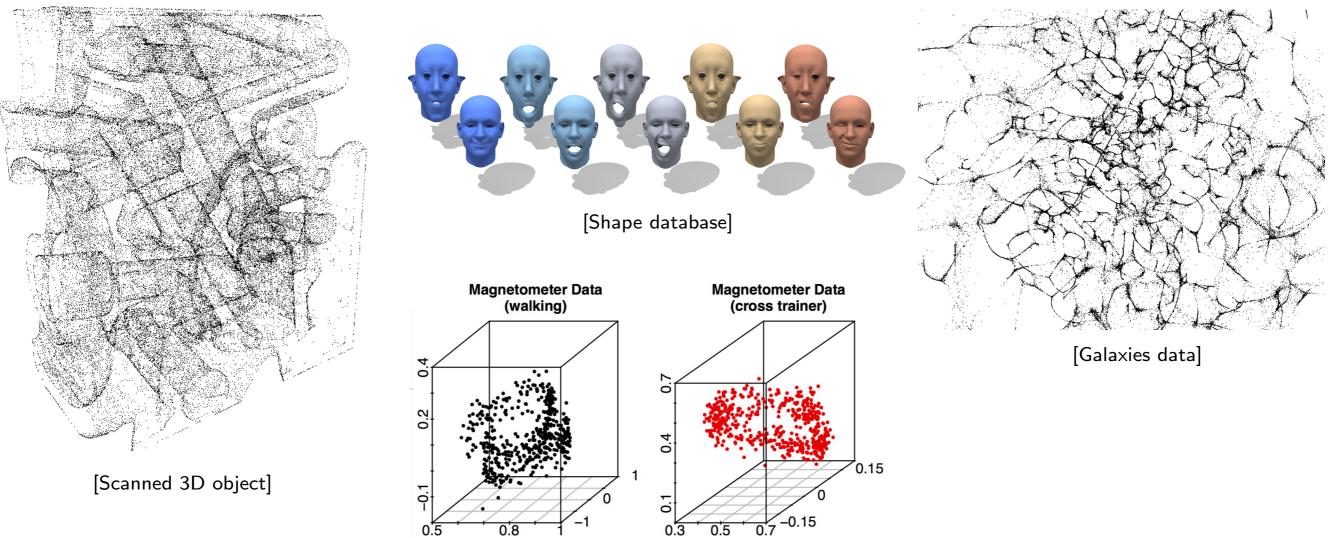
Collège de France 31 mai 2017

Analyse Topologique des Données

Frédéric Chazal DataShape team INRIA Saclay - Ile-de-France frederic.chazal@inria.fr

Introduction



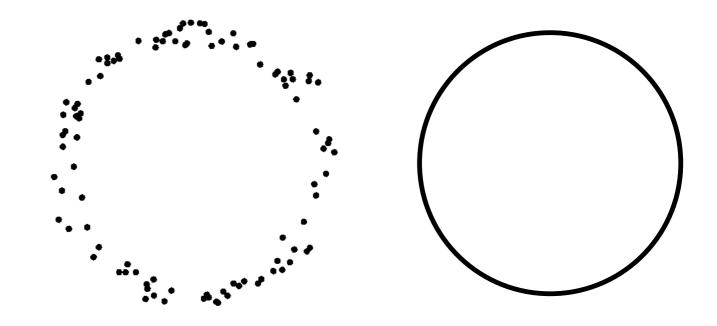
- Data often come as (sampling of) metric spaces or sets/spaces endowed with a similarity measure with, possibly complex, topological/geometric structure.
- Data carrying geometric information are becoming high dimensional.
- Topological Data Analysis (TDA):
 - infer relevant topological and geometric features of these spaces.
 - take advantage of topol./geom. information for further processing of data (classification, recognition, learning, clustering, parametrization...).

Challenges and goals

Problem(s):

- how to visualize the topological structure of data?

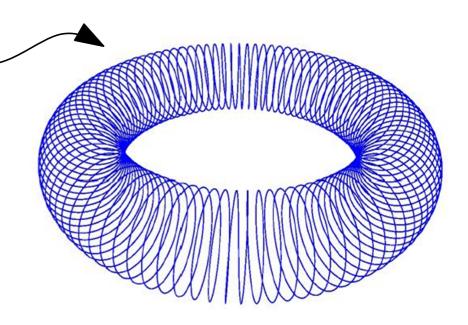
how to compare topological properties (invariants) of close shapes/data sets?



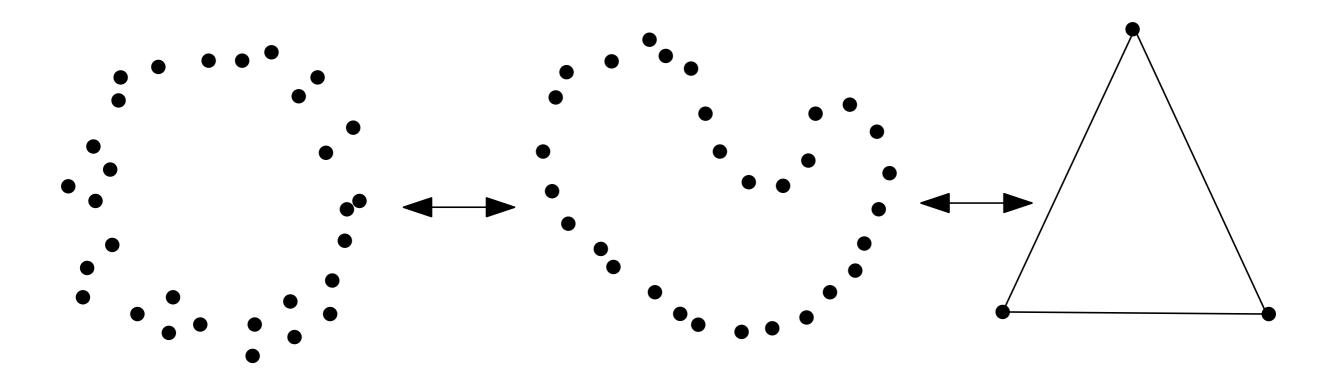
• Challenges and goals:

 \rightarrow no direct access to topological/geometric information: need of intermediate constructions (simplicial complexes);

- \rightarrow distinguish topological "signal" from noise;
- ightarrow topological information may be multiscale; \smallsetminus
- \rightarrow statistical analysis of topological information.

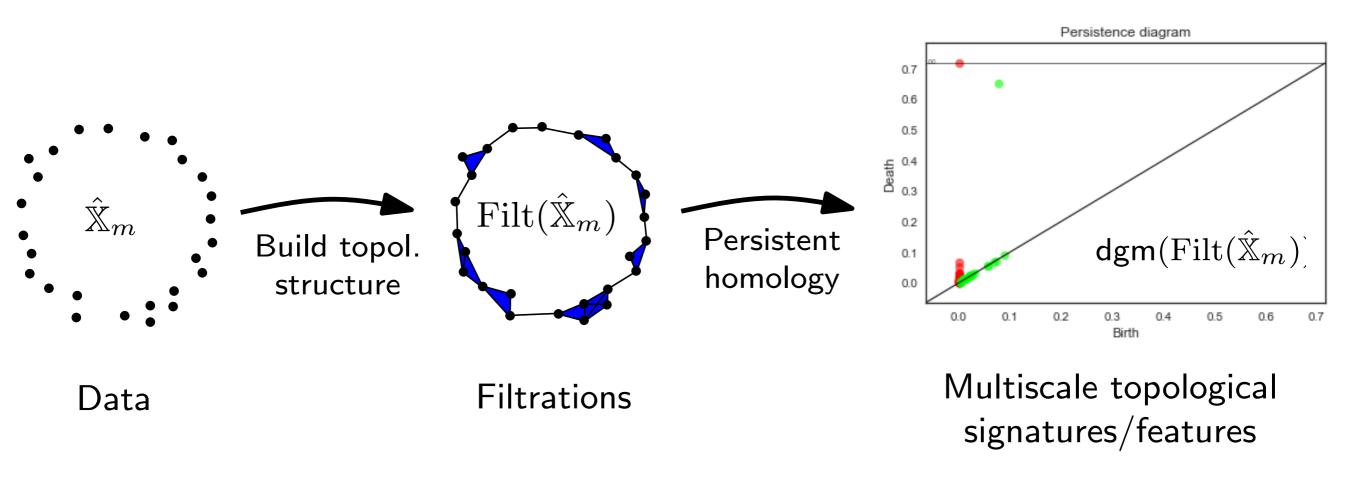


Why is topology interesting for data analysis?



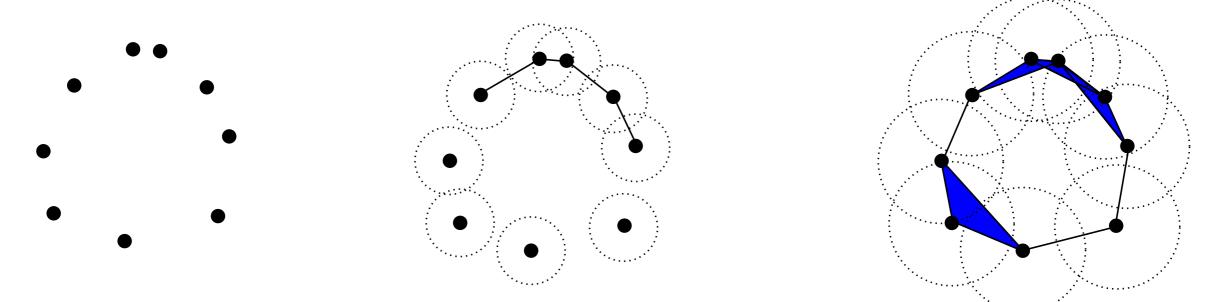
- Coordinate invariance: topological features/invariants do not rely on any coordinate system. ⇒ no need to have data with coordinate or to embed data in spaces with coordinates... But the metric (distance/similarity between data points) is important.
- **Deformation invariance:** topological features are invariant under homeomorphism.
- **Compressed representation:** Topology offer a set of tools to summarize and represent the data in compact ways while preserving its global topological structure.

The TDA pipeline



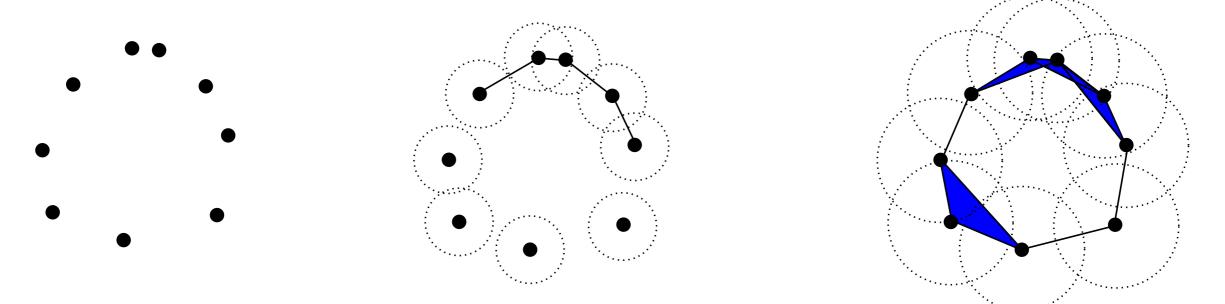
- Build a geometric filtered simplicial complex on top of $\widehat{\mathbb{X}}_m \to$ multiscale topol. structure.
- Compute the persistent homology of the complex \rightarrow multiscale topol. signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.
- Statistical properties of signatures (connections with stability properties); use of topological information for further processing (e.g. Machine Learning).

Filtrations of simplicial complexes



A filtered simplicial complex S built on top of a set X is a family $(S_a \mid a \in \mathbf{R})$ of subcomplexes of some fixed simplicial complex \overline{S} with vertex set X s. t. $S_a \subseteq S_b$ for any $a \leq b$.

Filtrations of simplicial complexes



A filtered simplicial complex S built on top of a set X is a family $(S_a \mid a \in \mathbf{R})$ of subcomplexes of some fixed simplicial complex \overline{S} with vertex set X s. t. $S_a \subseteq S_b$ for any $a \leq b$.

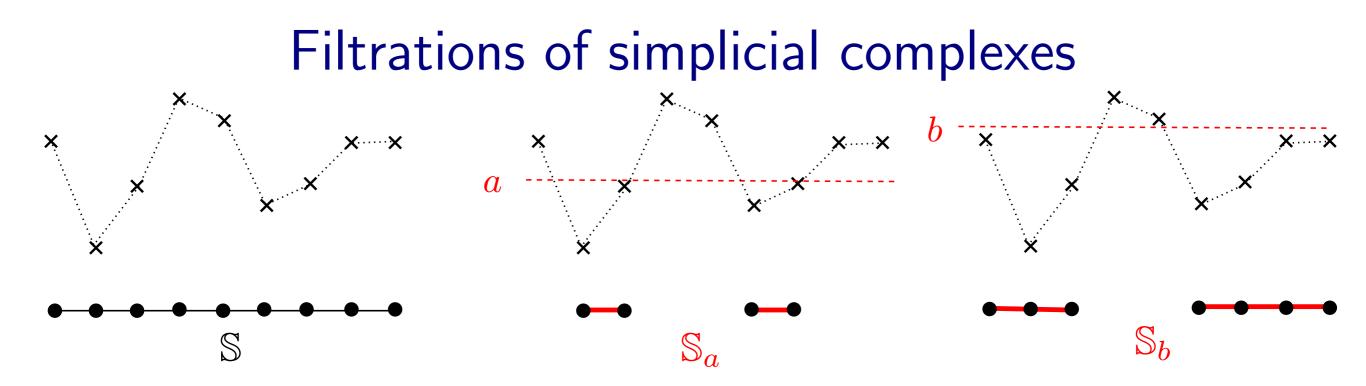
Examples: Let $(\mathbb{X}, d_{\mathbb{X}})$ be a metric space.

• The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for $a \in \mathbf{R}$,

 $[x_0, x_1, \cdots, x_k] \in \operatorname{Rips}(\mathbb{X}, a) \Leftrightarrow d_{\mathbb{X}}(x_i, x_j) \leq a, \text{ for all } i, j.$

• Čech complex: $\check{C}ech(\mathbb{X}, a)$ is the complex with vertex set \mathbb{X} s.t.

 $[x_0, x_1, \cdots, x_k] \in \check{\operatorname{Cech}}(\mathbb{X}, a) \Leftrightarrow \cap_{i=0}^k B(x_i, a) \neq \emptyset$



A filtered simplicial complex S built on top of a set X is a family $(S_a \mid a \in \mathbf{R})$ of subcomplexes of some fixed simplicial complex \overline{S} with vertex set X s. t. $S_a \subseteq S_b$ for any $a \leq b$.

Examples:

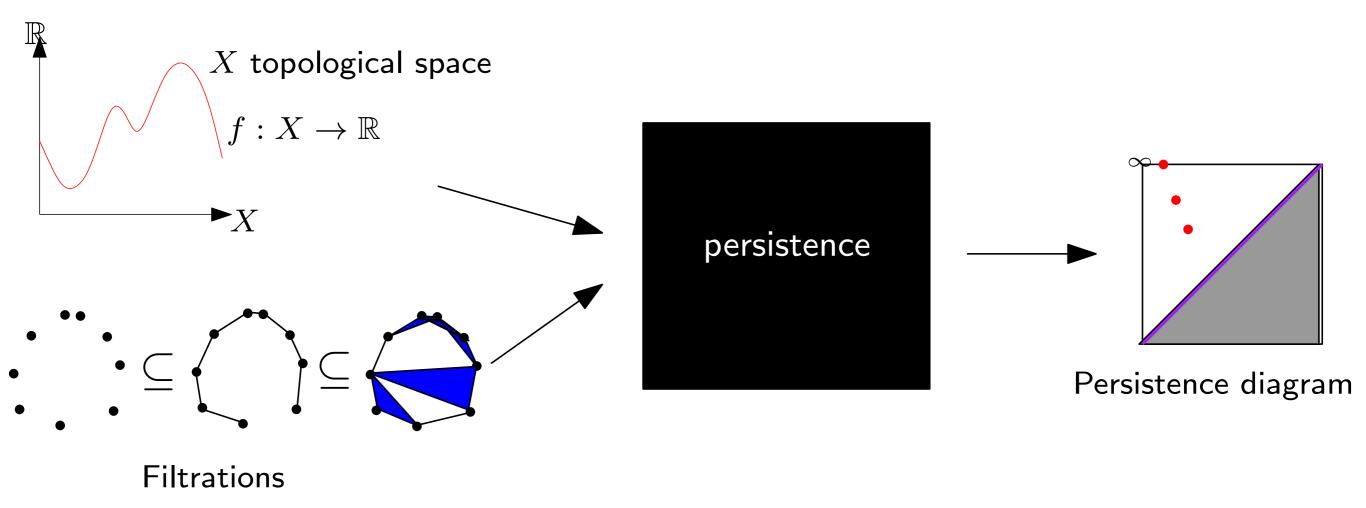
Let S be a simplicial complex with vertex set X and let $f : X \to \mathbb{R}$.

For $\sigma = [v_0, \cdots, v_k] \in \mathbb{S}$, define $f(\sigma) = \max\{f(v_i) : i = 0, \cdots, k\}$.

The sublevel set filtration of f is the family of subcomplexes

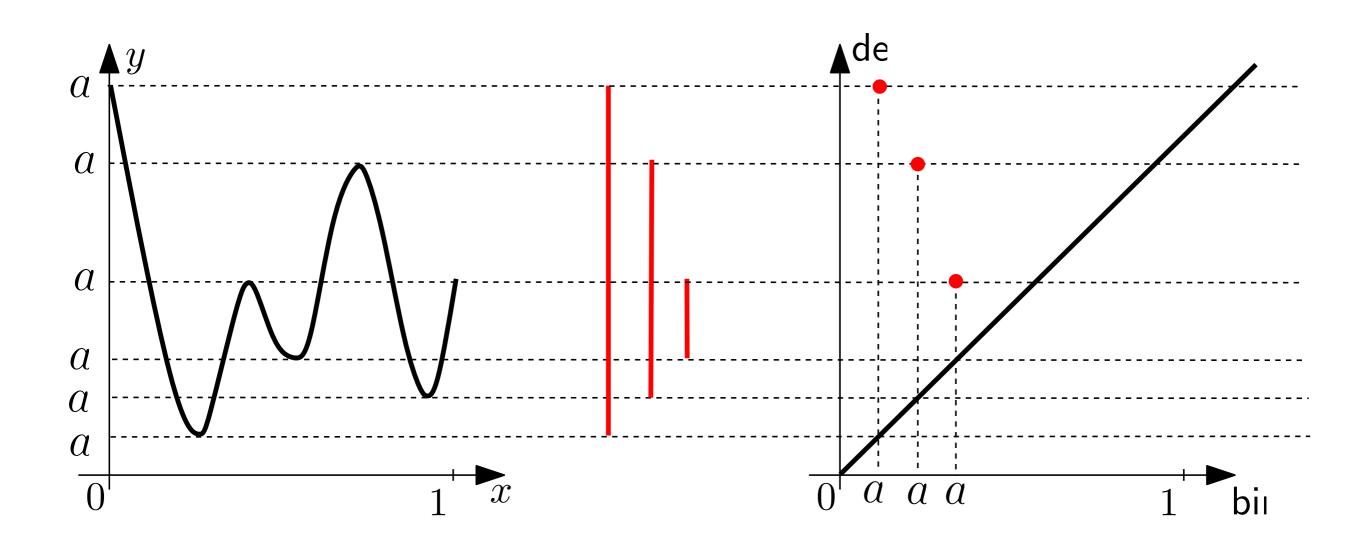
$$\mathbb{S}_a = \{\sigma \in \mathbb{S} : f(\sigma) \le a\}, a \in \mathbb{R}.$$

Persistent homology

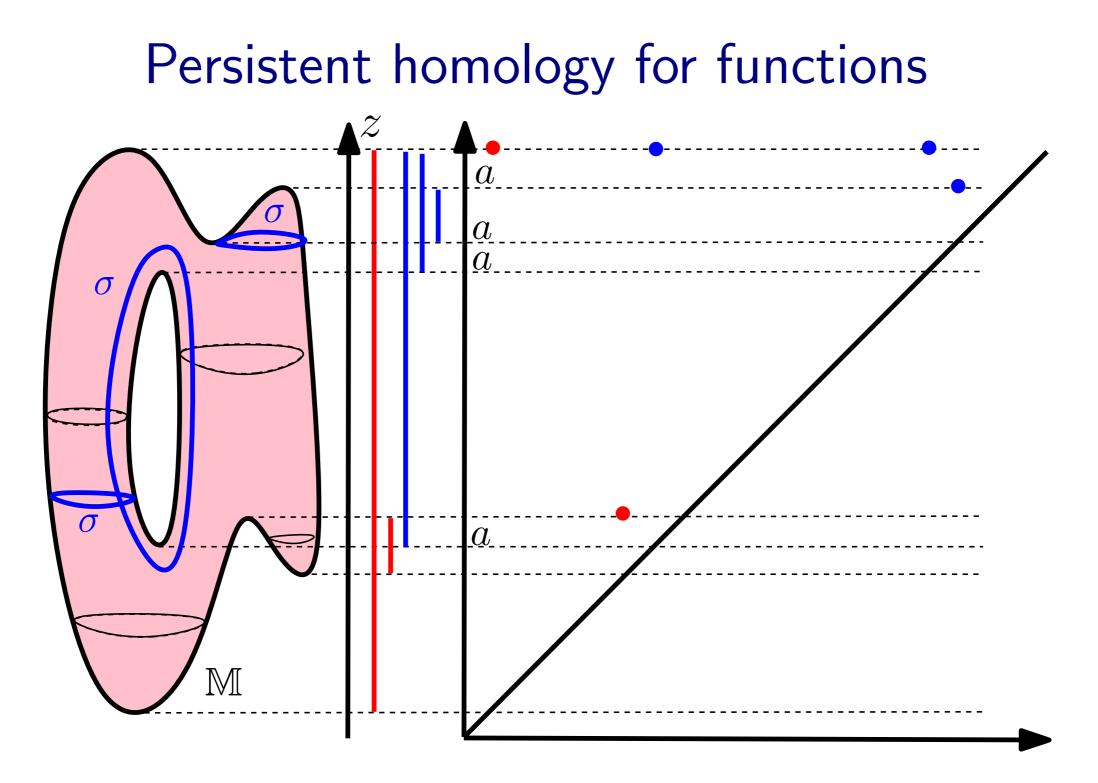


- A general mathematical framework to encode the evolution of the topology (homology) of families of nested spaces (filtered complex, sublevel sets,...).
- Formalized by H. Edelsbrunner (2002) et al and G. Carlsson et al (2005) wide development during the last decade. Ideas tracing back to M. Morse (1940)!
- Multiscale topological information.
- Barcodes/persistence diagrams can be efficiently computed (e.g. Gudhi library!).
- Stability properties

Persistent homology for functions



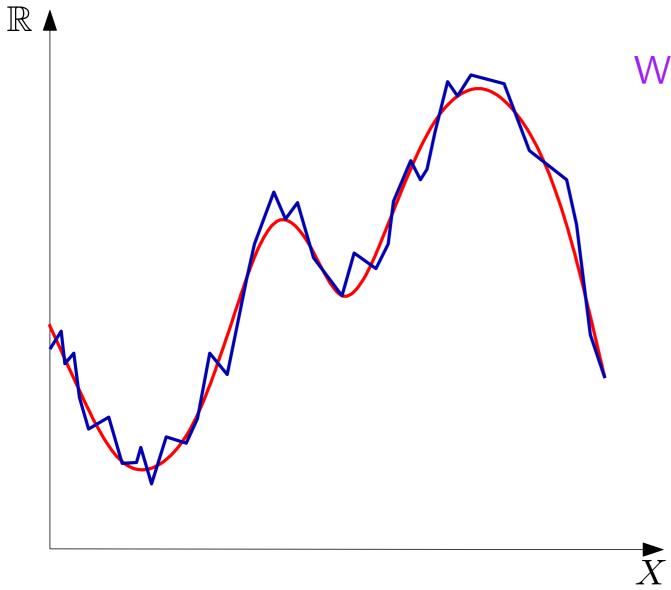
Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



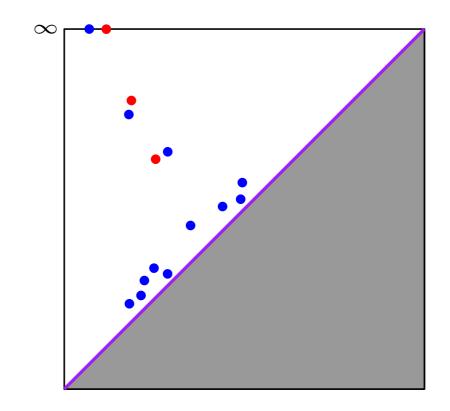
Tracking and encoding the evolution of the connected components (0-dimensional homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional cycles through a vector space (or a group), the homology group whose dimension is the number of "independent" cycles (the Betti number).

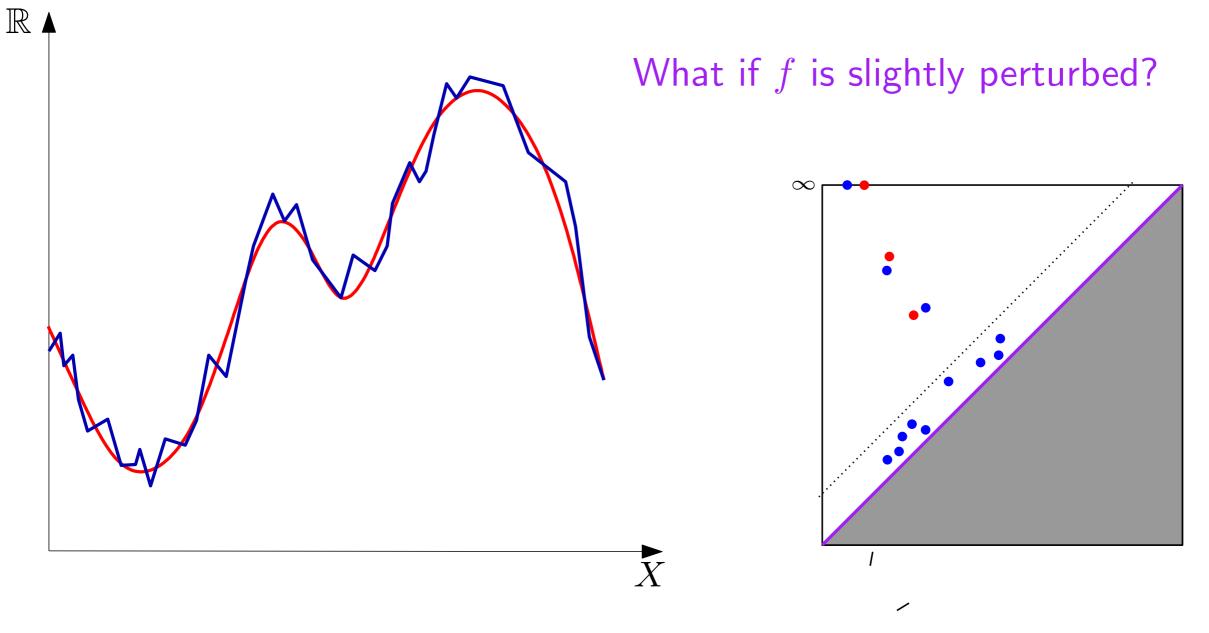
Stability properties



What if f is slightly perturbed?



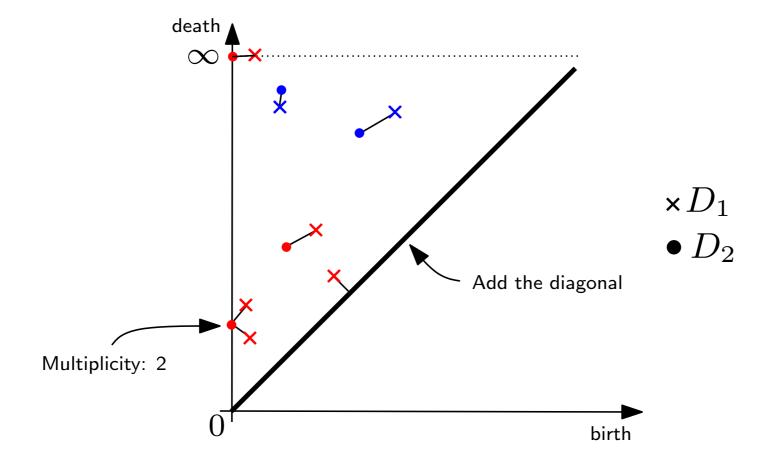
Stability properties



Theorem (Stability): For any *tame* functions $f, g : \mathbb{X} \to \mathbb{R}$, $d_B(D_f, D_g) \le ||f - g||_{\infty}$.

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG 09], [C., de Silva, Glisse, Oudot 12]

Comparing persistence diagrams



The bottleneck distance between two diagrams D_1 and D_2 is

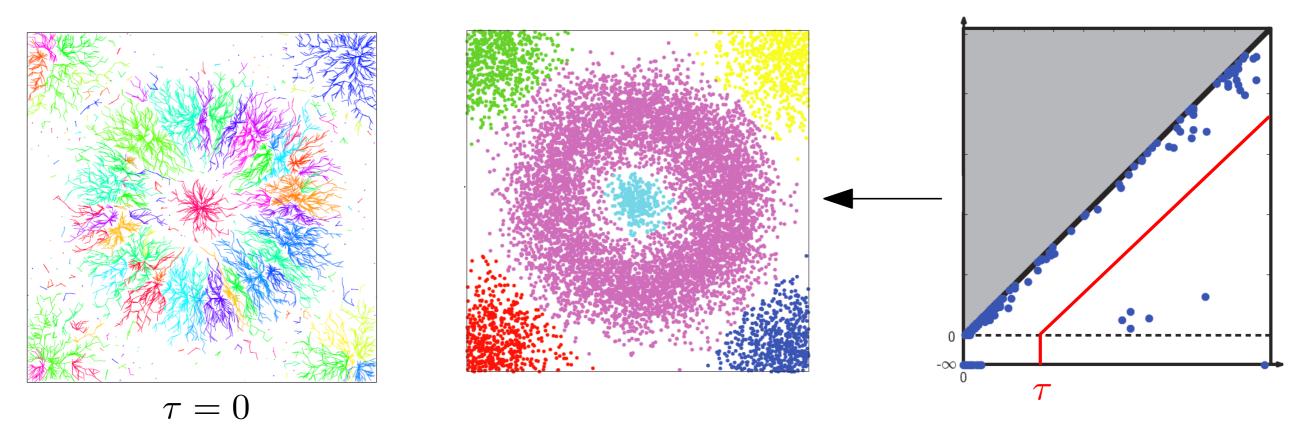
$$d_B(D_1, D_2) = \inf_{\gamma \in \Gamma} \sup_{p \in D_1} \|p - \gamma(p)\|_{\infty}$$

where Γ is the set of all the bijections between D_1 and D_2 and $||p - q||_{\infty} = \max(|x_p - x_q|, |y_p - y_q|).$

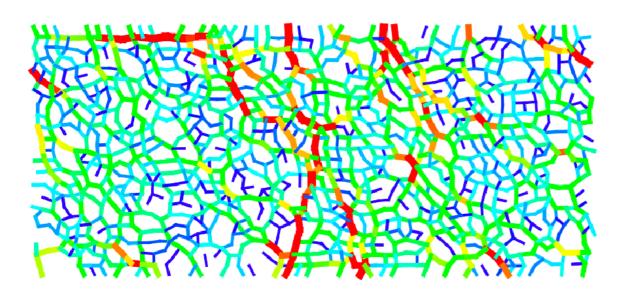
 \rightarrow Persistence diagrams provide easy to compare topological signatures.

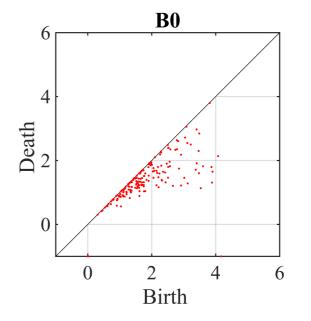
Some examples of applications

- Persistence-based clustering [C.,Guibas,Oudot,Skraba - J. ACM 2013]



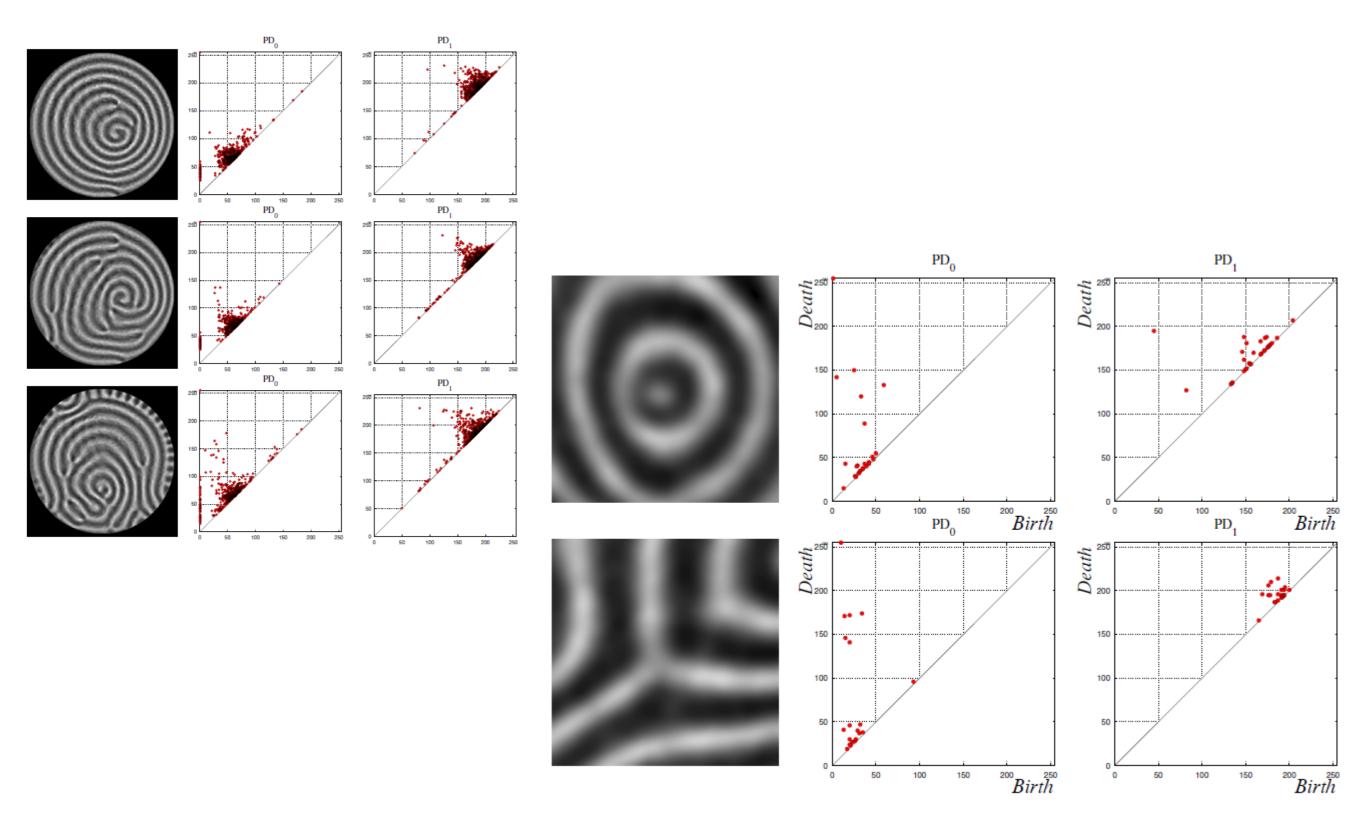
- Analysis of force fields in granular media [Kramar, Mischaikow et al]





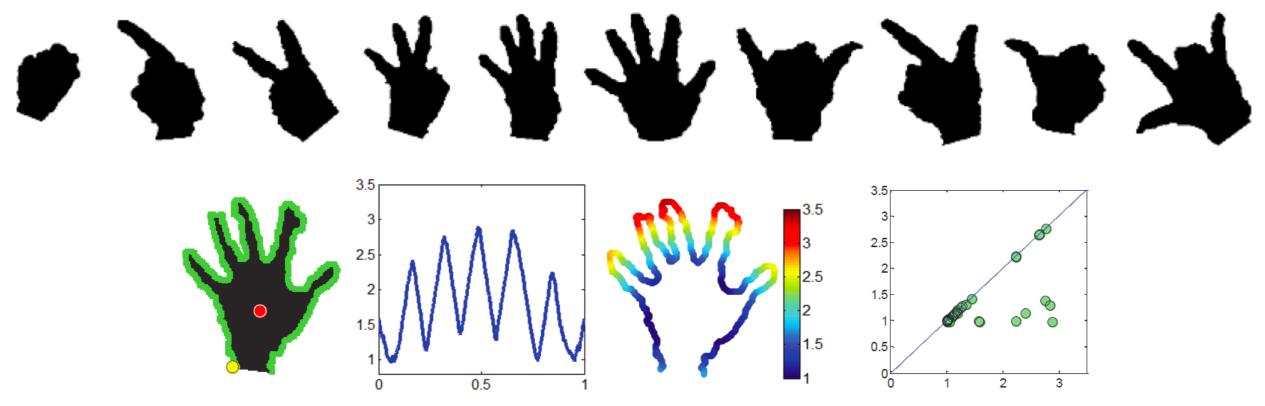
Some examples of applications

- Pattern analysis in fluid dynamics [Kramar, Mischaikow et al]

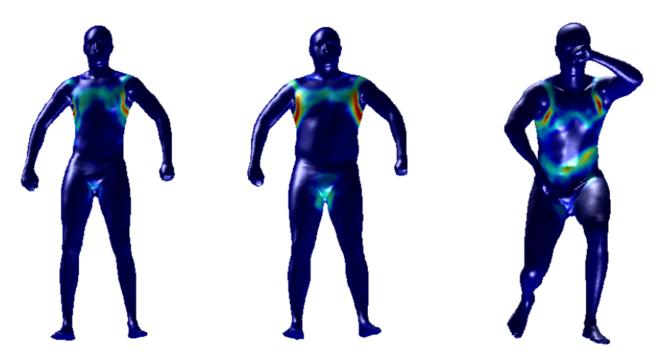


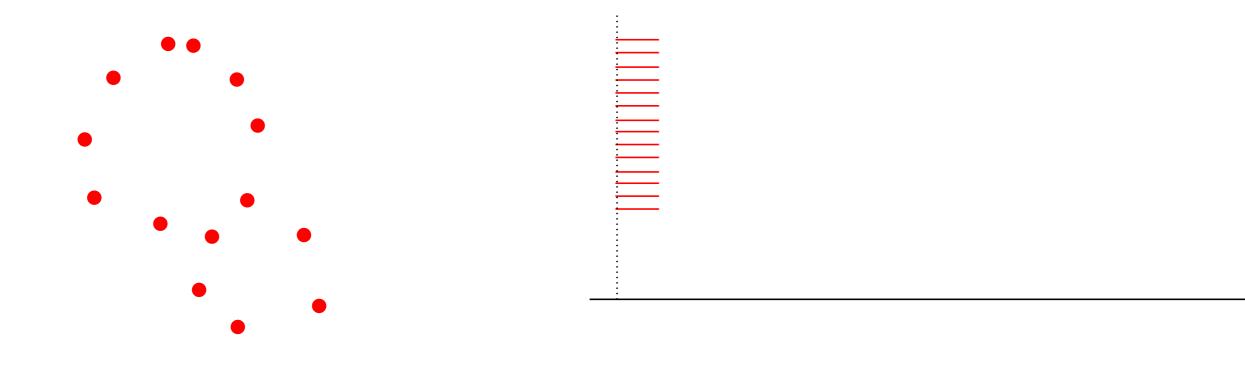
Some examples of applications

- Hand gesture recognition [Li, Ovsjanikov, C. - CVPR'14]

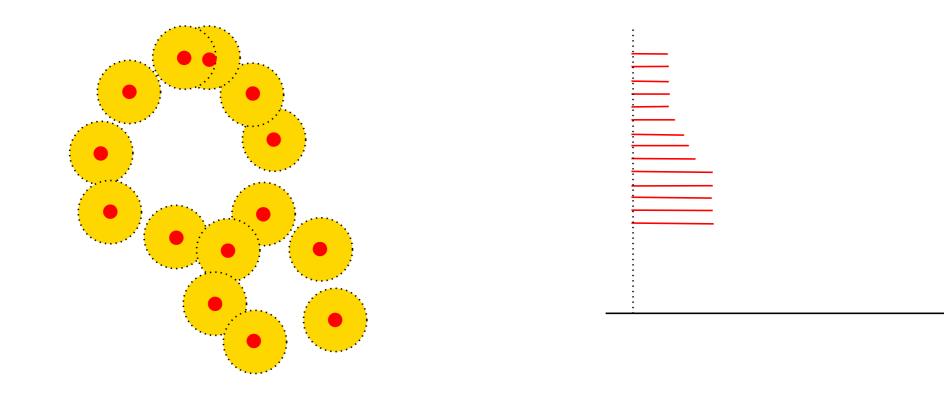


- Persistence-based pooling for shape recognition [Bonis, Ovsjanikov, Oudot, C. 2016]

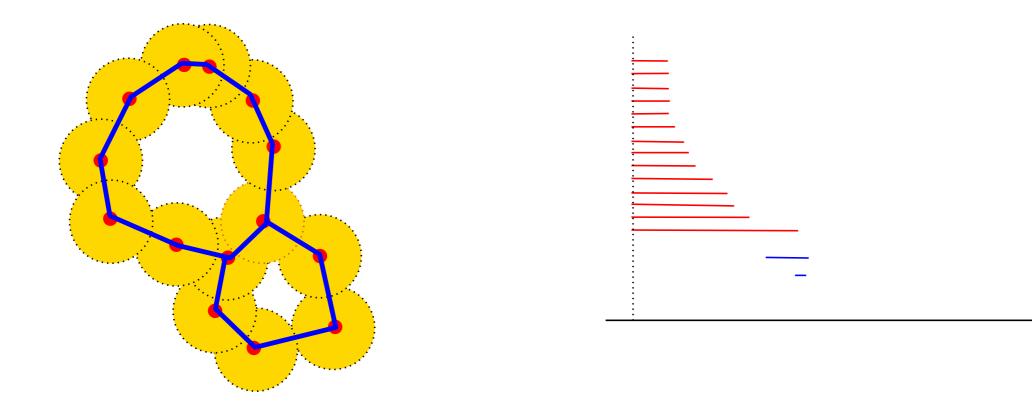




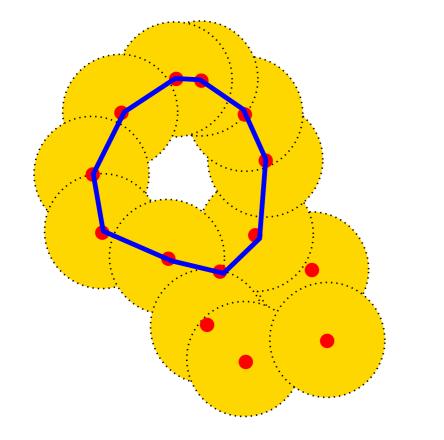
- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

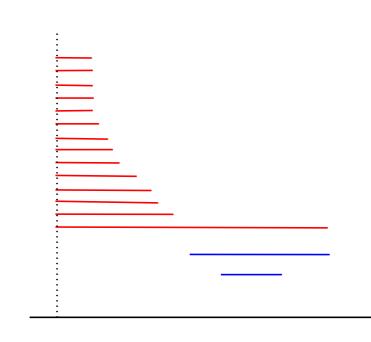


- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

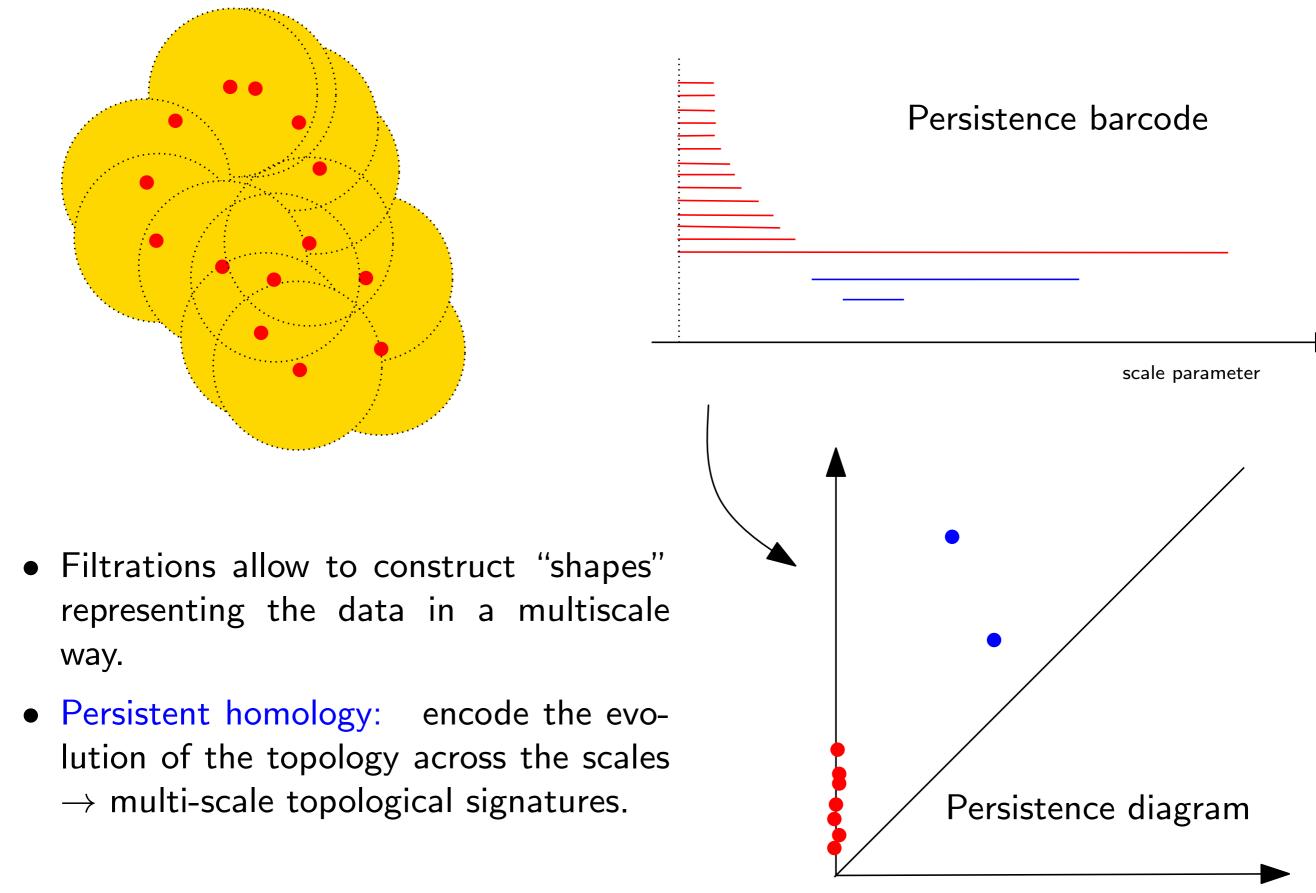


- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.





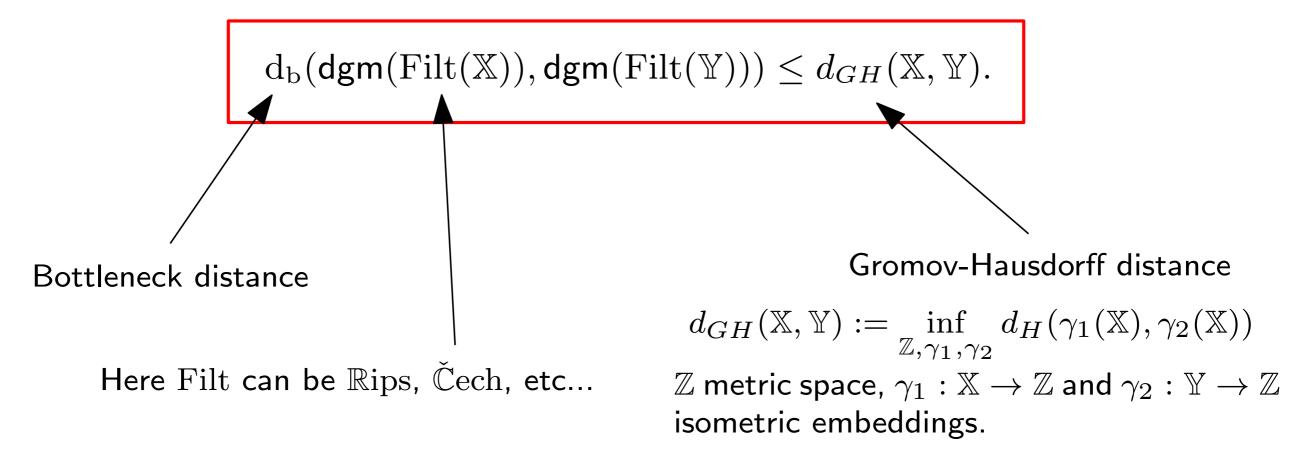
- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.



Stability properties

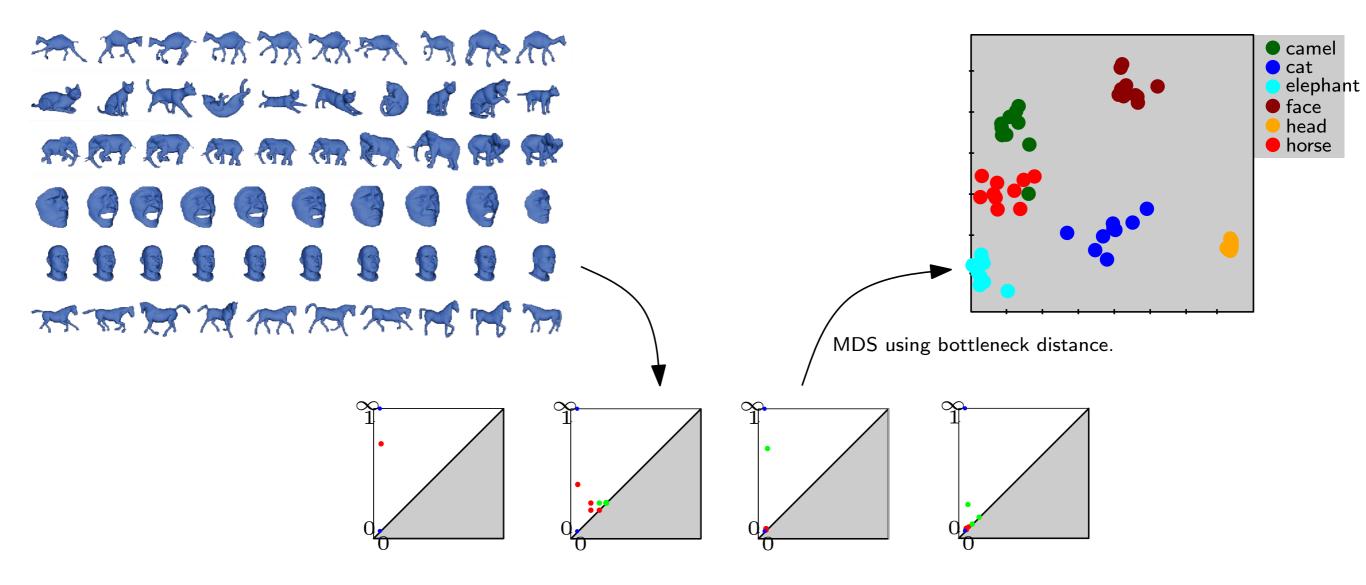
"Stability theorem": Close spaces/data sets have close persistence diagrams! [C., de Silva, Oudot - Geom. Dedicata 2013].

If $\mathbb X$ and $\mathbb Y$ are pre-compact metric spaces, then



Application: non rigid shape classification

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP '09]



- Non rigid shapes in a same class are almost isometric, but computing Gromov-Hausdorff distance between shapes is extremely expensive.
- Compare diagrams of sampled shapes instead of shapes themselves.

The theory of persistence

Theory of persistence has been subject to intense research activities:

- from the mathematical perspective:

- general algebraic framework (persistence modules) and general stability results.
- extensions and generalizations of persistence (zig-zag persistence, multipersistence, etc...)
- Statistical analysis of persistence.

- from the algorithmic and computational perspective:

- efficient algorithms to compute persistence and some of its variants.
- efficient software libraries (in particular, Gudhi: https://project.inria.fr/gudhi/).

A whole machinery at the crossing of mathematics and computer science!

Some drawbacks and problems

If \mathbb{X} and \mathbb{Y} are pre-compact metric spaces, then

 $d_{\mathrm{b}}(\mathsf{dgm}(\operatorname{Rips}(\mathbb{X})), \mathsf{dgm}(\operatorname{Rips}(\mathbb{Y}))) \leq d_{GH}(\mathbb{X}, \mathbb{Y}).$

 \rightarrow Vietoris-Rips (or Cech,...) filtrations quickly become prohibitively large as the size of the data increases ($O(|X|^d)$), making the computation of persistence of large data sets a real challenge.

 \rightarrow Persistence diagrams of Rips-Vietoris (and Cěch, witness,..) filtrations and Gromov-Hausdorff distance are very sensitive to noise and outliers.

 \rightarrow The space of persistence diagrams endowed with the bottleneck distance is highly non linear, processing persistence information for further data analysis and learning tasks is a challenge.

These issues have raised an intense research activity during the last few years!

Statistical setting

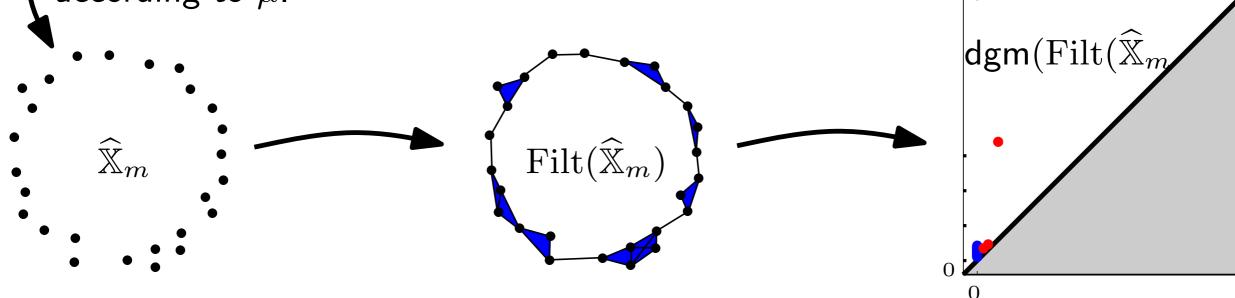
 (\mathbb{M},ρ) metric space

 μ a probability measure with compact support $\mathbb{X}_{\mu}.$

Sample m points according to μ .

Examples:

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{Rips}_{\alpha}(\widehat{\mathbb{X}}_m)$
- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{\check{Cech}}_{\alpha}(\widehat{\mathbb{X}}_m)$
- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{sublevelset} \operatorname{filtration} \operatorname{of} \rho(., \mathbb{X}_\mu).$



Questions:

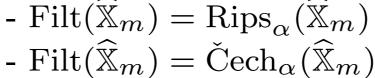
• Statistical properties of dgm(Filt($\widehat{\mathbb{X}}_m$)) ? dgm(Filt($\widehat{\mathbb{X}}_m$)) \rightarrow ? as $m \rightarrow +\infty$?

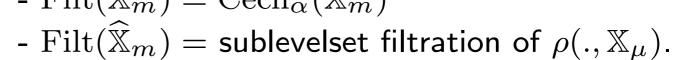
Statistical setting

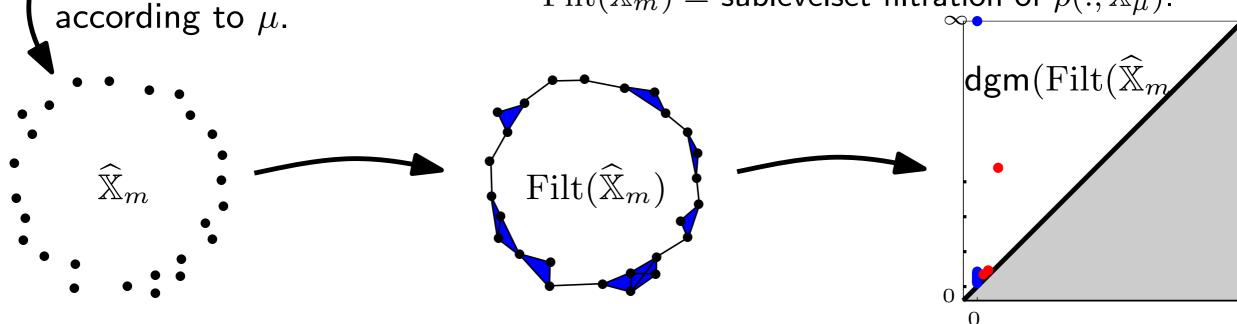
 (\mathbb{M},ρ) metric space

 μ a probability measure with compact support $\mathbb{X}_{\mu}.$

Examples: $F_{ilt}(\widehat{\mathbb{X}})$





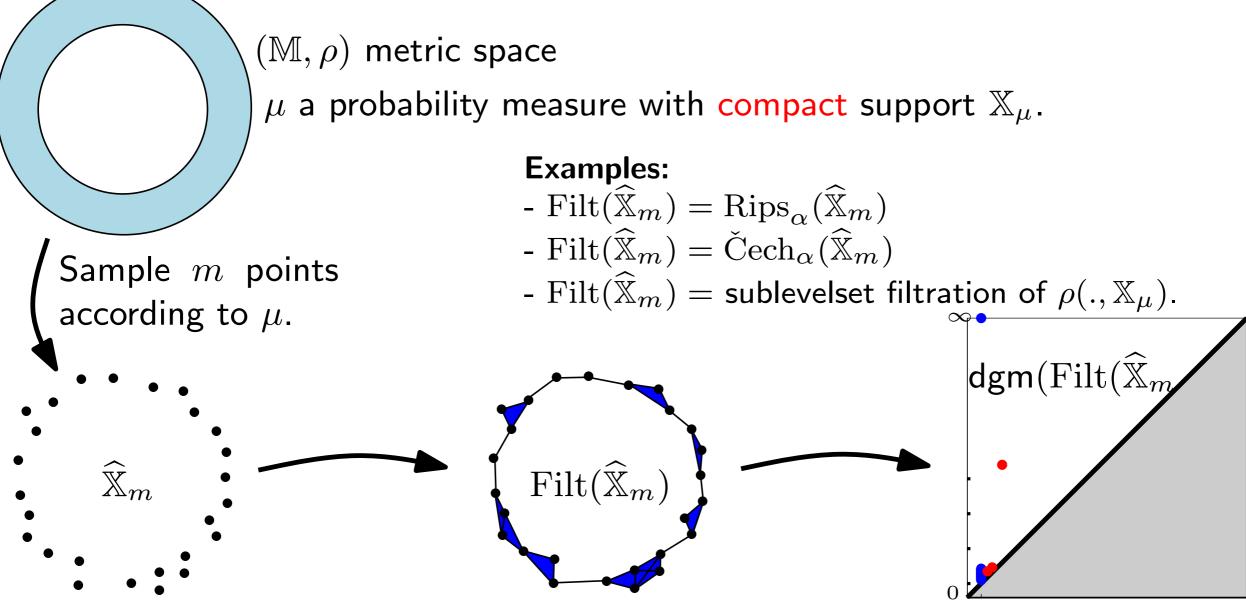


Questions:

Sample m points

- Statistical properties of dgm(Filt($\widehat{\mathbb{X}}_m$)) ? dgm(Filt($\widehat{\mathbb{X}}_m$)) \rightarrow ? as $m \rightarrow +\infty$?
- Can we do more statistics with persistence diagrams? What can be said about distributions of diagrams?

Statistical setting



0

Stability thm: $d_b(dgm(Filt(\mathbb{X}_{\mu})), dgm(Filt(\widehat{\mathbb{X}}_m))) \leq 2d_{GH}(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_m)$

So, for any $\varepsilon > 0$, $\mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m}))\right) > \varepsilon\right) \leq \mathbb{P}\left(d_{GH}(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_{m}) > \frac{\varepsilon}{2}\right)$

Deviation inequality and rate of convergence [C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in X_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Deviation inequality and rate of convergence [C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in X_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Theorem: If μ satisfies the (a, b)-standard assumption, then for any $\varepsilon > 0$:

$$\mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})),\mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m}))\right) > \varepsilon\right) \leq \min(\frac{8^{b}}{a\varepsilon^{b}}\exp(-ma\varepsilon^{b}),1).$$

Deviation inequality and rate of convergence [C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Theorem: If μ satisfies the (a, b)-standard assumption, then for any $\varepsilon > 0$:

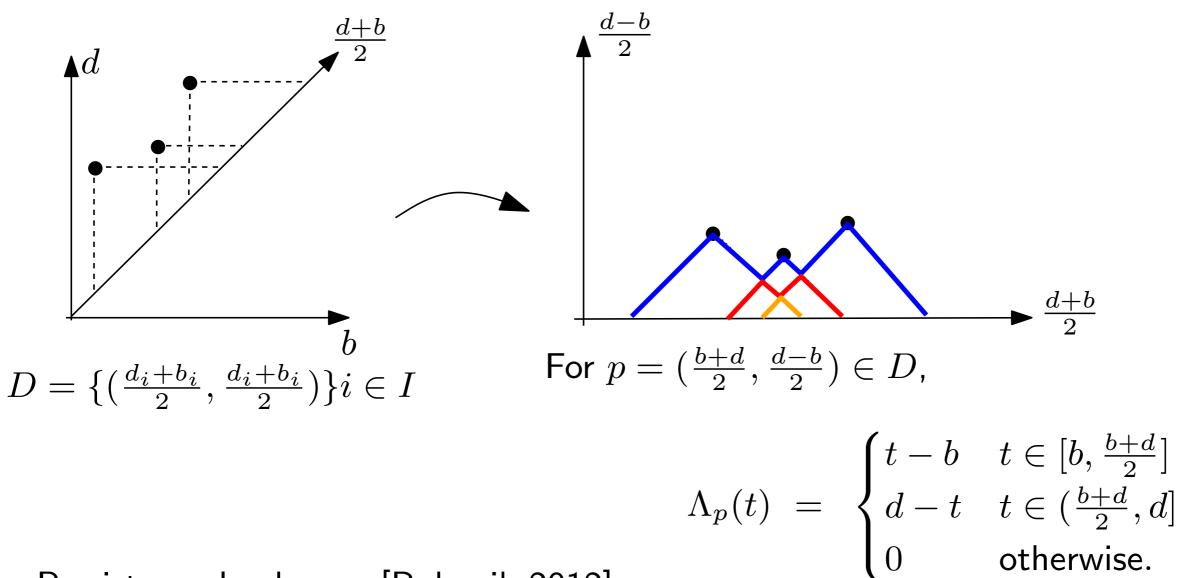
$$\mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})),\mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m}))\right) > \varepsilon\right) \leq \min(\frac{8^{b}}{a\varepsilon^{b}}\exp(-ma\varepsilon^{b}),1).$$

Corollary: Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of (a, b)-standard proba measures on \mathbb{M} . Then:

$$\sup_{\mu \in \mathcal{P}(a,b,\mathbb{M})} \mathbb{E}\left[\mathrm{d}_{\mathrm{b}}(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m})))\right] \leq C\left(\frac{\ln m}{m}\right)^{1/b}$$

where the constant C only depends on a and b (not on \mathbb{M} !). Moreover, the upper bound is tight (in a minimax sense)!

Persistence landscapes



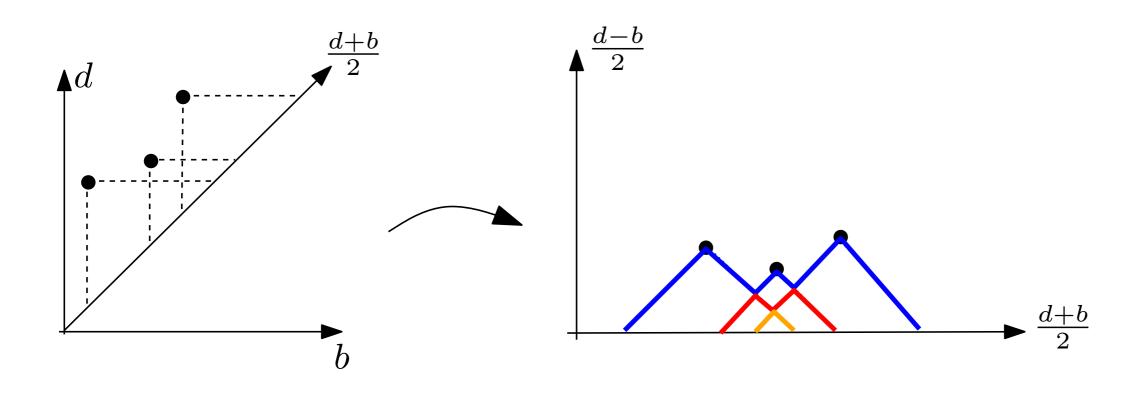
Persistence landscape [Bubenik 2012]:

$$\lambda_D(k,t) = \underset{p \in \mathsf{dgm}}{\mathsf{kmax}} \Lambda_p(t), \quad t \in \mathbb{R}, k \in \mathbb{N},$$

where kmax is the kth largest value in the set.

Many other ways to "linearize" persistence diagrams: intensity functions, image persistence, kernels,...

Persistence landscapes



Persistence landscape [Bubenik 2012]:

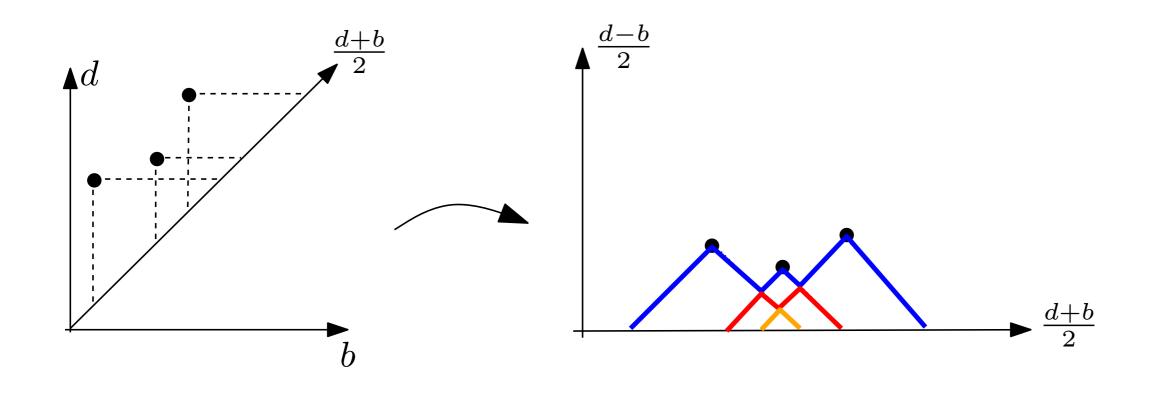
$$\lambda_D(k,t) = \underset{p \in \mathsf{dgm}}{\mathsf{kmax}} \Lambda_p(t), \quad t \in \mathbb{R}, k \in \mathbb{N},$$

Properties

- For any $t \in \mathbb{R}$ and any $k \in \mathbb{N}$, $0 \leq \lambda_D(k, t) \leq \lambda_D(k+1, t)$.
- For any $t \in \mathbb{R}$ and any $k \in \mathbb{N}$, $|\lambda_D(k,t) \lambda_{D'}(k,t)| \leq d_B(D,D')$ where $d_B(D,D')$ denotes the bottleneck distance between D and D'.

stability properties of persistence landscapes

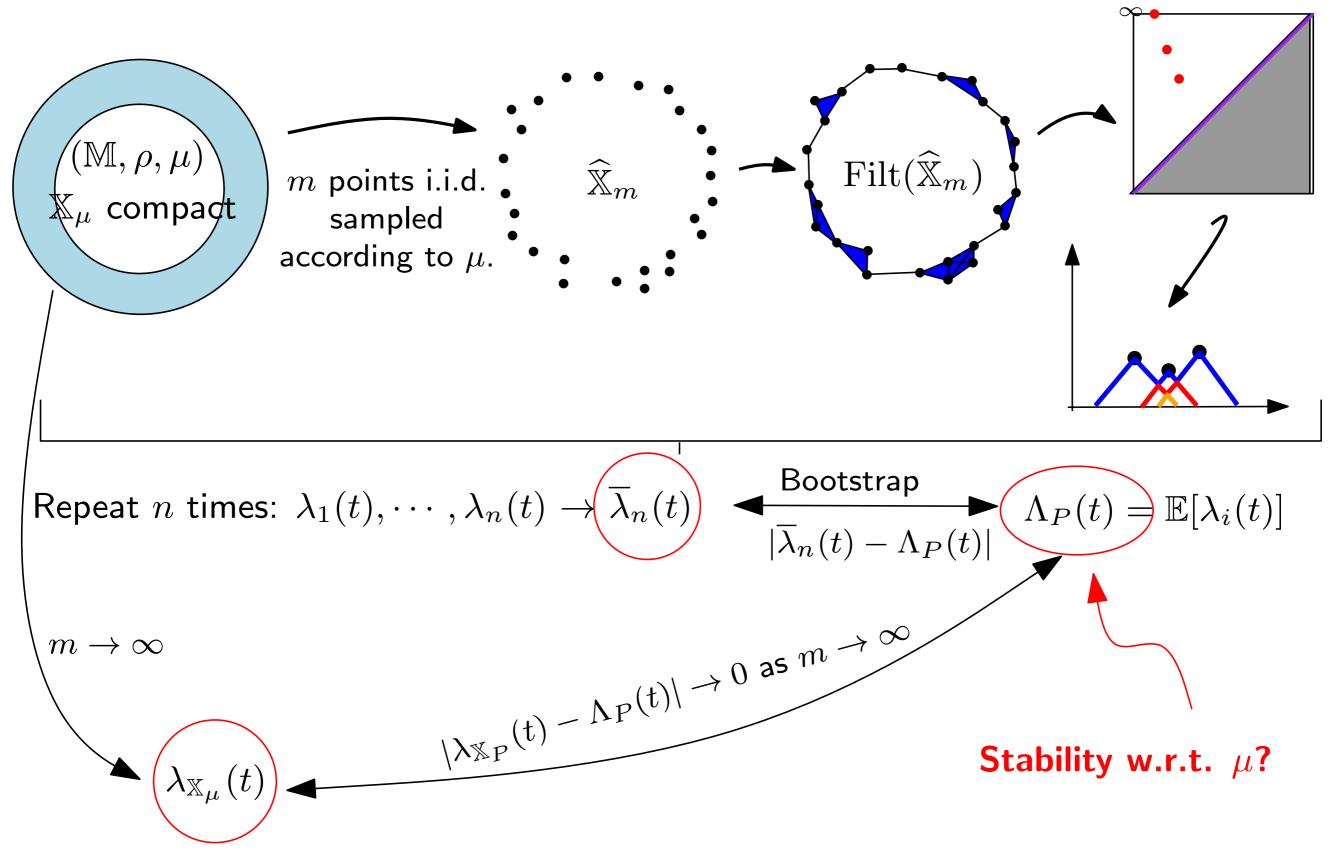
Persistence landscapes



- Persistence encoded as an element of a functional space (vector space!).
- Expectation of distribution of landscapes is well-defined and can be approximated from average of sampled landscapes.
- process point of view: convergence results and convergence rates → confidence intervals can be computed using bootstrap.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]

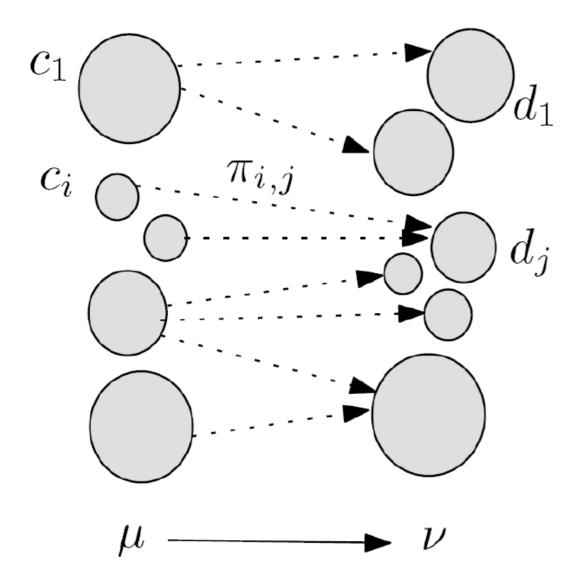
To summarize



Wasserstein distance

Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probability measures on \mathbb{M} with finite p-moments ($p \ge 1$).

"The" Wasserstein distance $W_p(\mu, \nu)$ quantifies the optimal cost of pushing μ onto ν , the cost of moving a small mass dx from x to y being $\rho(x, y)^p dx$.



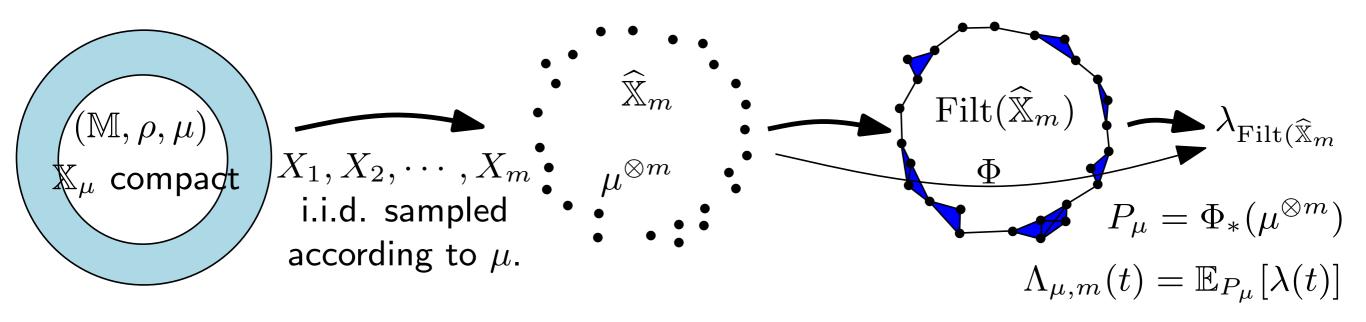
- Transport plan: Π a proba measure on $M \times M$ such that $\Pi(A \times \mathbb{R}^d) = \mu(A)$ and $\Pi(\mathbb{R}^d \times B) = \nu(B)$ for any borelian sets $A, B \subset M$.
- Cost of a transport plan:

$$C(\Pi) = \left(\int_{M \times M} \rho(x, y)^p d\Pi(x, y)\right)^{\frac{1}{p}}$$

• $W_p(\mu,\nu) = \inf_{\Pi} C(\Pi)$

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$.

Remarks:

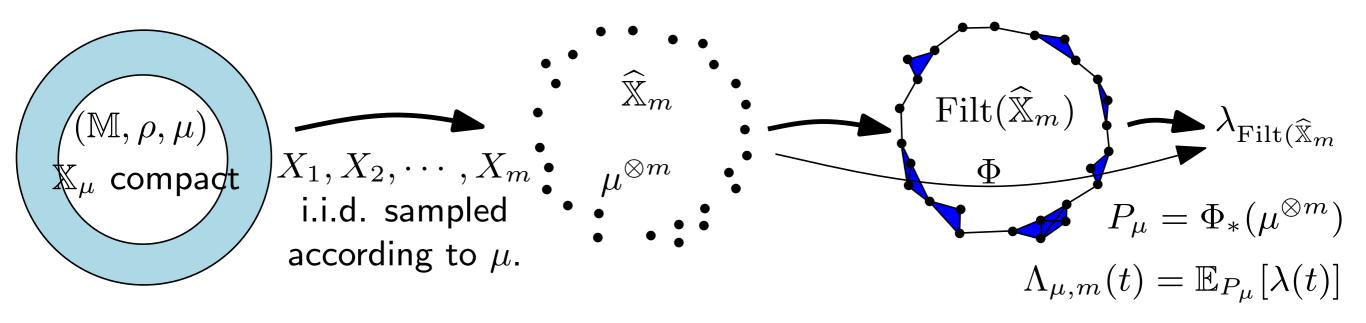
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distributions, not for expectations) ;

- Extended to point process setting y L. Decreusefond et al;

- $m^{\overline{p}}$ cannot be replaced by a constant.

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

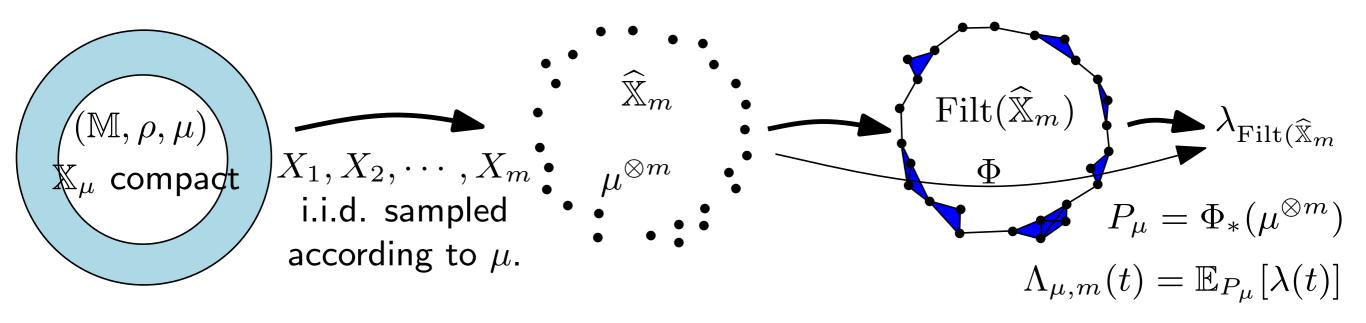
where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$.

Consequences:

- Subsampling: efficient and easy to parallelize algorithm to infer topol. information from huge data sets.
- Robustness to outliers.
- R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

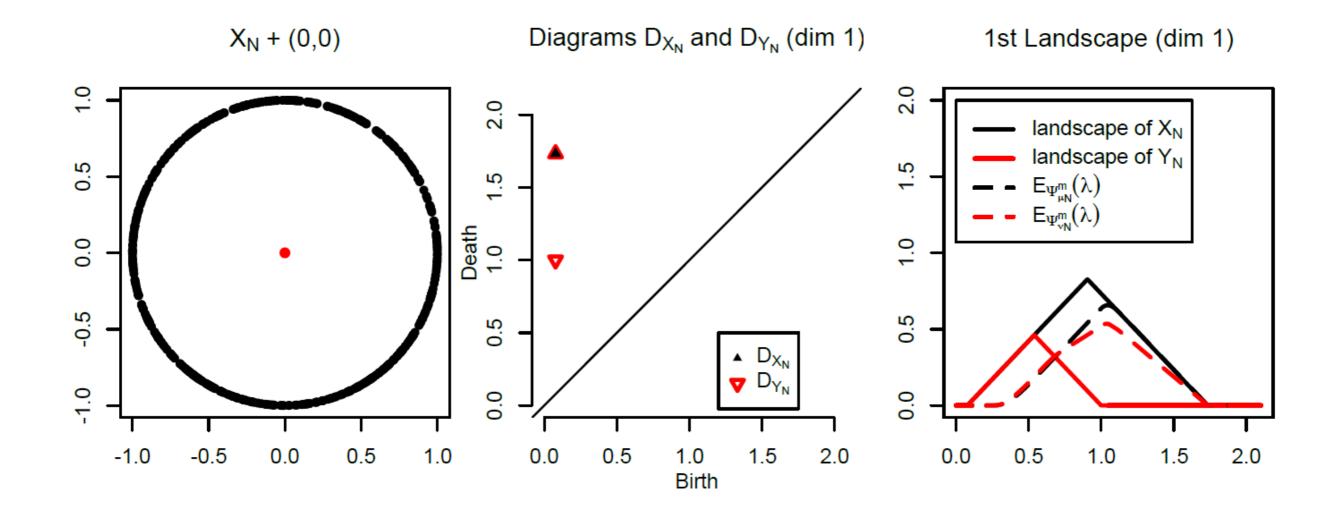
where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$. **Proof:**

1.
$$W_p(\mu^{\otimes m}, \nu^{\otimes m}) \le m^{\frac{1}{p}} W_p(\mu, \nu)$$

- 2. $W_p(P_{\mu}, P_{\nu}) \leq W_p(\mu^{\otimes m}, \nu^{\otimes m})$ (stability of persistence!)
- 3. $\|\Lambda_{\mu,m} \Lambda_{\nu,m}\|_{\infty} \leq W_p(P_\mu, P_\nu)$ (Jensen's inequality)

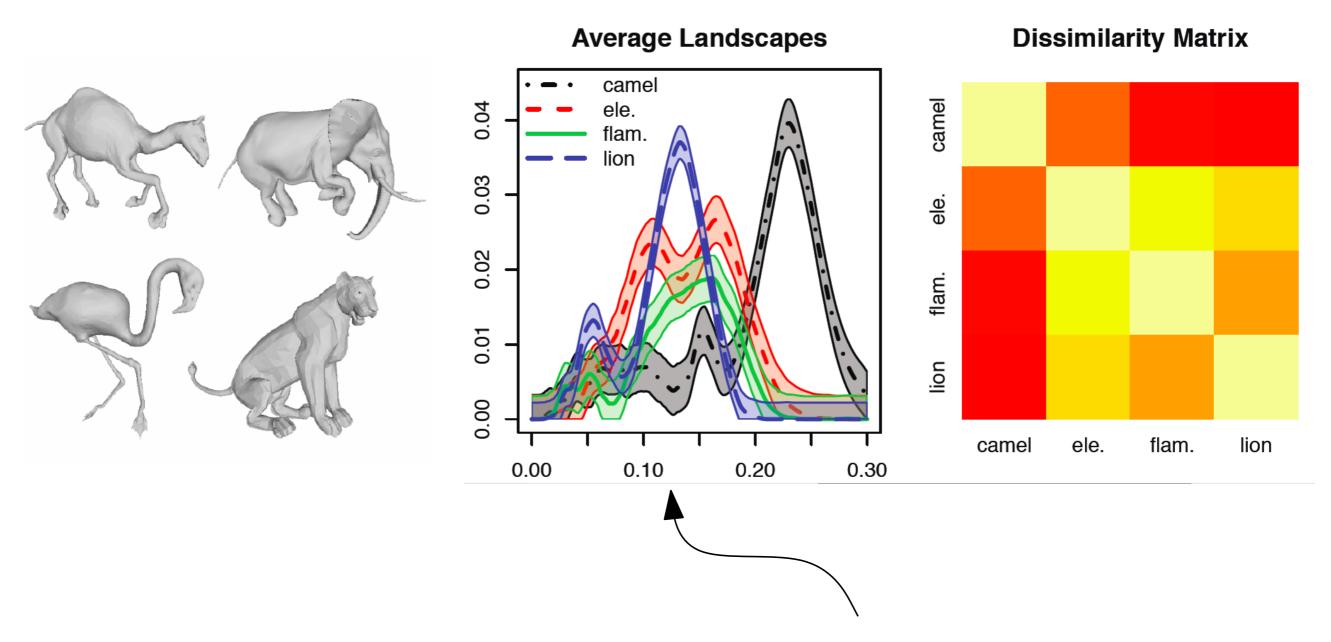
(Sub)sampling and stability of expected landscapes [C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: Circle with one outlier.



(Sub)sampling and stability of expected landscapes [C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

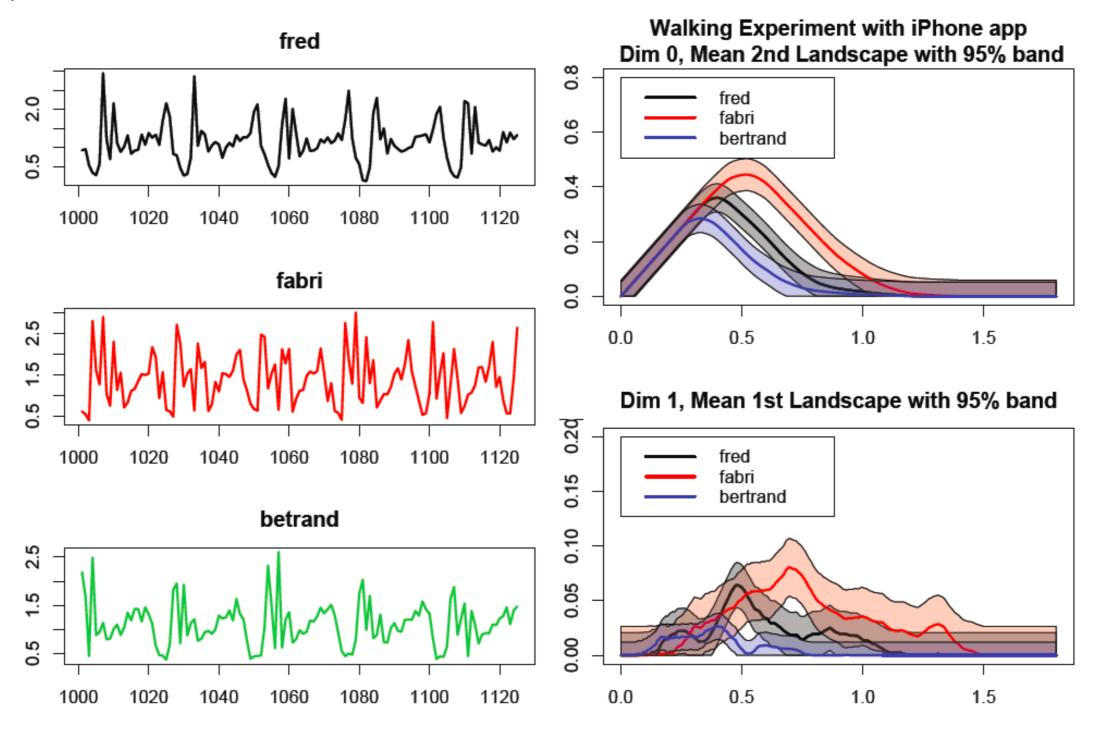
Example: 3D shapes



From n = 100 subsamples of size m = 300

(Sub)sampling and stability of expected landscapes [C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

(Toy) Example: Accelerometer data from smartphone.



spatial time series (accelerometer data from the smarphone of users).
no registration/calibration preprocessing step needed to compare!

Thank you for your attention!

Collaborators: T. Bonis, V. de Silva, B. Fasy, D. Cohen-Steiner, M. Glisse, L. Guibas, C. Labruère, F. Lecci, C. Li, F. Memoli, B. Michel, S. Oudot, M. Ovsjanikov, A. Rinaldo, P. Skraba, L. Wasserman

Software:

- The Gudhi library (C++/Python): https://project.inria.fr/gudhi/software/
- R package TDA