precedently designed observer
units M1Observer and M2Observer:

observer M1M2Observer: // take as main for step 2

// verify assumptions in M1

extends M1Observer [ assert /assume; // verify assumptions

assume/ assert ]; // use assertions as assumptions

// verify assumptions in M2

extends M2Observer [ assert /assume; // verify assumptions

assume/ assert ]; // use assertions as assumptions

// use Top assumptions
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extends TopObserver [ / assert ]; // ignore Top assertions

end observer

where TopObserver is obviously defined as:

observer TopObserver:

observe Top with TargetAssertions;

observe Top with InitiatorAssertions;

end observer

Last, we use the following observer unit as main to perform the verification step 3. Once
again, M1Observer and M2Observer are re-used with adequate assert and assume renam-
ings.

observer EnhancedTopObserver: // take as main for step 3

// verify Top assertions

extends TopObserver;

// use M1 assertions as assumptions

extends M1Observer [ /assume; // assumptions are useless here

assume/ assert ]; // use assertions as assumptions

// use M2 assertions as assumptions

extends M2Observer [ /assume; // assumptions are useless here

assume/ assert ]; // use assertions as assumptions

end observer

Now it’s done! For the sake of completeness, we give the main observer that can be used
to perform the full verification of the design all at one time, as alternative of the 3-step
modular verification that has just been presented.

observer MonolithicTopObserver:

// verify Top assertions

extends TopObserver;

// verify M1 assertions

extends M1Observer [ /assume ]; // discard M1 assumptions

// (could also be verified using assert/assume)

// verify M2 assertions

extends M2Observer [ /assume ]; // discard M2 assumptions

// (could also be verified using assert/assume)

end observer


