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Introduction

• Data often come as (sampling of) metric spaces or sets/spaces endowed with
a similarity measure with, possibly complex, topological/geometric structure.

• Data carrying geometric information are becoming high dimensional.

• Topological Data Analysis (TDA):
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data
(classification, recognition, learning, clustering, parametrization...).

[Galaxies data]

[Scanned 3D object]

[Shape database]



Challenges and goals

Problem(s):
- how to visualize the topological
structure of data?
- how to compare topological
properties (invariants) of close
shapes/data sets?

• Challenges and goals:
→ no direct access to topological/geometric information: need of intermediate
constructions (simplicial complexes);
→ distinguish topological “signal” from noise;
→ topological information may be multiscale;
→ statistical analysis of topological information.



Why is topology interesting for data analysis?

• Coordinate invariance: topological features/invariants do not rely on any
coordinate system. ⇒ no need to have data with coordinate or to embed
data in spaces with coordinates... But the metric (distance/similarity between
data points) is important.

• Deformation invariance: topological features are invariant under homeomor-
phism.

• Compressed representation: Topology offer a set of tools to summarize and
represent the data in compact ways while preserving its global topological
structure.



The TDA pipeline

X̂m Filt(X̂m)
dgm(Filt(X̂m))Build topol.

structure

Persistent
homology

Data Filtrations Multiscale topological
signatures/features

• Build a geometric filtered simplicial complex on top of X̂m → multiscale topol.
structure.

• Compute the persistent homology of the complex → multiscale topol. signature.

• Compare the signatures of “close” data sets → robustness and stability results.

• Statistical properties of signatures (connections with stability properties); use of
topological information for further processing (e.g. Machine Learning).



Filtrations of simplicial complexes

A filtered simplicial complex S built on top of a set X is a family (Sa | a ∈ R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sa ⊆ Sb
for any a ≤ b.



Filtrations of simplicial complexes

A filtered simplicial complex S built on top of a set X is a family (Sa | a ∈ R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sa ⊆ Sb
for any a ≤ b.

Examples: Let (X, dX) be a metric space.

• The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for
a ∈ R,

[x0, x1, · · · , xk] ∈ Rips(X, a)⇔ dX(xi, xj) ≤ a, for all i, j.

• Čech complex: Čech(X, a) is the complex with vertex set X s.t.

[x0, x1, · · · , xk] ∈ Čech(X, a)⇔ ∩ki=0B(xi, a) 6= ∅



Filtrations of simplicial complexes

A filtered simplicial complex S built on top of a set X is a family (Sa | a ∈ R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sa ⊆ Sb
for any a ≤ b.

Examples:
Let S be a simplicial complex with vertex set X and let f : X→ R.

For σ = [v0, · · · , vk] ∈ S, define f(σ) = max{f(vi) : i = 0, · · · , k}.

The sublevel set filtration of f is the family of subcomplexes

Sa = {σ ∈ S : f(σ) ≤ a}, a ∈ R.

S

a

b

Sa Sb



Persistent homology

• A general mathematical framework to encode the evolution of the topology
(homology) of families of nested spaces (filtered complex, sublevel sets,...).

• Formalized by H. Edelsbrunner (2002) et al and G. Carlsson et al (2005) - wide
development during the last decade. Ideas tracing back to M. Morse (1940)!

• Multiscale topological information.

• Barcodes/persistence diagrams can be efficiently computed (e.g. Gudhi library!).

• Stability properties

persistence
X

R
X topological space

f : X → R

Filtrations

∞

⊆ ⊆ Persistence diagram



Persistent homology for functions

0 1 0 1x

y

birth

death

a1

a2

a3

a4

a5

a6

a1a2a3

Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function



Persistent homology for functions
z

M

a1σ1

a2σ2

a3

a4
σ3

Tracking and encoding the evolution of the connected components (0-dimensional
homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional
cycles through a vector space (or a group), the homology group whose dimension is
the number of ”independent” cycles (the Betti number).



X

R

∞

What if f is slightly perturbed?

Stability properties



X

R

∞

What if f is slightly perturbed?

Theorem (Stability):
For any tame functions f, g : X→ R, dB(Df ,Dg) ≤ ‖f − g‖∞.

Stability properties

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between D1 and D2 and ‖p − q‖∞ =
max(|xp − xq|, |yp − yq|).

Comparing persistence diagrams

birth

death

∞

0

Multiplicity: 2

Add the diagonal

D1

D2

→ Persistence diagrams provide easy to compare topological signatures.



Some examples of applications

- Persistence-based clustering [C.,Guibas,Oudot,Skraba - J. ACM 2013]

τ
τ = 0

- Analysis of force fields in granular media [Kramar, Mischaikow et al ]



Some examples of applications

- Pattern analysis in fluid dynamics [Kramar, Mischaikow et al ]



Some examples of applications

- Hand gesture recognition

- Persistence-based pooling for shape recognition [Bonis, Ovsjanikov, Oudot, C. 2016]

[Li, Ovsjanikov, C. - CVPR’14]



• Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

• Persistent homology: encode the evo-
lution of the topology across the scales
→ multi-scale topological signatures.

Persistent homology for point cloud data
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• Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

• Persistent homology: encode the evo-
lution of the topology across the scales
→ multi-scale topological signatures.

Persistent homology for point cloud data

Persistence barcode

scale parameter

Persistence diagram



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Filt(X)), dgm(Filt(Y))) ≤ dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X→ Z and γ2 : Y→ Z
isometric embeddings.

Here Filt can be Rips, Čech, etc...



Application: non rigid shape classification

camel
cat
elephant
face
head
horse

∞

0
0

1
∞

0
0

1
∞

0
0

1
∞

0
0

1

MDS using bottleneck distance.

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP ’09]

• Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

• Compare diagrams of sampled shapes instead of shapes themselves.



The theory of persistence

Theory of persistence has been subject to intense research activities:

- from the mathematical perspective:

• general algebraic framework (persistence modules) and general stability re-
sults.

• extensions and generalizations of persistence (zig-zag persistence, multi-
persistence, etc...)

• Statistical analysis of persistence.

- from the algorithmic and computational perspective:

• efficient algorithms to compute persistence and some of its variants.

• efficient software libraries (in particular, Gudhi: https://project.inria.fr/gudhi/ ).

A whole machinery at the crossing of mathematics and computer science!



Some drawbacks and problems

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

→ Vietoris-Rips (or Cech,...) filtrations quickly become prohibitively large as the
size of the data increases ( O(|X|d) ), making the computation of persistence of
large data sets a real challenge.

→ Persistence diagrams of Rips-Vietoris (and Cěch, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.

→ The space of persistence diagrams endowed with the bottleneck distance is highly
non linear, processing persistence information for further data analysis and learning
tasks is a challenge.

These issues have raised an intense research activity during the last few years!



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?

• Can we do more statistics with persistence diagrams? What can be said about
distributions of diagrams?



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Stability thm: db(dgm(Filt(Xµ)), dgm(Filt(X̂m))) ≤ 2dGH(Xµ, X̂m)

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ P

(
dGH(Xµ, X̂m) >

ε

2

)So, for any ε > 0,



Deviation inequality and rate of convergence

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality and rate of convergence

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ min(

8b

aεb
exp(−maεb), 1).

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality and rate of convergence

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ min(

8b

aεb
exp(−maεb), 1).

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]

Corollary: Let P(a, b,M) be the set of (a, b)-standard proba measures on M. Then:

sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), dgm(Filt(X̂m)))

]
≤ C

(
lnm

m

)1/b

where the constant C only depends on a and b (not on M!). Moreover, the upper
bound is tight (in a minimax sense)!



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

D = {( di+bi
2

, di+bi
2

)}i ∈ I For p = ( b+d
2
, d−b

2
) ∈ D,

Λp(t) =


t− b t ∈ [b, b+d

2
]

d− t t ∈ ( b+d
2
, d]

0 otherwise.
Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

where kmax is the kth largest value in the set.

Many other ways to “linearize” persistence diagrams: intensity functions, image persis-
tence, kernels,...



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

Properties

• For any t ∈ R and any k ∈ N, 0 ≤ λD(k, t) ≤ λD(k + 1, t).

• For any t ∈ R and any k ∈ N, |λD(k, t) − λD′(k, t)| ≤ dB(D,D′) where
dB(D,D′) denotes the bottleneck distance between D and D′.

stability properties of persistence landscapes



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

• Persistence encoded as an element of a functional space (vector space!).

• Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

• process point of view: convergence results and convergence rates → confidence
intervals can be computed using bootstrap.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]



To summarize

X̂m Filt(X̂m)
(M, ρ, µ)

m points i.i.d.
sampled

according to µ.

Xµ compact

Repeat n times: λ1(t), · · · , λn(t) → λn(t) ΛP (t) = E[λi(t)]

λXµ(t)

|λn(t)− ΛP (t)|

Bootstrap

|λXP
(t)− ΛP (t)| →

0 as m
→∞

Stability w.r.t. µ?

m→∞

∞



Wasserstein distance
Let (M, ρ) be a metric space and let µ, ν be probability measures on M with finite
p-moments (p ≥ 1).

“The” Wasserstein distance Wp(µ, ν) quantifies the optimal cost of pushing µ onto
ν, the cost of moving a small mass dx from x to y being ρ(x, y)pdx.

• Transport plan: Π a proba measure on
M ×M such that Π(A × Rd) = µ(A)
and Π(Rd × B) = ν(B) for any borelian
sets A,B ⊂M .

• Cost of a transport plan:

C(Π) =

(∫
M×M

ρ(x, y)pdΠ(x, y)

) 1
p

• Wp(µ, ν) = infΠ C(Π)



(Sub)sampling and stability of expected landscapes

X̂m Filt(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λFilt(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-
tions, not for expectations) ;
- Extended to point process setting y L. Decreusefond et al;

- m
1
p cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes

X̂m Filt(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λFilt(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Consequences:
• Subsampling: efficient and easy to parallelize algorithm to infer topol. information

from huge data sets.

• Robustness to outliers.

• R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

X̂m Filt(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λFilt(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Proof:

1. Wp(µ
⊗m, ν⊗m) ≤ m

1
pWp(µ, ν)

2. Wp(Pµ, Pν) ≤Wp(µ
⊗m, ν⊗m) (stability of persistence!)

3. ‖Λµ,m − Λν,m‖∞ ≤Wp(Pµ, Pν) (Jensen’s inequality)

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes
[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: 3D shapes

From n = 100 subsamples of size m = 300



(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Thank you for your attention!

Collaborators: T. Bonis, V. de Silva, B. Fasy, D. Cohen-Steiner, M. Glisse, L.
Guibas, C. Labruère, F. Lecci, C. Li, F. Memoli, B. Michel, S. Oudot, M. Ovsjanikov,
A. Rinaldo, P. Skraba, L. Wasserman

• The Gudhi library (C++/Python): https://project.inria.fr/gudhi/software/

• R package TDA

Software:
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