

Out-of-equilibrium physics with Bose gases in 2D geometries

current members: Lauriane Chomaz, Laura Corman, Tom Bienaimé, Jean-Loup Ville, Raphaël de Saint-Jalm former members: R. Desbuquois, C. Weitenberg, D. Perconte, K. Kleinklein, A. Invernizzi permanent members: Sylvain Nascimbene, <u>Jérôme Beugnon</u>, Jean Dalibard

References : Phys. Rev. Lett. 103:135302 (2014) & Nat. Comm. 6:6162 (2015)

Zurek's experiment

★ Quench cooling of helium confined in a ring should lead to the creation of superfluid currents

Zurek Nature **317**, 505 – 508 (1985)

KZ mechanism is used to described many different experiments : Cosmology, liquid helium, squids, ferroelectrics, liquid crystals, ion chains, quantum gases,

See del Campo, A. & Zurek, W. H. Int. J. Mod. Phys. A 29, 1430018 (2014)) Kibble, T. Physics Today 60(9), 47 (2007)

Zurek's experiment

★ Quench cooling of helium confined in a ring should lead to the creation of superfluid currents

Zurek *Nature* **317**, 505 – 508 (1985)

Kibble-Zurek mechanism predicts :

$$\hat{\xi} \propto (\tau_{\text{quench}})^{\frac{\nu}{1+\nu z}}$$

Experiments in the Cambridge team 3D BEC : Navon et al. Science **347**, 167 (2015)

Correlation length
$$\xi \propto \left(\frac{T-T_c}{T_c} \right)^{-
u}$$
 Thermalization time $au \propto \xi^z$

Zurek's experiment

Superfluid current are generated stochastically during the merging of the phase domains

but if $N_{\phi} \ll 1$ then $\langle |W| \rangle \propto N_{\phi}^2$ and $\langle |W| \rangle \propto \tau_{\text{quench}}^{-\frac{z\nu}{(1+\nu z)}}$

Zurek J. Phys.: Condens. Matter 25, 404209 (2013)

How to trap an ultracold gas in a ring ?

How to detect the superfluid current ?

Which phase transition are we crossing?

How to trap an ultracold gas in a ring ?

How to trap an ultracold gas in a ring ?

How to trap an ultracold gas in a ring ...

8

How to detect superfluid currents ?

★ Rapid cooling (~ 50 ms→ 2s) via lowering the trap depth
★ Hold time (500 ms → 2s)
★ 2D expansion in plane (7 ms)

ln situ

Phase patterns

Quantized circulation of superfluid currents

After expansion

Similar experiments at NIST Eckel et al. Phys. Rev. X 4, 031052 (2014)

How to detect superfluid currents ?

Stochatisc origine :

No imbalance between positive and negative winding

 P_1/P_0 Incompatible with thermal excitation

Typical lifetime : 7s : comparable with the sample lifetime.

Bulk vortices in a square trap

- ★ Rapid cooling (~ 50 ms → 2s) via lowering the trap depth ★ Hold time (500 ms → 2s)
- ★ Short 3D time-of-flight (4 ms)

time t

Clear signature of high contrast quantum vortices

Related work in Trento (solitonic vortices in a 3D harmonic trap):

Lamporesi et al. Nature Physics **9**,656–660 (2013) Donadello et al. Phys. Rev. Lett. **113**, 065302 (2014)

Which phase transition are we crossing ?

★ For an ideal **infinite** uniform system no Bose-Einstein condensation at non zero temperature

 \star For a ideal finite system Bose-Einstein condensation is possible for $\mathcal{D}^{(2D)} \approx \ln(S/\lambda_{\rm dB}^2)$

★ For an interacting Bose gas a superfluid (BKT) phase appears a low temperature

For our parameters, BEC and BKT appears for a 2D phase-space density $\,{\cal D}^{(2D)}pprox 8\,$

2D phase diagram

Thermal	Quasi-condensate	BEC/Superfluid	
	≈ 1	≈ 10	$\mathcal{D}_{12}^{(2D)}$

Which phase transition are we crossing ?

Which phase transition are we crossing ?

What phase transition are we crossing ?

Results

Results

Comparison with Kibble-Zurek prediction

★Theory

$$\hat{\xi} = (\tau_{\text{quench}})^{\frac{\nu}{1+\nu z}}$$

model	ν	z	$\frac{\nu}{1+\nu z}$	$\xi \propto \left(\frac{T-T_c}{T}\right)^{-\nu}$	Correlation length
mean-field	1/2	2	0.25	T_c	C C
F-model	2/3	3/2	0.33	$ au \propto \xi^{z}$	Thermalization time

Comparison with Kibble-Zurek prediction

★Theory

$$\hat{\xi} = (\tau_{\text{quench}})^{\frac{\nu}{1+\nu z}}$$

model	ν	z	$\frac{\nu}{1+\nu z}$	$\xi \propto \left(\frac{T-T_c}{T}\right)^{-\nu}$	Correlation length
mean-field	1/2	2	0.25	T_c	U
F-model	2/3	3/2	0.33	$ au \propto \xi^{z}$	Thermalization time

★ Results

$$\frac{\nu}{1+\nu z} = 0.35(9)$$

$$rac{
u}{1+
u z}=0.25(8)$$
 (Corrected slope for small number of vortices)

Comparison with Kibble-Zurek prediction

★Theory

$$\hat{\xi} = (\tau_{\text{quench}})^{\frac{\nu}{1+\nu z}}$$

model	ν	z	$\frac{\nu}{1+\nu z}$
mean-field	1/2	2	0.25
F-model	2/3	3/2	0.33

1

$$\xi \propto \left(rac{T-T_c}{T_c}
ight)^{-
u}$$
 Correlation length $au \propto \xi^z$ Thermalization time

★ Results

$$\frac{\nu}{1+\nu z} = 0.35(9)$$

$$\frac{\nu}{+\nu z} = 0.25(8)$$

- Few defects (large statistics required)
- Limited range for quench time
- Small value for the exponent
- Complex behaviour after the quench

Transverse condensation

★ For an anisotropic system : two-step condensation is possible :

- condense in the vertical direction to get a 2D system
- fully condense in 3D

already observed in 1D systems : Phys. Rev. Lett. 111, 093601 (2013) Phys. Rev. A 83 (2), 021605 (2011)

★ Surface density in the transverse excited states is bounded : $n_{\text{excited}}^{(2D)} \lambda_{\text{dB}}^2 < 1.6 \frac{k_B T}{\hbar \omega_z}$

Emergence of coherence

★ Study the coherence of the gas at equilibrium around the transverse condensation crossover

★ momentum distribution via Time-of-flight measurements

Emergence of coherence

★ Study the coherence of the gas at equilibrium around the transverse condensation crossover

★ momentum distribution via Time-of-flight measurements

Emergence of coherence

★ Study the coherence of the gas at equilibrium around the transverse condensation crossover

★ momentum distribution via interference measurements after in plane expansion (16ms)

 $\langle C(y) \rangle$ is a good signature for the emergence of coherence

 $C(y)e^{ikx} + c.c. + \text{ constant}$

Fit along a horizontal line by :

Mapping the transition

Mapping the transition

Results summary and outlook

★ flat bottom potentials with various shapes future : Spatial light modulator

★ Measurements of critical exponents

future : improved statistics, coarse graining dynamics after the quench, quench through BKT transition

Characterization of the coherence in quasi 2D geometry future : direct measurements of correlation functions in BEC, BKT phases.

New experiment

New experiment

Atomic clouds in custom flat-bottom potentials

Out-of-equilibrium physics with Bose gases in 2D geometries

current members: Lauriane Chomaz, Laura Corman, Tom Bienaimé, Jean-Loup Ville, Raphaël de Saint-Jalm former members: R. Desbuquois, C. Weitenberg, D. Perconte, K. Kleinklein, A. Invernizzi permanent members: Sylvain Nascimbène, <u>Jérôme Beugnon</u>, Jean Dalibard

References : Phys. Rev. Lett. 103:135302 (2014) & Nat. Comm. 6:6162 (2015)

Characterizing the fringe contrast

Transverse condensation

Vortices

Dynamical orgin:

* Equilibrium expectation at final PSD (>100) = vanishingly small mean vortex number N_v . Experimentally $N_v \approx 0.6$

- BKT theory at final PSD = vortices must be tightly paired.
- * Dissipative dynamic (variation of N_v) with a varying hold time \neq equilibrium.

Where is the vortex located?

Experimental observation: we never observe a density hole in the small central disk, even after 3D time-of-flight

Energetic argument: what is the energy required for creating a vortex in one of the two parts of the "target"?

The energy of a vortex is essentially kinetic

$$E_{K} = \frac{1}{2} m \rho_{s} \int v^{2}(r) d^{2}r$$

$$r = \frac{h}{mr}$$

$$E_{K} = \frac{\pi h^{2} \rho_{s}}{m} \int \frac{1}{r} dr$$

vortex in the outer ring

$$E_K = \frac{\pi \hbar^2 \rho_s}{m} \ln(R_{\rm max}/R_{\rm min})$$

energetically favoured

vortex in the inner disk

$$E_K = \frac{\pi \hbar^2 \rho_s}{m} \ln(R_{\rm disk}/\xi)$$

