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PLAN of LECTURES
LECTURE 1:  FORMAL RESULTS, and an EXAMPLE

The Essence of Quantum Mechanics
Path Integral formulation of QM; Reduced Density Matrix Dynamics
Effective Hamiltonians – remarks on derivation
Oscillator Baths and Spin Baths; Environmental Decoherence

REAL WORLD EXAMPLE: Dynamics of a Superfluid Vortex

LECTURE 2:  FROM QUBITS to SPIN NETS - 1 
Qubits in the real world
“Central Spin” & “Spin-Boson” models
Decoherence for a single Qubit

REAL WORLD EXAMPLE:  Spin in a solid state insulator

LECTURE 3:  FROM QUBITS to SPIN NETS - 2 
Networks of qubits vs Quantum walks – the equivalence
Dynamics of the Quantum Ising system
Long-range decoherence (“correlated errors”) & 3rd-Party decoherence

REAL WORLD EXAMPLE 1:  Buckyballs & 2-slit diffraction
REAL WORLD EXAMPLE 2:  Quantum Ising system

LECTURE 4: QUANTUM MECHANICS & GRAVITATION
The conflict between Quantum Mechanics & General Relativity
Path integrals in Quantum Gravity
Correlated WorldLine Theory

REAL WORLD EXAMPLE:  An optomechanical experiment



WHAT is the ESSENCE/MYSTERY of QUANTUM MECHANICS ?

C. Morette-DeWitt, 
Comm. Math. Phys. 28, 47 (1972)

(2)  A second mysterious feature – also best formulated in path integral language – is 
that of INDISTINGUISHABILITY. It yields particle statistics (which can be 
fractional), & is inherently NON-LOCAL.

(1)

Sum over topological classes

This formulation perfectly captures the non-local character 
of QM (cf Aharonov-Bohm/Berry phase effects)



Long before Feynman, Einstein & Schrodinger (1935) fingered “ENTANGLEMENT” as 
the real essence of QM – embodied in states like 

Ψ   = [ φ+ (Α) φ− (Β)   + φ− (Α) φ+ (Β) ]

for which the quantum state of either 
individual system is literally meaningless!

In the path integral formulation, 
entanglement is a CONSEQUENCE of 
superposition, for multi-particle systems; 
in this sense it is NOT a new feature of QM 
(NB: Feynman already showed this in path 
integral language in 1965). 

(3)

(4) 

(5)

K(1,2;1’2’)  = +

Another essential feature of non-relativistic QM,
The SPIN-STATISTICS THEOREM, can only be 
explained using relativistic Quantum Field 
Theory (that the spin be integer or half-integer 
comes from the form of the spin path integral). The enclosed area is defined modulo 4π

The most mysterious essential feature of QM is the 
transition from probabilities to concrete results (often 
called the measurement problem”).  Whether we deal 
with density matrices or wave-functions, we end up 
writing  the “results of measurements”, in the form  

in terms of a density matrix & measurement operator.



REMARKS on PATH INTEGRALS

In traditional non-relativistic QM one defines

which automatically satisfies 

(ie., the Schrodinger eqtn), and which has matrix elements

However (cf. Morette-DeWitt), the Feynman 
form is more general. For a single 
non-relativistic particle, one has

and for some field φ(x) we have

ADVANTAGES of this FORMULATION

between different 
field configurations

- Captures non-local, topological features of QM, & relation between phase 
& action along worldliness: clearer connection to classical theory

- No need for wave-functions, or operator algebra, or canonical field theory
- Fundamentally non-perturbative; clear definition of interacting fields

For a tutorial article:

P Storey, C. Cohen-Tannoudji, J de Physique II,  4, 1999 (1999)

One needs to define the measure for the path integration – ie., decide how to assign 
weight to the different paths.  We discuss this later

Note that these propagators are NOT the same as the correlators
of the theory. This is most obvious when we deal with fields 



DYNAMICS of a BARE DENSITY MATRIX 

with density matrix propagator

where

For a FREE system the density matrix has equation 
of motion 

q(t) q’(t)

DYNAMICS of the REDUCED DENSITY MATRIX

Consider the action 

We define

where we introduce Feynman’s influence functional

We can also write this as:

This defines the dynamics of 
the reduced density matrix: 

K[Q,Q’]
RP Feynman, FL Vernon,  Ann Phys 24, 118 (1963)
NV Prokofev, PCE Stamp,  Rep Prog Phys 63, 669 (2000)



REMARKS on PATH INTEGRATION TECHNIQUE

PATH INTEGRATION MEASURE: On a 1st meeting
With path integrals, the obvious question is – how to 
count paths?  For simple problems, like a non-
relativistic particle, one writes a phase space path 
integral of form 

which corresponds physically to a division of the path into infinitesimal segments 
(the composition rule for QM amplitudes).  This allows a definition of path measures. 
But for more complicated theories (eg., non-Abelian gauge theories, or Q Gravity), we 

need to be more sophisticated; this will 
come up in the 4th lecture (see refs at left).  

AM Polyakov, Phys Lett B103,  207, 211 (1981)
E Mottola, J Math Phys 36,  2470 (1995) 

GAUSSIAN INTEGRALS:  The functional integrations in these path integrals are 
actually for the most part very simple – they are just convolutions of Gaussians, of the 
form 

This leaves us free reign to appreciate the intuitive power of these path integrals

SPIN PATH INTEGRALS: This simplicity is partly lost in spin path integrals, of form 
Their meaning is discussed 
in the background notes



“Renormalisation”
Scale out
High-E 
modes

Integrating out to get Seff

Heff (Ec )   Heff (Ωo)

|ψi>  Hij(Ec)  <ψj|       |φα>  Hαβ(Ωo) <φβ|

The RG mantra is:   RG flow
fixed points
low-energy Heff
universality classes

Ec

Ωo

Flow of Hamiltonian & Hilbert space with UV cutoff

SYSTEM plus 
ENVIRONMENT



Ex: ENERGY SCALES 
in SUPERCONDUCTORS

One has a broad hierarchy of energy 
scales (here shown for conventional s/c):

electronic energy scales:     U, εF, (or t)
phonon energies:                    θD
Gap/condensation energy      ∆BCS
p/m impurities (not shown)    J, TK
Coupling of ψ(r) to spins:       ωk
Total coupling to spin bath:   E0 ~ N1/2ωk

A superconducting device has other 
energy scales – eg., in a SQUID:

Josephson plasma energy     Ω0
J

Tunneling splitting                 ∆0

These are of course not all the energies 
that can be relevant in a superconductor. 
in particular, there are energy scales 
associated with the quasiparticle 
excitations that are not shown – nor do I 
show energy scales associated with 
impurities, which are crucial when 

considering decoherence phenomena.

WHY DERIVATION of low-E Heff is HARD: 1



MICROSCOPIC ENERGY SCALES 
in MAGNETS

The standard electronic coupling energies 
are (shown here for Transition metals):

Band kinetic & interactions:    t, U
Crystal field:                              DCF
Exchange, superexchange       J
Spin-orbit:                                  lso
Magnetic anisotropy                 KZ
inter-spin dipole coupling         VD 
p/m impurities (not shown)     J, TK

which for large spin systems lead to

Anisotropy barriers:                EB ~ EKZ
small oscillation energies      EG ~ KZ
Spin tunneling amplitude           ∆0

Also have couplings to various “thermal 
baths”, with energy scales:

Debye frequency:                      θD
Hyperfine couplings                  Aik
Total spin bath energy          E0 ~ N1/2ωk
Inter-nuclear couplings             Vkk’

NOTE: all of these are parameters in effective 
Hamiltonians for magnets at low T.

WHY DERIVATION of low-E Heff is HARD: 2



1) No well-defined low-E Hilbert space – no low-E effective H
2) Spectral weight transfer  analogue of  “UV / IR mixing”

The standard Hubbard effective 
Hamiltonian has the form

This is used to describe lattice solids. 
By including multiple on-site orbitals, & 
a local energy which changes from site 
to site, it can be used to describe 
molecules and more general solids.    

Consider the case where U > t, with 
near half-filling of the system.   Any 
attempt to find a low-E effective 
Hamiltonian runs into a problem – we 
have ‘spectral weight transfer’ between 
the upper and lower Hubbard bands.  
An effective Hamiltonian with UV 
cutoff << U 

WHY DERIVATION of low-E Heff is HARD: 3

THE HUBBARD MODEL



MODELS for SYSTEM/BATH INTERACTIONS

Bath:

Int:

Bath:

Interaction:

Phonons, photons, magnons, spinons,
Holons, Electron-hole pairs, gravitons,.. 

DELOCALIZED 
BATH MODES

Defects, dislocation modes, vibrons, 
Localized electrons, spin impurities, 
nuclear spins, …

LOCALIZED 
BATH MODES

SPIN BATH
OSCILLATOR 
BATH

Very SMALL ( ~ O(1/N1/2)
NOT SMALL !

‘Spin Bath’
‘Oscillator Bath’



CONDITIONS for DERIVATION of OSCILLATOR BATH MODELS

(1) PERTURBATION THEORY

(2) BORN-OPPENHEIMER (Adiabatic) APPROXIMATION

Assume environmental states and energies 
The system-environment coupling is 

Assume weak coupling:  where

In this weak coupling limit we get oscillator bath with 

Suppose now the couplings are not weak, but the system dynamics is SLOW, ie., Q
changes with a characteristic low frequency scale Eo . We define slowly-varying 
environmental functions as follows:     

Quasi-adiabatic eigenstates: Quasi-adiabatic energies:

‘Slow’ means:
Now define gauge potential: 

We can now map to an oscillator bath if 

Here the bath oscillators have energies

and couplings 

and couplings

The oscillator bath models
are good for describing

delocalised modes; then usually
Fq(Q) ~ O(1/N1/2)

(normalisation factor)

All OK unless we have:
(i) degenerate bath modes   
(ii) Localised bath modes 

We get such models if one or other of 2 conditions is satisfied, viz., 

AO Caldeira, AJ Leggett, Ann Phys 149, 374 (1983)  



CONDITIONS for DERIVATION of SPIN BATH MODELS
We start again from a model of general form:

with interaction: and bath

For this effective Hamiltonian to be valid we require that no other environmental levels 
couple significantly to the localised bath levels. We also require that the bath modes 
couple weakly to each other, satisfying the conditions: 

(i) (intra-bath mode-mode coupling weak compared 
to the coupling to the central system); or:

(ii) The ‘external fields’ acting on the bath modes are 
much larger than the intra-bath couplings

There is no ‘Born-Oppenheimer’ requirement of ‘slow’ changes. 
If the system changes on a timescale T, 
with Then define: The model is valid for all uk:

The bath action now becomes:

coupled to central system via:

Bath action contains 
topological term

NV Prokofev, PCE Stamp, Rep Prog 63, 669 (2000)
PCE Stamp, Stud Hist Phil Mod Phys 37, 467 (2006)



Summary – DYNAMICS of REDUCED DENSITY MATRIX

density matrix propagator:

Each bath oscillator has Lagrangian:

Bath propagator

SPIN BATHS

Then:

OSCILLATOR BATHS

where, including system-bath coupling, the force is

Each bath spin has Lagrangian:

with force & ‘noise’

Then:

NB: This last result is very easy to get – this is because the integral is of Gaussian form

Typically there is no Gaussian integral here – the resulting form is more complex



The PROBLEM of ENVIRONMENTAL DECOHERENCE

E

Some quantum system with coordinate Q interacts
with any other system (with coordinate x) ; typically 
they then form an entangled state     

Example: In a 2-slit expt., the particle coordinate Q couples to 
photon coordinates, so that:

Ψo(Q) Πq φq
in  [ Ψ1(Q) Πq φq

(1) +   Ψ2(Q) Πq φq
(2) ]

Then, goes the story, if we have no control over, or knowledge of the 
photon states, we must then average over them. The result of this toy 
analysis is a reduced density matrix of form    

Remark 1: The “Environment” E (which is in effect performing a measurement), there is no need 
for energy to be exchanged - only a communication of phase information.

Remark 2: What is crucial here is that the state of the environment be CORRELATED WITH  (ie.,
CONDITIONAL ON) the state of the system.

Ψ1(Q)

Ψ2(Q)

|Ψ1(Q)|2 Ψ1(Q) Ψ2(Q) D12
Ψ2(Q) Ψ1(Q) D12 |Ψ2(Q)|2*( )ραβ =

D12 = Πq Πq’  < φq
(1) | φq’

(2) >

*
*

where we define

This model tells us very little – it doesn’t even have time dependence. 
However it does suggest that:

We now want to see how environmental decoherence actually works



REAL WORLD PROBLEM #1

DYNAMICS of QUANTUM VORTICES
(application to Bose superfluids)

MV Berry:   Ann NY Acad Sci 755, 303 (1995)



Quasi- 2-dimensional cold BEC systems

Vortex nucleation (He-4 & He-3)

Turbulence

Z Hadzibabic et al., Nature 441, 1118 (2006) 

P Walmsley et al., PRL 99, 265302 (2007)
P Walmsley, A Golov, PRL 100, 245301 (2008)

PC Hendry et al., PRL 60, 604 (1988)

One can insert or nucleate a single vortex in 
this system, & watch its time dynamics as it 
spirals out from the centre.

The tunneling rate & 
dynamics of vortex rings & 
other vortex configurations 
will be influenced by the 
quasiparticles in interesting ways.

Intrinsically 3-dimensional and 
multi-vortex in nature.

VORTEX DYNAMICS in BOSE SUPERFLUIDS
Since the original theory of superfluid vortices 
(Onsager, 1950; Feynman, 1951-53) & their discovery 
(Vinen, 1956) enormous experimental work has been 
done. Current interesting experiments: 



HISTORY of the PROBLEM: FORCES on a QUANTUM VORTEX
The fundamental question of quantum vortex dynamics has been 
highly controversial. Typically discussed in terms of FORCES:

“Berry” force

“Iordanski” force

Drag force

Inertial term

Superfluid Magnus force

Magnetic gyrotropic force

Superfluid Iordanski force

Vortex-phonon drag - superfluid 

Vortex-magnon drag - ferromagnet

Inertial mass term:

,

PROBLEM 1: Disagreement on most of the terms except Magnus term
PROBLEM 2: All these theories treat the vortex as a classical object! 

In what follows we discuss a fully quantum treatment of this problem:
L Thompson. PCE Stamp, Phys Rev Lett 108, 184501 (2012)
L Thompson, PCE Stamp, J Low Temp Phys 171, 526 (2012)

T Cox, PCE Stamp, J Low Temp Phys 171, 459 (2012) 



PRELIMINARY:
QUANTUM SOLITON +

QUASIPARTICLES
1-d Sine-Gordon model:

Single ‘kink’ soliton:

where:

Now add small oscillations:
Quasiparticle eqtn of motion:

Corresponds to waves, but with ‘kink potential’: 

Assume:                        

Extended QP modes:Bound QP mode:

This is typical – extended 
QP modes avoid the 
soliton and the bound 
states. 

These ‘quasiparticles’ have Lagrangian:
(for wall at position Q)



Assume Action

This is a ‘long wavelength’ action – valid for energy  
and for lengths  where

DESCRIPTION of a BOSE SUPERFLUID

Q Bernoulli 
Force

Mass 
conservation

Sound velocity:
Superfluid velocity:
Compressibility:

QUANTUM VORTEX

Separate out the vortex phase:

Quantized circulation:

Vortex 
inertial mass: eg., for cylinder:



VORTEX-PHONON SCATTERING: FORMAL

cylindrical coords:

We then have:where:

THE KEY POINTS HERE:
wrong to use free phonons

True phonons are altered by 
vortex, & couple quadratically 

to the vortex  

quasiparticle eqtn of motion:

This yields a vortex-quasiparticle interaction matrix:

so that



PATH INTEGRAL FORMULATION for N-Particle BOSE SUPERFLUID

The propagator for the vortex density matrix is then:

For the N-particle system, we write the full N-particle density operator

with a reduced density matrix, for the vortex coordinate, 
given by

where and the density matrix is

We then introduce collective coordinates in which the vortex node position is 
singled out for special attention; this allows us to write 

with bare vortex action:

REMARK 1:  All the complexity of this problem comes from the singular form of the 
matrix element coupling to the vortex to the phonons, and the fact that 

we couple to PAIRS of phonons – otherwise it is just a simple oscillator bath system

REMARK 2: There is no coupling to single phonons because the vortex is a soliton 



VORTEX DYNAMICS

Messy calculations give:

the reactive part is

& the 
Decoherence Functional is

This result is equivalent to two
integro-differential eqtns of motion 
for the 2 vortex coordinates, taking 
the form of non-local Langevin eqns: 

where if we write

Define: Vortex ‘centre of mass’
Vortex ‘quantum fluctuation’

Magnus force

with a non-local (in spacetime) 
force from the quasiparticles: 

Quantum noise force

where, eg., 

Both the quasiparticle & fluctuation forces, acting on the vortex coordinates, 
have long-time (highly non-Markovian) and long-range spatial components  



COMPARISON – CLASSICAL vs QUANTUM DYNAMICS

Recall the classical Hall-Vinen-Iordanski equation:

with Magnus force:

& LOCAL quasiparticle force:
where

Now let’s FOURIER TRANFORM to the frequency domain:

with “admittance” matrix

with determinant

and with driving force: where

CORRECT QUANTUM EQUATION of MOTION
Same form as above, except that now:

and we have a new driving force:

(Iordanski coefficient)

The long-time memory effects yield infrared strong terms in these eqtns.



VISCOUS DAMPING TERMS Here we see the long-time tail behaviour

The longitudinal term looks like:

x

Note the totally different limits in 
quantum & classical regimes. 

EFFECTIVE MASS

D||(t-s)

The transverse correction to the Iordanskii 
force is actually very small – it also has a 
long-time tail.

This is frequency-dependent, but this dependence depends on the sample geometry. All 
previous calculations have missed an essential feature – the ‘self-acceleration’ term.  
This problem is still unsolved.

d (Ω)|--



x

FLUCTUATION FORCE

Long-time tail:

Define:

Then we find:

which gives:

UPSHOT:  This ‘noise’ term is very 
non-Markovian indeed  long-time 
memory effects.



OVERVIEW of RESULTS

“HVI eqtns + Inertial and noise terms”

CLASSICAL REGIME

QUANTUM REGIME

CLASSICAL

QUANTUM

CROSSOVER
REGIME

kT

hΩ

All results depend simply on 
the ratio of thermal to 
quantum fluctuations

There is a whole new Quantum regime to explore!!

Local eqtns in 2 extremes 
Highly non-local in crossover
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