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1. Introduction

Let (M2p, w0) be a C∞ symplectic, metrizable, manifold. For example T ∗Rp, with its canon-
ical symplectic form. Let H0 : M → R be a C∞ function, c a regular value of H0; then H−1

0 (c)
is a codimension 1 C∞ manifold. Given any codimension 1 C∞ [closed ] manifold N0 ⊂ M2p,
then N0 is a connected component of H−1

0 (c), for some C∞ function H0 and c a regular value.

Let XH0
be the Hamiltonian vector field associated to H0 and w0: iXH0

w0 = dH0; and fH0

t

the local Hamiltonian flow of XH0
, that leaves invariant H0 and N0. If we consider the various

possible choices of H0, for a given N0, then XH0
changes to ϕXH0

, ϕ ∈ C∞(N0,R), ϕ 6= 0 (i.e.
the parametrisation of the orbits). Reparametrisation does not change the periodic orbits but
usually does change the periods.

Theorem. We suppose that 2p ≥ 8 (resp. 2p = 6) and that fH0

t |N0 has only a finite number
of periodic orbits. Then there exist H : M → R of class C∞ (resp. C3−ε, for any ε > 0) and a
regular value c of H such that H−1(c) is C∞ (resp. C3−ε) diffeomorphic to H−1

0 (c) and fH
t |N

has no periodic orbits, where N is [a] component of H−1(c) diffeomorphic to N0.
2

Example. Using a Darboux chart, we can glue in a symplectic manifold the following example
on T ∗Rp ∼= Cp:

H0(z) =

p∑

j=1

αj |zj|
2 ,

where the αj ’s are positive and independent over Q. Then, on H−1
0 (c), c > 0, fH0

t has only p
periodic orbits and we can apply the above theorem.

The idea of the proof is very elementary. When p ≥ 4, we use Wilson’s plugs (Ann. Math.

1966) and, when p = 3, Schweitzer’s plugs (Ann. Math. 1974). On T ∗Rp ∼= Rp × Rp, with
the coordinates (x, r) = (x1, . . . , xp, r1, . . . , rp), given a vector field X : Rp × {0} → Rp, we can
obtain a Hamiltonian extension whose Hamiltonian is

p∑

j=1

Xj(x)rj .

1The handwritten original paper looks like a preliminary version; references and some subsections remained
empty. Typing, minor corrections (written in italics between brackets) and some comments (in footnotes) are
due to F. Laudenbach.

2Actually the proof shows that, given any tubular neighbourhood T of N0, N can be chosen as a C0 section
of T .
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Then we modify it to create a C∞ symplectic plug and destroy a periodic orbit that passes
through a given symplectic flow box on a given energy surface. When p = 3, the extension∑p

j=1Xj(x)rj has to be modified to gain one unit of differentiability (using convolution opera-

tors).

The case 2p = 4 is unknown to the author but the reader is referred to a recent preprint of
G. Kuperberg (quoted by E. Ghys’s Bourbaki seminar no 785). For volume preserving flows
on oriented manifolds of dimension ≥ 4, C∞–volume preserving plugs can be constructed to
destroy a finite number of periodic orbits (the case of dimension 3 is treated by G. Kuperberg).

Similar results were obtained independently by V.L. Ginzburg3.

(Abstract for Trieste Conf. Oct. 1994.4)

2. Flow box theorem

Let Mn be a C∞ manifold (metrizable and connected), x0 ∈ Mn, and X a C∞ vector field
such that X(x0) 6= 0. We recall the flow box theorem.

2.1. Theorem. There exists a C∞ local diffeomorphism ϕ : (V, x0) ⊂ Mn → (Rn, 0) such that
ϕ(x0) = 0 and

ϕ∗X = (Dϕ.X) ◦ ϕ−1 = e1 = (1, 0, . . . , 0) .

For a proof see [ ].

2.2. We suppose furthermore n = 2p, p ∈ N∗, and (M2p, w0) is a C∞ symplectic manifold (i.e.
w0 is a C∞ closed 2-form of maximal rank). We suppose that H0 : Mn → R is a C∞ function,
dH0(x0) 6= 0 and XH0

is the Hamiltonian vector field associated to H0 and w0:

dH0 = iXH0
w0 = w0(XH0

,−) .

On R2p = T ∗Rp ∼= Rp × (Rp)∗ we put the canonical symplectic form

w = −d

(
p∑

j=1

rj dxj

)
=

p∑

j=1

dxj ∧ drj

where x = (x1, . . . , xp) ∈ Rp, (r1, . . . , rp) ∈ (Rp)∗ are the canonical coordinates.

3Viktor L. Ginzburg, An embedding S2n−1 → R2n, 2n − 1 ≥ 7, whose Hamiltonian flow has no periodic

trajectories, Internat. Math. Res. Notices 1995, no. 2, 83–97.
4It seems that M. Herman did not attend that conference. Actually, the text of this section appeared in

the proceedings of a NATO conference helded at S’Agaró (Spain), 19-30 June 1995: Hamiltonian systems with
three or more degrees of freedom, C. Simo (ed.), p. 126, Kluwer Acad. Pub., 1999.
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2.3. Theorem. There exist a C∞ local diffeomorphism ϕ : (V, x0) ⊂ M2p → (R2p, 0) such that
ϕ∗w = w0, and H, a C∞ function depending only on the coordinate r1, such that H ◦ ϕ = H0.

2.4. Let XH =
(

∂H
∂r1

(r1), . . .
)

be the Hamiltonian vector field of H for the symplectic form w

of R2p. We have ϕ∗XH0
= XH . Let us remark on each energy surface of H (i.e. r1 = c) that

∂H

∂r1
(r1) =

∂H

∂r1
(c)

is constant.

2.5. If we replace the Hamiltonian H0 by Φ ◦H0, where Φ′ (H0(x0)) 6= 0 we can suppose that
Φ ◦H(r1) = r1. Hence

XΦ◦H = e1 = (1, 0, . . . , 0) .

2.6. We will prove the volume preserving flow box theorem. Let Mn be a C∞ oriented manifold
and Ω0 a volume form. A C∞ vector field X is Ω0-volume preserving if its local flow preserves
Ω0. This is equivalent to

LXΩ0 = iX ◦ dΩ0 + d ◦ iXΩ0 = d (iXΩ0) = 0

or, equivalently, the (n− 1)–form iXΩ0 is closed.

Theorem. There exists a local C∞ diffeomorphism ϕ : (Mn, x0) → (Rn, 0) such that ϕ∗X =
(Dϕ.X) ◦ ϕ−1 = e1 near x0 and ϕ∗Ω = Ω0, where Ω = dx1 ∧ dx2 ∧ . . . ∧ dxn.

Proof.5 Let ϕ1 be a local diffeomorphism given by theorem 2.1. We leave to the reader the case
n = 1 and we suppose that n ≥ 2. We can suppose that ϕ1 is orientation preserving (by con-
sidering S ◦ ϕ1, where S(x1, x2, . . . ) = (x1,−x2, x3, . . . xn)). Let

(
ϕ−1

1

)∗
Ω0 = Ω1. Considering

ha ◦ ϕ, a > 0, where

ha(x1, x2, . . . , xn) = (x1, ax2, . . . , xn),

we can suppose that Ω1(0) = dx1 ∧ dx2 ∧ . . . ∧ dxn. By conjugation, the vector field e1 is
Ω1–volume preserving. Hence

Ω1 = a(x2, . . . , xn) dx1 ∧ dx2 ∧ . . . ∧ dxn

where a is a positive C∞ function, depending only on (x2, . . . , xn), and a(0) = 1. Let Ω̌i = ie1
Ωi

for i = 0, 1.

Lemma. There exists a local C∞ diffeomorphism f of (R(n−1), 0) such that

f ∗
1 Ω̌1 = dx2 ∧ . . . ∧ dxn = Ω̌0 .

5It could be easily deduced from Moser’s Theorem on volume forms.
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Proof. Let Ω̌s = (1− s)Ω̌0 + sΩ̌1, 0 ≤ s ≤ 1. We want to find a C∞ vector field Xs, Xs(0) = 0
for 0 ≤ s ≤ 1, such that the solution fs of

∂fs

∂s
= Xs ◦ fs, f0 = Id,

satisfies f ∗
s Ω̌s = Ω̌0. Differentiating one obtains

f ∗
s

(
LXs

Ω̌s +
∂Ω̌s

∂s

)
= 0 ,

which is equivalent to d (iXs
Ωs) = Ω̌1 − Ω̌0. We can choose

(
iXs

Ω̌s

)
(z) =

∫ 1

0

tn−2 iz
(
Ω̌1 − Ω̌0

)
(tz) dt, z ∈ Rn−1, ‖z‖ < δ

(see ). We have
(
iXs

Ω̌s

)
(0) = 0 since

(
Ω̌1 − Ω̌0

)
(0) = 0. The form iXs

Ω̌s is only defined

for ‖z‖ small and, since Ω̌s(0) is of maximal rank, we obtain the vector Xs, uniquely defined
for ‖z‖ < δ1 ≤ δ. Since Xs(0) = 0, the vector field Xs can be integrated up to s = 1 when
‖z‖ < δ2 < δ1. Since f ∗

s Ω̌s = Ω̌0 for all s ∈ [0, 1], we have f ∗
1 Ω̌1 = Ω̌0 and this prove the lemma.

The flow box theorem now follows by conjugation of e1 by the local diffeomorphism

f(x1, . . . , xn) = (x1, f1(x2, . . . , xn)) .

3. Reflection principle

3.1. Let H : R2p → R be a C∞ function such that XH is C∞ tangent to e1 along {x1 = 0}6.

Let (X1, . . . , X2n) be the components of XH . One defines the vector field X̂ by the following

formulas. If x1 ≥ 0, let X̂(z) = XH(z), where z = (x, r). When x1 ≤ 0, one defines:

X̂1(z) = X1(−x1, x2, . . . ,−r1, . . . , rp),

X̂j(z) = −Xj(−x1, x2, . . . ,−r1, . . . , rp), for j 6= 1, p+ 1,

X̂p+1(z) = Xp+1(−x1, x2, . . . ,−r1, . . . , rp),

the Hamiltonian, for x1 ≤ 0, being −H(−x1, x2, . . . , xp,−r1, r2, . . . , rp).
Let A : (x1, . . . , r1, . . . , rp) 7→ (−x1, x2, . . . , xp,−r1, r2, . . . , rp). We have:

(3.2) A∗X̂H = −X̂H .

3.3. We suppose that z ∈ {r1 = 0}, z = (−a, x2, . . . , xp, 0, r2, . . . , rp), with a > 0, and that the

flow ft of X̂H (that is supposed to exist in the flow box) is such that ft1(z) ∈ {x1 = r1 = 0}
[for some t1 > 0]. Then we have:

f2t1(z) = (a, x2, . . . , xp, 0, r2, . . . , rp).

This follows from (3.2) (A leaves invariant the [set of ] flow lines of X̂H) and from the fact that
{x1 = r1 = 0} is [pointwise] invariant by A.

6One should say that H is C∞ tangent to r1 along {x1 = 0}.
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3.4. We modified the mirror image construction of Wilson [ ] to obtain a symplectic vector field

X̂H . If we want an Ω-volume preserving diffeomorphism (Ω = dx1∧ . . .∧dxn) we could directly
take the mirror image construction of Wilson.

4. Wilson plugs in Rp, p ≥ 4

4.1. We will follow H. Rosenberg. Let Z be a complete C∞ vector field on Rp−1 such that the
flow gt of Z leaves invariant a compact set K 6= ∅ and gt|K has no periodic orbits. We suppose
that K ⊂ {‖x̂‖ < 1/2}, where x̂ = (x2, . . . , xp) ∈ Rp−1 and ‖x̂‖2 =

∑p
j=2 x

2
j .

4.2. We will suppose that 0 ∈ K.

4.3. Examples.

a. As p−1 ≥ 3, we can C∞ embed Tq, 2 ≤ q ≤ p−2, into Rp−1: Tq
∼=

−→ T ⊂ Rp−1. We can put
on T a minimal flow Z1 (e.g. an irrational flow). Using NT , an [open] tubular neighbourhood
of T in Rp−1, and a partition of unity, we can extend Z1 to a vector field Z such that Z|T = Z1

and Z(x) = 0, if x /∈ NT .

b. Let M q be a C∞ compact manifold, Z1 a C∞ vector field [on M ] such that its flow is
minimal. As we can embed M q →֒ R2q+1, we perform the construction we did in a. There are
many examples. For instance, we can suspend the examples of minimal diffeomorphisms we
constructed in [ ].

c. Let f be a C∞ (area preserving) diffeomorphism of R2 having a periodic homoclinic orbit.
Using a horseshoe, we can find K0

∼= {0, 1}Z →֒ R2, k ≥ 1, such that f(K0) = K0 and f |K0 is
conjugated to the shift S (xj)j = (xj+1)j∈Z

. The transformation S has an uncountable number

of compact invariant minimal sets. Let K1 be one of them (e.g. expansive Denjoy minimal
sets). We suspend the diffeomorphism f and obtain in R3 a flow Z with a minimal set K, such
that a Poincaré section of Z|K is topologically conjugated to S|K1.

4.4. Let λ : [−1, 0] → I be a C∞ function, 1 ≥ λ ≥ 0, λ = 0 near ∂[−1, 0] and λ(t) = 1 ⇔ t =
−1

2
. Let ϕ : Rp−1 → [0, 1] be a C∞ function with compact support such that ϕ−1(1) = K. We

extend λ on [−1,+1] by −λ(−t) = λ(t). We define the C∞ Wilson plug on [−1,+1]×Rp−1 by:

(4.5) X(x1, x̂) = (1 − ϕ(x̂)|λ(x1)|)
∂

∂x1
+ ϕ(x̂)λ(x1)Z .

When x̂ ∈ K, we have:

(4.6) X(x1, x̂) = (1 − |λ(x1)|)
∂

∂x1

+ λ(x1)Z .

4.7. We recall 0 ∈ K.
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4.8. Let A1(x1, x̂) = (−x1, x̂). We have the mirror image property:

(A1)∗X = −X .

Hence, every orbit of X starting at (−1, x̂) and that arrives to (0, v) exists at (1, x̂) (this is
the mirror image property of Wilson). Since (1 − ϕ(x̂)|λ(x1)|) > 0, except when x1 = ±1

2
and

x̂ ∈ K, and since X is tangent to {±1
2
}×K and X|{±1

2
}×K = (0, Z|K), the flow ft of X has

no periodic orbit. Indeed, if p1 denotes the projection p1(x) = x1, one has:

∂ (p1 ◦ ft)

∂t
(x) = (1 − ϕ(x̂)|λ(x1)|) ◦ ft(x) ,

which is positive except if x =
(
−1

2
, x̂
)
, x̂ ∈ K: hence t 7→ p1 ◦ ft(x) is strictly increasing

[except when it is constant ]. Every orbit of (−1, x̂), x̂ ∈ K, does not exist at x1 = +1; indeed,
it satisfies (4.6) and, when t→ +∞,

p1 (ft(x)) → −
1

2
.

[We will refer to this as the trapping property. In particular, according to 4.7, the orbit of
(−1, 0) is trapped.]

4.9. In the construction, K can be a manifold with boundary, dimK = p − 1; the only thing
we need is that the flow gt of X leaves invariant K7. In this way, when p − 1 = 2 [and K is
an annulus], we can suppose gt|K has only 2 periodic orbits. For instance, we can suspend the
diffeomorphism f : [1, 2] → [1, 2] given by

f(x) =
1

2

(
x+ (x− 1)3

)
+

1

2
,

(f(1) = 1, f(2) = 2).

When p − 1 ≥ 3, we can embed Tp−3 in Rp−2; this gives an embedding of Tp−3 × [1, 2].
Suspending the diffeomorphism Rα × f , where Rα : θ 7→ θ+α is a minimal translation of Tp−3,
we obtain Z such that K ∼= Tp−3 × [1, 2] is invariant by gt, and gt has no periodic orbits on K.

5. Symplectic plugs

5.1. [We look at a box: ]8

Bc = {(x1, x2, . . . , r1, . . . , rp) | |x1| ≤ 1, |r1| ≤ c,

p∑

j=2

x2
j ≤ 1,

p∑

j=2

r2
j ≤ 1}

[We also introduce the left part B−
c = Bc ∩ {x1 ≤ 0}.] We assume that p ≥ 4 (i.e. 2p ≥ 8)

and we consider X = (X1, . . . , Xp), a Wilson vector field (after homothety and rescaling)9 in
{−1 ≤ x1 ≤ 0,

∑
j≥2 x

2
j ≤ 1} such that:

7This means that the construction works even when K is not minimal.
8Here M.H. speaks of a conformally symplectic flow box for H0. We postpone this rescaling argument to the

end of the proof in 5.4.
9Probably, M. H. thinks of the “left part” of a Wilson vector field.
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X = e1 in a neighborhood of {x1 = −1}∪{x1 = 0}∪{
∑

j≥2 x
2
j = 1} and X1 ≥ 0 [everywhere].

Let ηj : R → [0, 1] be C∞ functions, j = 1, 2, such that:





η1(u) = 1 if u ≤ 1
16

η1(u) = 0 if u ≥ 1
4

;





η2(u) = u if u ≤ 1
16

η2(u) = 1 if u ≥ 1
4

η2(u) > 0 if u > 0.

We denote r̂ = (r2, . . . , rp) and ‖r̂‖2 =
∑

j≥2 r
2
j . We introduce the Hamiltonian

G(x, r) =
1

η1(‖r̂‖2) + η2(‖r̂‖2)

(

η1(‖r̂‖
2)
( p∑

j=1

Xj(x)rj

)
+ η2(‖r̂‖

2)r1

)

+ r3
1 .

When X(x) = e1 or when ‖r̂‖ ≥ 1
2
, we have G(x, r) = r1 + r3

1.

Let XG = (Y1, . . . , Y2p) be the symplectic gradient of G. We have:

∂G

∂r1
(x, r) = Y1(x, r) =

η1(‖r̂‖
2)X1 + η2(‖r̂‖

2)

η1(‖r̂‖2) + η2(‖r̂‖2)
+ 3r2

1 ≥ 0 .

We have

XG(x, 0) =






∂G

∂r
(x, 0) = X(x)

∂G

∂x
(x, 0) = 0 .

If ‖r‖ 6= 0 or X1(x) 6= 0, we have

(∗) Y1(x, r) > 0 .

We have dG(x, r) 6= 0 since, if ‖r‖ = 0, for every x we have Xj(x) 6= 0 for some j, 1 ≤ j ≤ p.
The function G is C∞ and defined on

E = {(x, r) | ‖r̂‖ ≤ 1, r1 ∈ R, −1 ≤ x1 ≤ 0, ‖x̂‖ ≤ 1} .

Since dG 6= 0, G−1(0) is a closed codimension-one submanifold of E. Near

{x1 = −1} ∪ {x1 = 0} ∪ {‖x̂‖ = 1} ∪ {‖r̂‖ = 1} ,

G−1(0) is equal to {r1 = 0}. The submanifold G−1(0) contains {r = 0} and is the graph of
a C∞ function over {r1 = 0} when r 6= 0, or when r = 0 and X1(x) 6= 0 (we can solve [the
equation G(x, r1, r̂) = 0 as ] r1 = Ψ1(x, r̂) ).

When r = 0 and X1(x0) = 0 then, at (x0, 0), G−1(0) is locally the graph of a C∞ function over

{rj = 0} where [j is so that ] Xj(x0) 6= 0, since
∂G

∂rj

(x0, 0) 6= 0.
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5.2. The manifold G−1(0) is compact since there are positive constants c1 and c2 so that
|G(x, r)| ≥ |r3

1| − c1|r1| − c2.

If (x, r1, 0) ∈ G−1(0) (and X1(x) = 0), then r1 = 0 10. Hence, if (x, r̂) → (x̄, 0) with
X1(x̄) = 0, then Ψ1(x, r̂) → 011. It follows that Ψ1 extends continuously to r1 = 0 at
(x̄, 0) and G−1(0) is the graph of a continuous function. Therefore G−1(0) is homeomorphic to
B−

c ∩ {r1 = 0}.

Proposition. The manifold G−1(0) is diffeomorphic to B−
c ∩ {r1 = 0}.

Proof. Let Gε(x, r) = G(x, r) + εr1, ε > 0. For every ε > 0, G−1
ε (0) is compact and is the

graph of a C∞ function over {r1 = 0}. When ε → 0 the manifolds G−1
ε (0) tend to G−1(0) in

the C∞ topology: for 0 < ε < ε0, G
−1(0) is included in a tubular neighbourhood of G−1

ε (0) and
the projection pε : G−1(0) → G−1

ε (0) (induced by the tubular neighbourhood projection) is a
C∞-diffeomorphism. (The compactness of G−1

ε (0), ε ≥ 0, is absolutely essential). �

We choose c large enough in order that G−1(0) ⊂ B−

c/2. Let g(r1) = r1 + r3
1; that is a diffeo-

morphism of R. Let G1 = g−1◦G 12. We have G1(x, r) = r1 near {x1 = −1}∪{x1 = 0}∪{‖x̂‖ =
1} ∪ {‖r̂‖ = 1}. We can easily extend G1 outside a neighbourhood of G−1

1 (0) = G−1(0) to a
function G2 with no critical point and equal to r1 in a neighbourhood of [the boundary of ] B−

c ;
but we will not need this in what follows.

Remark. We used the h-cobordism theorem.13

In the above construction the main point is that {r = 0} is a C∞ Lagrangian submanifold
L. [When G−1(0) contains L, the latter is foliated by characteristic lines of G−1(0).]

5.3. We consider the symplectic vector field X̂G1
[notations from 3.1 for the symplectic mirror

construction14 ]. The hypersurface G−1
1 (0) [coincides with {r1 = 0} ] near {x1 = −1, 0, 1} [and

is invariant by the flow ft of X̂G1
], ft(z) = (ft,1(z), . . . , ft,2p(z)).

According to formula (∗) the function t 7→ ft,1(z) is strictly increasing except when z =
(x1, x̂, r) satisfies x1 = ±1

2
, x̂ ∈ K, r = 0 15. We conclude that ft has no periodic orbits in Bc.

If z ∈ G−1(0) ∩ {x1 = −1}, with x̂ /∈ K or r 6= 0, then, for some t1 > 0,

ft1(z) ∈ G−1(0) ∩ {x1 = 0}

and, according to the mirror image property,

f2t1(z) = z + 2e1.

10G(x, r1, 0) = 0 is equivalent to r1

(
X1(x) + r2

1

)
= 0 where X1(x) ≥ 0.

11Use the compactness of G−1(0).
12Do not be confused with Gε for ε = 1.
13The h-cobordism theorem is involved for having an extension G2 without critical points.
14One should also consider the mirror construction of the Hamiltonian as in 3.1. Let G1 still denote the

Hamiltonian of X̂G1
on {x1 ∈ [−1, 1]}; the corresponding hypersurface G−1

1
(0) lies in Bc.

15Here K is the compact invariant set used in the construction of the Wilson plug which we started with.
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On the contrary, [we have the trapping property ]: if x̂ ∈ K, the orbit of (−1, x̂, 0) does not exist
at [i.e. does not reach ] {x1 = 1}.

5.4. End of the proof of the main theorem when 2p ≥ 8.
Let P1, . . . , Pk be the periodic orbits of N0 (notations from the beginning). Let xj ∈ Pj; we

suppose ϕj : (Vj, xj) → (R2p, 0) is a symplectic flow box for XH0
so that H0 ◦ ϕ

−1
j = r1; let

Wj ⊂ R2p be its image. [For δ > 0, we introduce the rescaled Hamiltonian16 Gδ defined by the
following formula:

Gδ(x, r) = δ G1(
x

δ
,
r

δ
) .

We have Gδ(x, r) = r1 outside some compact set. When δ is small enough, the support of
Gδ −r1 is contained in Wj for every j. The dynamics of the hypersurface G−1

δ (0) has properties
similar to those of G−1

1 (0).] In each Vj, we replace H0 by Gδ ◦ϕj and N0 ∩Vj by ϕ−1
j

(
G−1

δ (0)
)
;

the hypersurface N is the result of this change. According to the trapping property of G−1
δ (0),

the orbits Pj are destroyed. Since G−1
δ (0) carries no periodic characteristic line, and due to its

mirror image property, no periodic characteristic line have been created on N . �

6. The case 2p = 6

6.1. We will use P. Schweitzer’s examples [ ]. We consider S = T2\∆, where ∆ is diffeomorphic
to the open 2-disk, ∆ ∼= {z ∈ C | |z| < 1}. Let Z be a vector field on T2, suspension of some
diffeomorphism h of the circle with rotation number ρ(h) = α ∈ R/Z \ Q/Z, that is a Denjoy
counterexample. By [ ], h and Z can be chosen of class C2−ǫ for every ǫ > 0. We will suppose
∆ ⊂ T2 \K, where K is the exceptional minimal set of the flow of Z.

On [−1,+1]× S we consider the vector field X = (X1, X2, X3) given by formula (4.5)17. Let
us notice that the first component X1 of X is of class C∞. On T ∗([−1,+1]×S), equipped with
coordinates (x1, x2, x3, r1, r2, r3), we introduce the same Hamiltonian G as before (see 5.1) and
the hypersurface Σ = G−1(0) in

Bc = {(x, r) | x ∈ [−1,+1] × S, |r1| ≤ c, r2
2 + r2

3 ≤ 1}.

The dynamics of Σ has no periodic orbits and meets the mirror and trapping properties: the
orbit of (−1, x̂, 0, 0, 0) is trapped when x̂ ∈ K.

In the formula of G, X1(x)r1 is of class C∞ and we do not change it. The terms Xj(x)rj , j =
2, 3, are only C2−ε. The only properties we need for Hj(x, rj) = Xj(x)rj , when x ∈ [−1, 0]× S
and j = 2, 3, are the following:

16The rescaling of the Hamiltonian is not explicitly mentioned in the original text; some more complicated
argument is used.

17We refer to the canonical coordinates (x2, x3) on T2: (X2, X3) = ϕ(x̂)λ(x1)Z.
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(6.2)






Hj(x, 0) = 0

∂Hj

∂rj
(x, 0) = Xj(x)

Hj(x, rj) = 0 near {x = −1} ∪ {x = 0}

For x ∈ [0,+1] × S we take Hj(x1, x2, x3, r) = −Hj(−x1, x2, x3, r). According to the next
proposition, there exists a function of class C3−ε having the first two properties. [The third one
is a consequence of them since Xj(x) = 0 in the considered neighbourhood.]

6.3. Proposition. Let X : Tn → R, n ≥ 1, be a Ck function, k ∈ R+. Then there exists a
function

(x, r) ∈ Tn × R 7→ H(x, r) ∈ R

of class Ck+1 such that H(x, 0) = 0 and
∂H

∂r
(x, 0) = X(x).

Proof. We also denote X : Rn → R the periodic function associated with X. Let ϕ : Rn → R

be a C∞ function with compact support and whose integral equals 1. We define

H(x, r) = r

∫

Rn

ϕ(y)X(x− ry)dy .

This periodic function has the required properties (see Theorem 1.3.3 in Lars Hörmander, The
Analysis of Linear Partial Differential Operators, I, second edition, Springer-Verlag, 1990)18.�

6.4. End of the proof of the main theorem when 2p = 6.19

We consider a C∞ embedding

f0 : S = T2 \ ∆ → {(y1, y2, y3) ∈ R3 | −1 < y1 < +1, y2
2 + y2

3 <
1

2
}

transversal to
∂

∂y1
(its projection onto y1 = 0 is an immersion). We enlarge it as an embedding

f : [−δ,+δ] × S → R3 by the formula

f(x1, x̂) = f0(x̂) + x1
∂

∂y1
.

It is an embedding if δ is small enough and we have

f∗

(
∂

∂x1

)
=

∂

∂y1
.

By using a Riemannian metric on R3 (which allows us to identify tangent and cotangent spaces),
f extends as a symplectic embedding20

F : T ∗([−δ,+δ] × S) → T ∗(R3) .

18M.H. wrote a complete proof; we omit it since J.-C. Yoccoz found this available reference.
19This subsection was partly missing in the original text.
20This embedding is known as “Chekanov’s trick”.
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Let (y1, y2, y3, ρ1, ρ2, ρ3) be the canonical coordinates on T ∗(R3).

Lemma. We have: F ∗ρ1 = r1.

Proof. Let us only prove that the zero sets of both terms are the same. On the righthand side

we have the covectors vanishing on
∂

∂x1
, that is, up to the Riemannian isomorphism, the set of

tangent vectors orthogonal to
∂

∂x1
with respect to the metric which is induced on the image of

f . Since F∗

(
∂

∂x1

)
=

∂

∂y1

, this set of vectors is the orthogonal space to
∂

∂y1

. �

As a consequence, the hypersurface Σ, suitably rescaled as in 5.4 so that it takes place in a
small tube around the zero section in T ∗([−δ,+δ]× S), has an image by F that we can extend

by {ρ1 = 0} outside the image of F . Let Σ̂ denote this hypersurface in T ∗([−1,+1] × R2).
Arguing as in 5.2, we are done after the following lemma.

Lemma.

1) The dynamics of Σ̂ meets the mirror image property.
2) If π denotes the projection (y1, ŷ) 7→ ŷ, then the orbit of (−1, ŷ) is trapped when ŷ ∈ π◦f0(K).

Proof. Look at a characteristic line λ from (−1, ŷ, 0, r̂). If it enters the image of F , either it
is trapped or it gets out with the same (ŷ, r̂) coordinates. Indeed Σ meets the mirror image

property and F maps
∂

∂x1
segments to

∂

∂y1
segments. If we continue to traverse λ, we may

again enter the image of F since (ŷ, r̂) + R
∂

∂y1

may cross the image of F along two intervals

(when π ◦ f0 is the standard immersion of the punctured 2-torus into the plane). But we get
out still with the same (ŷ, r̂) coordinates. �

7. Volume preserving plugs

[The main result of this section is stated in proposition 7.3.]

7.1. We can embed Tn−2 in Rn−1. As its normal bundle is trivial we can embed [−1,+1]2×Tn−2

into Rn.

7.2. On [−1,+1] × [−1,+1] × Tn−2 we put the coordinates (x, r, θ). Let u(x) be an even C∞

function, x ∈ [−1,+1], 0 ≤ u(x) ≤ 1, equal to 1 near {−1, 0,+1} and such that u−1(0) ={
−1

2
, 1

2

}
. Let α(r) be an even C∞ function, r ∈ R, equal to 1 for |r| ≤ 1

4
and to 1 when |r| ≥ 1

2
.

If b > 0 is large enough

r ∈ [−1,+1]
g

−→

[
α(r)r

b
+ r3

]
∈ [−1,+1]
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is a C∞ diffeomorphism. We consider

H(x, r) = g−1 ◦

[
u(x)α(r)r

b
+ r3

]
.

[We have H(x, r) = r near the boundary of [−1,+1]2.]

Let XH =

(
∂H

∂r
,−

∂H

∂x

)
. We have

XH(−x, r) =

(
∂H

∂r
(x, r),

∂H

∂x
(x, r)

)

and XH(x, r) = (1, 0) when (x, r) is close to ∂([−1,+1]2). We also have

∂H

∂r
(x, r) =

(
u(x)

b

(
α(r) + α′(r)r

)
+ 3r2

)
.(g−1)′(z)

with z =
u(x)α(r)r

b
+ r3. We suppose that b is large enough in order that

3r2 −
1

b
|α′(r)r + α(r)| ≥ ε > 0 when |r| ≥ 1

4
. Hence

∂H

∂r
(x, r) ≥ 0 and

∂H

∂r
(x, r) = 0 if and

only if (x, r) ∈ {±1
2
} × {0}. Finally

XH(x, r) = 0 ⇐⇒ (x, r) ∈ {±
1

2
} × {0} .

We consider C∞ functions:

−1 ≤ λ1(x) ≤ 1, −λ1(−x) = λ1(x), λ
−1
1 (1) = {

1

2
},

−0 ≤ λ2(r) ≤ 1, λ2(0) = 1, λ2(−r) = λ2(r),
λ1(x) = 0 when x is close to {−1, 0, 1},
λ2(r) = 0 when r is close to {−1, 1}.

When n ≥ 4, we define a volume preserving plug by

X(x, r, θ) =

(
∂H

∂r
(x, r),−

∂H

∂x
(x, r), λ1(x)λ2(r)(α1, . . . , αn−2)

)

where (α1, . . . , αn−2) are rationally independent. We haveX(x, r, θ) = (1, 0, . . . , 0) when (x, r, θ)
is close to ∂(I2 ×Tn−2). Let (X1, . . . , Xn) be the coordinates of X. We have the mirror image
property:

X(−x, r, θ) = (X1(z),−X2(z), . . . ,−Xn(z))

where z = (x, r, θ). Moreover X1(z) = 0 if and only if z ∈ K± =

{
(±

1

2
, 0)

}
× Tn−2 and X is

tangent to

{
(±

1

2
, 0)

}
× Tn−2. On

{
(±

1

2
, 0)

}
× Tn−2, X = (0, 0, α1, . . . , αn−2). Hence X has

no periodic orbit. We also have the fact that every orbit starting from (−1, 0, θ) spirals to K− .

For c > 0, consider the volume form Ω̂c = c dx∧dr∧dθ1∧ . . .∧dθn−2. We have div
Ω̂c
X = 0 .

In order to construct a volume preserving plug it is enough to prove the following lemma.
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Lemma. Let Ω be the Euclidian volume form of Rn−1. There exists a C∞ embedding
ϕ : (r, θ) ∈ [−1, 1] × Tn−2 7→ ϕ(r, θ) ∈ Rn−1 such that

ϕ∗Ω = c dr ∧ dθ1 ∧ . . . ∧ dθn−2 .

Proof.21 [Let ϕ0 : [−1, 1] × Tn−2 → Rn−1 be a smooth embedding. Let B be a ball in Rn−1

enclosing the image of ϕ0 whose Euclidian volume is larger than the volume of [−1, 1] × Tn−2

with respect to c dr ∧ dθ1 ∧ . . . ∧ dθn−2. It is easy to construct a volume forme Ω ′ on B such
that:

1) Ω ′ and Ω coincide near the boundary of B;
2) ϕ∗

0Ω
′ = c dr ∧ dθ1 ∧ . . . ∧ dθn−2;

3) volΩ ′(B) = volΩ(B) .
By Moser’s theorem on volume forms, there is an isotopy {ψt}t∈[0,1] on Rn−1 with compact sup-
port in the interior of B such that ψ0 = Id and ψ∗

1Ω = Ω ′. Then ϕ = ψ1 ◦ϕ0 meets the wanted
property.] �

7.3. Proposition. Let (Mn,Ω), n ≥ 4, be a C∞ manifold endowed with a volume form. Let
X be an Ω-volume preserving non-singular vector field. We assume that the periodic orbits
of X are included in a finite number of codimension-one compact submanifolds (possibly with
boundaries and not mutually disjoint). [Then there exists an Ω-volume preserving non-singular
vector field X ′ without periodic orbit.]

Proof. We work in a flow box [−1, 1]×Bn−1
ε = B, where Bn−1

ε = {x̂ = (x1, ..., xn−1) | ‖x̂‖ ≤ ε}.
We consider a periodic orbit P contained in the compact hypersurface V n−1. Then, in the flow
box, V intersects the manifold {−1} × Bn−1

ε transversally since P ∩ B = [−1, 1] × {0}. As
the problem is local, we may suppose that V1 = V ∩ ({−1} × Bn−1

ε ) is the graph of a local
C∞ function ψ over {j = 0} in Rn−1 [for some j]. We denote ẑ = (x2, ..., x̂j , ...xn). As the
transformation

(xj , ẑ) ∈ Rn−1 7→
(
xj + ψ(ẑ), ẑ

)

is volume preserving, we may suppose that V1 ⊂ {(xj , ẑ) ∈ Rn−1 | xj = 0}.
[Let us consider a plug ϕ : [−1, 1] × Tn−2 → B as in the previous lemma.] We may also

suppose that locally, after some volume preserving diffeomorphism of Rn−1 [moving ϕ],

ϕ−1(V1) ⊂ {(r, θ) ∈ [−1, 1] × Tn−2 | r = 0} .

Using this plug, all the periodic orbits passing through V1 can be destroyed. If P is contained
in other local hypersurfaces of periodic orbits, V2, ..., Vq, we treat each Vj separately. �

21This proof was missing.
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Appendix

References were missing in the original manuscript. We add below the copy of an email from
Viktor Ginzburg to F. Laudenbach (19 Nov. 2006) with a list of further references.

Dear Francois,

Here is a brief report concerning the Seifert conjecture (mainly, Hamiltonian) and, in particular,
what happened since 1994, roughly in chronological order.

*** My original counterexample (smooth, 2n ≥ 8) is published in:
V. Ginzburg, An embedding S2n−1 → R2n, 2n−1 > 7, whose Hamiltonian flow has no periodic
trajectories, IMRN, 1995, no. 2, 83-98.

And Michel has a short note stating his result:
M.-R. Herman, Examples of compact hypersurfaces in R2p, 2p ≥ 6, with no periodic orbits, in
Hamiltonian systems with three or more degrees of freedom, C. Simo (Editor), NATO Adv. Sci.
Inst. Ser. C, Math. Phys. Sci., vol. 533, Kluwer Acad. Publ., Dordrecht, 1999.

*** The 1995 counterexample is followed by a smooth counterexample in dimension 6:
V. Ginzburg, A smooth counterexample to the Hamiltonian Seifert conjecture in R6,
math.DG/9703106. IMRN, 1997, no. 13, 642-650.
Both are based on the horocycle flow and the only thing that was missing in the 1995 paper is
an embedding of the horocycle flow into R5. (In R5, it does not follow from Gromov’s general
results.) Such an embedding is constructed in the 1997 paper. (The proof there has a minor
and fixable gap. A complete proof is given on pp. 118-121 in ”Introduction to the h-principle”
by Eliashberg and Mishachev, AMS, 2002.)

*** In 1997, you published your paper in Ann. Fac. Sci. Toulouse Math.22.

**********************************************************************

*** Meanwhile, in 1996, G. Kuperberg constructs a C1-smooth (perhaps even a bit smoother)
volume-preserving counterexample for S3, based on Schweitzer’s construction.
G. Kuperberg, A volume-preserving counterexample to the Seifert conjecture, Comment. Math.
Helv., 71 (1996), 70–97.

*** And also a paper:
G. Kuperberg, K. Kuperberg, Generalized counterexamples to the Seifert conjecture, Ann.
Math., 144 (1996), 239–268.
appears. (I don’t quite remember their results.) I am not aware of any results on the general
and volume-preserving Seifert conjecture proved after that.

22F. Laudenbach, Trois constructions en topologie symplectique, Ann. Fac. Sc. Toulouse, Vol. VI no 4
(1997), 697 - 709.
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*** K. Kuperberg has two surveys where she summed up what had been established by the
end of the 90s:
K. Kuperberg, Counterexamples to the Seifert conjecture, in Proceedings of the International
Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. (1998) Extra Vol. II, 831–840.
K. Kuperberg, Aperiodic dynamical systems, Notices Amer. Math. Soc., 46 (1999), 1035–1040.

************************************************************************

*** Back to the Hamiltonian case. Nothing much happened for some four years either. I wrote
two surveys (sort of complementary to K. Kuperberg’s in terms of emphasis). They cover the
results prior to 1998:
V. Ginzburg, Hamiltonian dynamical systems without periodic orbits, math.DG/9811014. In
Northern California Symplectic Geometry Seminar; Ed.: Y. Eliashberg et al.; Amer. Math.
Soc. Transl., (2) 196 (1999), 35-48.
V. Ginzburg, The Hamiltonian Seifert conjecture: examples and open problems, math.DG/0004020.
In Proceedings of the Third European Congress of Mathematics, Barcelona, 2000; Birkhauser,
Progress in Mathematics, 202 (2001), vol. II, pp. 547-555.

*** Then, in 2002, Ely Kerman constructs a smooth Hamiltonian counterexample in all dimen-
sions 2n ≥ 6 with dynamics and plugs different from mine. His construction is simpler than
mine and in some sense may be closer to what Michel had in mind.
E. Kerman, New smooth counterexamples to the Hamiltonian Seifert conjecture, J. Symplectic
Geometry, 1 (2002), 253–267.

*** Finally in 2002 and 2003, Basak Gurel and I construct a Hamiltonian counterexample in
R4 with Hamiltonian being C2-smooth or even a bit smoother. (Hence, the vector field is C1

as in Kuperberg’s example. The construction is also based in Schweitzer’s idea.)
V. Ginzburg, B. Gurel, On the construction of a C2-counterexample to the Hamiltonian Seifert
conjecture in R4, math.DG/0109153, Electron. Res. Announc. Amer. Math. Soc, 8 (2002),
11-19.
V. Ginzburg, B. Gurel, A C2-smooth counterexample to the Hamiltonian Seifert conjecture in
R2, math.DG/0110047, Ann. of Math. 158 (2003), 953-976.

*** We also showed (as a more or less side thing) that aperiodic levels can accumulate to a
critical level or critical points and some other (expected) results along those lines:
V. Ginzburg, B. Gurel, Relative Hofer-Zehnder capacity and periodic orbits in twisted cotan-
gent bundles, math.DG/0301073, Duke Mathematical J. 123 (2004), 1-47.

*** Since then no real progress has been made as far as I know. The smooth Hamiltonian
Seifert conjecture in R4 is still wide open. It’s not known whether the set of aperiodic energy
values for a Hamiltonian on R2n can be dense.

Best regards,
Viktor


