Cohérence et superfluidité dans les gaz atomiques

Cours 4

Fin du chapitre 3 + chapitre 4

Jean Dalibard

Chaire Atomes et rayonnement

Année 2015-16

Cohérence et superfluidité dans les gaz atomiques

Chapitre 3 (suite et fin)

Gaz en interaction et critère de Landau

Jean Dalibard

Chaire Atomes et rayonnement

Année 2015-16

Bilan du cours 3

Equation de Gross-Pitaevskii et approche de Bogoliubov « champ classique » obtenues à partir d'une approximation de type « champ moyen » (ansatz de Hartree)

$$\Phi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N)=\phi(\boldsymbol{r}_1)\ldots\phi(\boldsymbol{r}_N)$$

Evolution non linéaire de la fonction d'onde à une particule $\phi(\mathbf{r})$

$$i\hbar \frac{\partial \phi}{\partial t} = -\frac{\hbar^2}{2m} \Delta \phi + Ng |\phi|^2 \phi$$
• Sans potential de piégeage
• Interaction : $g \,\delta(\mathbf{r}_1 - \mathbf{r}_2)$

Etude de la stabilité des solutions en onde plane, et des modes propres autour de ces solutions :

$$\phi_{\boldsymbol{K}}(\boldsymbol{r},t) = \frac{1}{L^{3/2}} e^{\mathrm{i}(\boldsymbol{K}\cdot\boldsymbol{r}-\mu t/\hbar)}$$

Critère de Landau : stabilité si
$$V = \frac{\hbar K}{m} < c_{\rm s}$$
 $mc_{\rm s}^2 = g\rho$ $\rho = \frac{N}{L^3}$

Au delà du critère de Landau : les vortex

Nous avons considéré jusqu'ici des perturbations du type

 $e^{i\boldsymbol{K}\cdot\boldsymbol{r}} \longrightarrow e^{i\boldsymbol{K}\cdot\boldsymbol{r}} + \epsilon e^{i(\boldsymbol{K}\pm\boldsymbol{q})\cdot\boldsymbol{r}}$

On peut également s'intéresser à des perturbations localisées : vortex

Un vortex isolé : cœur de taille \mathcal{E} champ de vitesse en 1/r

Pas vraiment localisé : énergie cinétique divergente

 $v^2 \ 2\pi r \ \mathrm{d}r \sim \ln(R/\xi)$

Une paire de vortex de signes opposés : champ de vitesse en $1/r^2$ à longue distance

Energie cinétique convergente :

 $\sim \ln(d/\xi)$

Perte de circulation par nucléation d'une paire de vortex

On part de l'état à un quantum de circulation $\psi_1(\varphi) = \frac{1}{\sqrt{2\pi}} e^{i\varphi}$

Une paire de vortex est nucléée au point O et se sépare, le vortex « rouge » partant vers l'intérieur de l'anneau et le bleu vers l'extérieur

On termine alors avec l'état
$$\psi_0(\varphi) = rac{1}{\sqrt{2\pi}}$$

Barrière énergétique pour la paire de vortex (2D)

On évalue le coût en énergie cinétique de la configuration avec une paire de vx

$$\Delta E(d) = \frac{1}{2} m \rho \int (\boldsymbol{v}_0 + \boldsymbol{v}_A + \boldsymbol{v}_B)^2 \, \mathrm{d}^2 r$$
$$\cdot - \frac{1}{2} m \rho \int \boldsymbol{v}_0^2 \, \mathrm{d}^2 r$$

Après un calcul assez long... :

$$\Delta E(d) \approx 2\pi \, \hbar \rho \left[\frac{\hbar}{m} \log \left(\frac{d}{\xi} \right) - v_0 d \right]$$

Résultat un peu plus compliqué pour un anneau (LPL 2012, Cambridge 2012, NIST 2014)

Barrière énergétique pour la paire de vortex (2D)

Il faut comparer cette hauteur de barrière à $k_{\rm B}T$

$$\frac{\Delta E_{\text{max}}}{k_{\text{B}}T} \approx \rho \lambda_T^2 \log \frac{c_{\text{s}}}{v_0}$$
$$\lambda_T^2 = \frac{2\pi \hbar^2}{m k_{\text{B}}T}$$

Pour un gaz dégénéré : $\rho \lambda_T^2 \gg 1$

Défaut ponctuel : barrière grande devant l'énergie d'activation thermique sauf si $v_0 \approx c_{\rm s}$

Si on se donne un défaut de taille $d \gg \xi$, la barrière disparaît pour la vitesse critique

$$v_{
m crit} \sim rac{\hbar}{md} \ll c_{
m s} \sim rac{\hbar}{m\xi}$$

La version quantique de l'approche de Bogoliubov

On a vu ici la version « champ classique » de l'approche de Bogoliubov

Une fois obtenue la relation de dispersion $\omega_q = \left[c_s^2 q^2 + \left(\frac{\hbar q^2}{2m}\right)^2\right]^{1/2}$

on peut quantifier « à la main » ces modes et obtenir ainsi un gaz quantique de quasi-particules : \hat{T}

$$\hat{H}_{\text{quasi-particules}} = \sum_{\boldsymbol{q}} \hbar \omega_{\boldsymbol{q}} \ \hat{b}_{\boldsymbol{q}}^{\dagger} \hat{b}_{\boldsymbol{q}}$$

Autre démarche possible pour le gaz de Bose en interaction assez faible :

Partir de l'hamiltonien quantique faisant intervenir les opérateurs création et annihilation des atomes \hat{a}^{\dagger}_{p} , \hat{a}_{p} dans un état d'impulsion donné + approximation quadratique

Considérer les mêmes transformations linéaires (mêmes coefficients u, v) que pour la version classique

On obtient alors directement :
$$\hat{H} = E_0 + \sum \hbar \omega_q \,\, \hat{b}^{\dagger}_{m{q}} \hat{b}_{m{q}}$$

8

Quasi-particules à l'équilibre thermique

A l'approximation de Bogoliubov, l'ensemble des excitations décrites par

$$\hat{H} = E_0 + \sum_{\boldsymbol{q}} \hbar \omega_q \ \hat{b}_{\boldsymbol{q}}^{\dagger} \hat{b}_{\boldsymbol{q}}^{\dagger} \qquad \qquad \omega_q = \left[c_{\rm s}^2 \ q^2 \ + \ \left(\frac{\hbar q^2}{2m} \right)^2 \right]^{1/2}$$

forme un gaz parfait de potentiel chimique nul, comme les photons émis par un corps noir

Population à l'équilibre thermique :
$$\mathcal{N}(q) = \frac{1}{e^{\hbar\omega_q/k_BT} - 1}$$

Permet de calculer toutes les moyennes thermiques à cette approximation : densité normale et superfluide, fluctuations de densité et de phase, ... Cohérence et superfluidité dans les gaz atomiques

Chapitre 4

Condensation et superfluidité dans un réseau

Jean Dalibard

Chaire Atomes et rayonnement

Année 2015-16

Le but de ce cours

Transposer l'étude du comportement superfluide à un gaz dans un potentiel périodique : système modèle pour l'étude de la conduction électrique

Etude détaillée faite dans le cours 2012-13 pour une particule unique.

Comment les interactions entre particules modifient-elles le problème ?

Cours d'aujourd'hui + cours 5 :

- Instabilité dynamique qui apparaît pour des interactions relativement faibles
- Perte complète de superfluidité possible si les interactions sont assez fortes
- Etude de la transition de phase associée et des modes propres au voisinage du point critique (mode de Goldtsone, mode de Higgs)

Plan du cours

- 1. Rappels sur la physique des réseaux optiques
- 2. La vitesse critique dans un réseau

3. La transition superfluide isolant dans un réseau : un premier aperçu

Le théorème de Bloch

On considère un réseau optique formé par une onde lumineuse stationnaire

Mouvement d'un atome dans le potentiel dipolaire périodique

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) \qquad \qquad V(x) = V(x+a) \qquad \qquad a = \lambda/2$$

On peut chercher les états propres sous la forme de fonctions de Bloch :

$$\psi_q(x) = \mathrm{e}^{\mathrm{i}qx} \, u_q(x)$$

où la fonction u_q est périodique : $u_q(x) = u_q(x+a)$

La structure en bandes d'énergie

Pour un quasi-moment q donné, les énergies propres sont quantifiées

$$\psi_{n,q}(x) = e^{iqx} u_{n,q}(x)$$
 $E_n(q) \quad n = 0, 1, 2, ...$

Exemple pour un potentiel sinusoïdal $V(x) = V_0 \sin^2(kx)$ de période $a = \pi/k$

Attention au comptage multiple : q et q + 2k représentent le même état !

La limite des liaisons fortes

On introduit les fonctions de Wannier qui (pour un bon choix de phase) sont localisées sur les différents minima du potentiel V(x)

$$w_{n,j}(x) = \left(\frac{a}{2\pi}\right)^{1/2} \int_{-\pi/a}^{+\pi/a} \psi_{n,q}(x) e^{-ijaq} dq$$
Pour la bande fondamentale $n = 0$:

$$V_0 = 4 E_r$$

$$j = 0$$

 $V_0 = 4 E_r$

Dans la limite des liaisons fortes ($V_0 \gg E_r$) :

- On ne s'intéresse qu'à la bande fondamentale n = 0: $w_i(x) \equiv w_{n,i}(x)$
- On ne considère que les sauts entre proches voisins : $w_j \rightarrow w_{j\pm 1}$

L'hamiltonien de Hubbard

Pour un potentiel sinusoïdal $V(x) = V_0 \sin^2(kx)$, l'élément de matrice tunnel est :

$$\frac{J}{E_{\rm r}} \approx \frac{4}{\sqrt{\pi}} \left(\frac{V_0}{E_{\rm r}}\right)^{3/4} \exp\left[-2\left(\frac{V_0}{E_{\rm r}}\right)^{1/2}\right] \qquad \text{pour} \quad V_0 \gg E_{\rm r} \equiv \frac{\hbar^2 k^2}{2m} \quad {}_{16}$$

Interactions dans le réseau

 $V(r_1 - r_2) = g \, \delta(r_1 - r_2)$ + limite des liaisons fortes : interactions sur site uniquement

Coût en énergie pour mettre deux atomes sur le même site dans la fonction $w_0(m{r})$

$$egin{aligned} &\langle 1:w_0|\otimes \langle 2:w_0|\hat{V}|1:w_0
angle\otimes |2:w_0
angle = \int |w_0(m{r}_1)|^2 \; |w_0(m{r}_2)|^2 \; V(m{r}_1-m{r}_2) \; \mathrm{d}^3r_1 \, \mathrm{d}^3r_2 \ &= g \int |w_0(m{r})|^4 \; \mathrm{d}^3r \end{aligned}$$

$$\equiv U$$

Plan du cours

1. Rappels sur la physique des réseaux optiques

2. La vitesse critique dans un réseau

3. La transition superfluide isolant dans un réseau : un premier aperçu

L'expérience de Florence (2004)

Condensat de rubidium, 300 000 atomes

On branche le réseau en mouvement adiabatiquement de manière à peupler seulement la bande fondamentale dans un état de quasi-moment q donné.

Le réseau en mouvement est créé en superposant deux ondes progressives contre-propageantes de fréquences différentes : $2kV = \omega_1 - \omega_2$

On laisse le système évoluer pendant un temps ajustable et on détecte l'état final du gaz par temps de vol

L'expérience de Florence (suite)

L'évolution du nombre d'atomes dans le condensat est ajustée par une loi exponentielle :

 $N(t) = N_0 e^{-\gamma t}$ t: temps passé dans le réseau en mouvement

Variation du taux de pertes γ en fonction du quasi-moment initial :

Réseau faible : $V_0 = 0.2 \ E_r$

Première zone de Brillouin :

$$-k < q \leq k$$

Instabilité dynamique quand $q\gtrsim k/2$

Interprétation qualitative

Wu & Niu, Hilligsoe & Moelmer

Relation de dispersion dans un réseau : fonction non convexe (contrairement à l'espace libre)

On peut trouver des triplets q_0, q_1, q_2 tels que le processus

$$q_0 + q_0 \to q_1 + q_2$$

conserve l'énergie et l'impulsion (modulo 2k)

$$2E(q_0) = E(q_1) + E(q_2)$$
$$2q_0 = q_1 + q_2$$

Equivalent du mélange à quatre ondes avec accord de phase en optique Permet de générer des paires d'atomes corrélés (cf. séminaire de A. Aspect)

Description à la Gross-Pitaevskii en liaisons fortes

On choisit un ansatz de type champ moyen (fonction de Hartree)

$$\Phi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_{N_a})=\phi(\boldsymbol{r}_1)\ldots\phi(\boldsymbol{r}_{N_a})$$

adapté au cas du réseau en liaisons fortes :

$$\phi(m{r}) = \sum_{j=1}^{N_s} \phi_j \; w_j(m{r}) \qquad \sum_{j=1}^{N_s} |\phi_j|^2 = 1$$

somme sur les N_s sites du réseau

On peut montrer (cf. appendice) que cet ansatz est pratiquement équivalent à

$$|\Psi\rangle = |\text{site 1}: \psi_1\rangle \otimes |\text{site 2}: \psi_2\rangle \otimes \ldots \otimes |\text{site } N_s: \psi_{N_s}\rangle$$

où chaque $|\psi_j\rangle$ représente un état cohérent de Glauber sur le site javec l'amplitude $\psi_j = \sqrt{N_a} \phi_j$ où N_a est le nombre d'atomes

$$\sum_{j=1}^{N_s} |\psi_j|^2 = N_a$$

Solutions stationnaires et modes propres

Hamiltonien:
$$\hat{H} = -J \sum_{j} \left(\hat{b}_{j+1}^{\dagger} \hat{b}_{j} + \text{h.c.} \right) + \frac{U}{2} \sum_{j} \hat{n}_{j} \left(\hat{n}_{j} - 1 \right)$$

Equation de Gross-Pitaevskii en liaisons fortes

$$i\hbar \dot{\psi}_j = -J (\psi_{j+1} + \psi_{j-1}) + U |\psi_j|^2 \psi_j$$

Solutions en ondes planes : $\psi_j(t) = \psi_0 e^{i[jaq - \omega(q)t]}$ avec $\hbar \omega(q) = -2J \cos(aq) + U\psi_0^2$ relation de dispersion pour une particule en liaisons fortes

Recherche des modes sous la forme : $\left[\psi_0 + u(t) e^{ijaq'} + v^*(t) e^{-ijaq'}\right] e^{i[jaq - \omega(q)t]}$ $|u|, |v| \ll \psi_0$

L'instabilité dynamique

L'évolution des coefficients (u, v) de la perturbation s'écrit (Bogoliubov)

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} u \\ v \end{pmatrix} = \hat{\mathcal{L}} \begin{pmatrix} u \\ v \end{pmatrix} \qquad \qquad \hat{\mathcal{L}} \; : \mathsf{matrice 2 x 2 fonction de } \; J, U \; \mathsf{et} \; q, q', \psi_0$$

Rappel : $\hat{\mathcal{L}}$ n'est pas hermitien et peut avoir des valeurs propres complexes

$$\lambda_{\pm} = \lambda' \pm i\lambda''$$
 $\begin{pmatrix} u \\ v \end{pmatrix}(t)$ diverge comme $e^{|\lambda''|t}$

L'analyse détaillée des valeurs propres montre qu'il existe une perturbation q' dynamiquement instable dès que le quasi-moment |q| dépasse k/2.

$$E(q) = -2J\,\cos(aq)$$

L'instabilité en fonction de la force des interactions

Nous allons maintenant considérer le point 2 : perte de superfluidité même s'il n'y pas de mouvement relatif entre les atomes et le réseau

Plan du cours

1. Rappels sur la physique des réseaux optiques

2. La vitesse critique dans un réseau

3. La transition superfluide isolant dans un réseau : un premier aperçu

Fisher et al., 1989

Jaksch et al., 1998

Interactions vs. effet tunnel

Compétition entre l'effet tunnel qui tend à délocaliser les particules et les interactions répulsives qui tendent à éliminer les « doublons ».

$$E_{
m r}=rac{\hbar^2k^2}{2m}\,$$
 : entre quelques kHz et 100 kHz

En variant V_0/E_r dans la plage de 10 à 25, on peut aller de $J \gg U$ à $J \ll U$

 $g = \frac{4\pi\hbar^2 a_s}{2}$

Le cas limite sans effet tunnel

$$\hat{H} = \hat{H}_{\text{interaction}} = \frac{U}{2} \sum_{j} \hat{n}_{j} (\hat{n}_{j} - 1)$$

Avec par exemple $N_{\text{atomes}} = 2N_{\text{sites}}$

L'état fondamental est $|2,2,\ldots,2
angle\propto \prod (\hat{b}_{j}^{\dagger})^{2}|0
angle$

0 ou **1** particule : $E_{\text{interaction}} = 0$ **2** particules : $E_{\text{interaction}} = U$ **3** particules : $E_{\text{interaction}} = 3U$

 $N_{\rm sites}$

j=1

Un autre état tel que $|3, 1, \dots, 2\rangle$ coûte l'énergie U

Les interactions répulsives favorisent les états à remplissage uniforme

Le cas limite sans interactions

Tous les atomes s'accumulent au bas de la bande formant le spectre à une particule

Pour une particule la fonction de Bloch q = 0 est :

$$|\psi_{q=0}\rangle \propto \sum_{j=1}^{N_{\text{sites}}} |w_j\rangle \longrightarrow \sum_{j=1}^{N_{\text{sites}}} \hat{b}_j^{\dagger} |0\rangle$$

On met $\,N_{
m atomes}\,$ dans cet état (condensat de Bose-Einstein) : $|\Psi
angle\,$

Rappel : cet état est très proche d'un état cohérent de Glauber sur chaque site

$$\begin{split} |\Psi\rangle &= |\text{site } 1: \ \alpha\rangle \otimes |\text{site } 2: \ \alpha\rangle \otimes \ldots \otimes |\text{site } N_s: \ \alpha\rangle \\ |\alpha|^2 &= \frac{N_{\text{atomes}}}{N_{\text{sites}}} \quad :\text{facteur de remplissage} \end{split}$$

$$\propto \left(\sum_{j=1}^{N_{\rm sites}} \hat{b}_j^{\dagger}\right)^{N_{\rm atomes}} |0\rangle$$

Interpolation entre les deux cas limites

Etat de Gutzwiller: $|\Psi\rangle = |\text{site 1}: \psi\rangle \otimes |\text{site 2}: \psi\rangle \otimes \ldots \otimes |\text{site } N_s: \psi\rangle$

Approximation de champ moyen : pas d'intrication entre les états en différents sites

Hypothèses minimales sur $|\psi\rangle$: $|\psi\rangle = \sum_{n=0}^{+\infty} c_n |n\rangle$

• Normalisée :
$$\sum_{n=0}^{+\infty} |c_n|^2 = 1$$

• Fournit le bon nombre moyen d'atomes par site :

$$\sum_{n=0}^{+\infty} n |c_n|^2 = \frac{N_{\text{atomes}}}{N_{\text{sites}}}$$

Permet d'interpoler entre l'état nombre sur chaque site trouvé pour J = 0 : $c_n = \delta_{n,n_0}$

et l'état cohérent de Glauber pour U = 0 : $c_n = \frac{\alpha^n}{\sqrt{n!}} e^{-|\alpha|^2/2}$

La recherche de l'état fondamental en champ moyen

Hamiltonien:
$$\hat{H} = -J \sum_{j} \left(\hat{b}_{j+1}^{\dagger} \hat{b}_{j} + \text{H.c.} \right) + \frac{U}{2} \sum_{j} \hat{n}_{j} \left(\hat{n}_{j} - 1 \right)$$

On calcule $\langle \Psi | \hat{H} | \Psi \rangle$ avec l'ansatz de Gutzwiller : $|\psi\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$

• Tunnel:
$$-Jz \left| \sum_{n} \sqrt{n} c_{n-1}^* c_n \right|^2$$

• Interactions: $\frac{U}{2}\sum n(n-1) |c_n|^2$

z : nombre de proches voisins 2 à 1D, 4 à 2D, 6 à 3D

But : minimiser la somme des deux termes pour
$$\,U/J\,$$
 donné, tout en gardant constants

$$\sum_{n=0}^{+\infty} |c_n|^2 = 1 \qquad \text{et} \qquad \bar{n} = \sum_{n=0}^{+\infty} n \ |c_n|^2 = \frac{N_{\text{atomes}}}{N_{\text{sites}}}$$

On va caractériser le minimiseur par l'écart-type de la distribution des nombres d'occupation

Fluctuations du nombre d'occupation par site

On se donne U/J et on varie le facteur de remplissage $ar{n}=rac{N_{
m atomes}}{N_{
m sites}}$

On trace la dispersion relative des nombres d'occupation $\Delta n/\sqrt{\bar{n}}$

Rappel : pour un état cohérent de Glauber, cette quantité vaut 1 (distribution de Poisson)

Les interactions répulsives tendent à produire des distributions sub-poissoniennes

Fluctuations du nombre d'occupation par site

On se donne U/J et on varie le facteur de remplissage $ar{n}=rac{N_{
m atomes}}{N_{
m sites}}$

On trace la dispersion relative des nombres d'occupation $\Delta n/\sqrt{\bar{n}}$

Rappel : pour un état cohérent de Glauber, cette quantité vaut 1 (distribution de Poisson)

Les interactions répulsives tendent à produire des distributions sub-poissoniennes

Quelque chose d'intéressant apparaît au remplissage entier...

Fluctuations du nombre d'occupation par site

On se donne U/J et on varie le facteur de remplissage $ar{n}=rac{N_{
m atomes}}{N_{
m sites}}$

On trace la dispersion relative des nombres d'occupation $\Delta n/\sqrt{\bar{n}}$

Rappel : pour un état cohérent de Glauber, cette quantité vaut 1 (distribution de Poisson)

Les interactions répulsives tendent à produire des distributions sub-poissoniennes

Quelque chose d'intéressant apparaît au remplissage entier...

Des interactions assez fortes gèlent complètement la distribution pour des remplissages entiers !

Même quantité en variant U/zJ pour un remplissage donné

Dans le cadre du traitement *champ moyen* : pour un remplissage entier, transition de phase du 2^{ème} ordre entre un état avec une cohérence étendue et un état sans la moindre cohérence

Une approche analytique simple

- Même amplitude pour $|c_0|$ et $|c_2|$, pour garantir que $\bar{n} = 1$: $\cos \chi = \sin \chi = 1/\sqrt{2}$
- Energie minimale pour $\eta = 0$
- Energie indépendante de φ : brisure spontanée de symétrie

Une approche analytique simple

Etat pour un remplissage non entier

 $\bar{n} = 1 + \epsilon$

Superfluidité de type trou

Superfluidité de type particule