Les matériaux dans les centrales nucléaires: exigences, choix, durée de vie

Yves Brechet, INP

Yves.brechet@grenoble-inp.fr

J.P.Massoud, C.Pokor, EDF, P.Dubuisson, CEA M.Fivel, D.Rodney, T.Nogaret (INPG)

Pour commencer...quelques notions simples sur le nucléaire

Plans énergétiques possibles (faisabilité) (D.McKay).

Ressources...

- L'énergie a besoin de ressources en matière
- La ressource la plus abondante est le charbon...
- Le pétrole est en voie d'épuisement
- L'uranium est essentiellement propre à rien...à part a fournir du combustible nucléaire

Le cycle du combustible nucléaire

Le multi-recyclage des matières dans un parc RNR

Pour la France

ASTRID : Un prototype industriel de 600 MWe intégrant des innovations

- ♥ Un cœur performant à sûreté améliorée
- ♥ Une résistance renforcée aux accidents graves
- ♥ Une conversion d'énergie optimisée
- ♥ Une conception du réacteur intégrant opérabilité, ISIR, …

Les matériaux et le nucléaire

• Aujourd'hui

Vieillissement des centrales, remplacement, sécurité

• Demain

Les concepts de la génération IV: nouveaux challenges pour les matériaux

• Apres demain ?

ITER : une boite pour les étoiles...

L'entreposage et le stockage des déchets

Les matériaux dans le nucléaire sont autant un problème de <u>science</u> qu'un problème <u>d'ingénierie</u>

Il s'agit d'une technologie « mûre » et non d'une technologie « en devenir

Il s'agit moins de développer de « nouveaux matériaux » que <u>d'optimiser des matériaux « classiques »</u> vis-à-vis d'une <u>durabilité</u> et d'une <u>sécurité</u> accrue

Forces limitantes à l'innovation matériaux...

Aujourd'hui

Le viellissement des matériaux sous irradiation comme limitation à la durée de vie des centrales

Parc nucléaire français

Trois barrières : gaine du combustible, enveloppe du circuit primaire, enceinte de confinement

EAU DE REFROIDISSEMENT (Rhône)

tranche_nucleaire

presentation\fonctionnement.htm

La technologie des centrales nucléaires actuelles s'appuie sur la technologie des machines à vapeur

Electricité de France

A bien distinguer...

- Les composants « consommables »
 - Gaines de combustible
 - Maximiser la durée de vie pour maximiser l efficacité d'utilisation du combustible
- Les composants « remplaçables »
 - Internes de cuve
 - Maximiser la durée de vie pour optimiser l utilisation des centrales
- Les composants « vitaux »
 - Cuve
 - Maximiser la durée de vie pour prolonger l'existence des centrales

Spécificités Scientifiques

- Les effets de l'irradiation:
 - Perturbe l'ordre atomique de la matière (défauts de structure)
 - Modifie la chimie (transmutations)
 - Modifie le transport des atomes (transport ballistique)
- Une science « multi-échelle » : de l'atome a la structure
- Changer l'échelle de temps: de la picoseconde au millénaire...

Rôle clé des simulations numériques

Vieillissement sous irradiation

Création de défauts d'irradiation par les différents mécanismes

CLASSEMENT DES DÉFAUTS D'IRRADIATION

Phénomène physique	Défaut créé	Conditions requises	Conséquences
Déplacements d'atomes	Paires isolées	Très basse température < 0,1 Tf	Gonflement par interstitiels + Accumulation d'énergie
	Boucles	Flux élevé + basse température 0,1-0,3 Tf ou anisotropie	Durcissement par les boucles Précipitation dirigée des boucles
	Cavités	Moyenne température 0,25- 0,5 Tf	Gonflement par lacunes
Réactions nucléaires	Bulles de gaz	Haute température > 0,4 Tf	Gonflement par gaz Fragilisation intergranulaure

Vieillissement sous irradiation Conséquences sur les matériaux

1 – MODIFICATION DE LA DIFFUSION

(concentration de défauts ponctuels accrue)

- Généralement accélération des phénomènes de diffusion
- Apparition de phases ne figurant pas sur les diagrammes d'équilibre.

2 – MODIFICATION DE LA MICROSTRUCTURE

- dislocations, boucles de dislocations
- recristallisation
- morcellement (oxydes)
- ségrégations intergranulaires,
- bulles, cavités, précipités

3 – MODIFICATION DES PROPRIETES D'USAGE

- Durcissement,
- Adoucissement,
- Perte de ductilité,
- Fragilisation,
- Fluage-Irradiation,
- Sensibilisation à la corrosion sous contrainte,
- Gonflement ...

La cuve/Vessel

DESCRIPTION

Principales caractéristiques de la cuve

Le corps de cuve est constituée :

• une bride forgée

5 viroles forgées, soudées entre elles Ces viroles sont réalisées à partir de lingots en acier ferritique faiblement allié (AFNOR : 16MND5, Européenne : 16MnNiMo-5)
un fond sphérique percé de 50 traversées pour le passage des sondes.

Le couvercle :

- une bride forgée
- une calotte sphérique percée de 65 orifices équipés de manchons appelés adaptateurs et soudés sur la calotte (manchons en alliage nickel, Pb de CSC)

La fixation cuve-couvercle assurée par 58 goujons et l'étanchéité obtenue par deux joints

La cuve

L'ACIER DOIT PRESENTER UNE BONNE RESISTANCE A L'IRRADIATION

Cuve soumise à l'irradiation neutronique : Fluence max (40 ans) = 7.10^{19} n.cm⁻² = 0,1 dpa

Sous l'effet du bombardement neutronique, on observe au cours du temps une dégradation des propriétés mécaniques de l'acier :

- augmentation de la dureté, de la charge à rupture et de la limite élastique
- diminution de la ténacité (résistance à la fissuration)
- diminution de la résilience (résistance aux chocs) et de la ductilité
- augmentation de la température de transition fragile-ductile

Les internes de cuve

LEUR ROLE

Les structures internes inférieures :

- Porter le poids du cœur,
- Maintenir en alignement les assemblages combustibles, les grappes de commande et l'instrumentation,
- Canaliser l'écoulement du fluide caloporteur,
- Protéger la cuve contre les <u>rayonnements émis par le</u> <u>cœur (\rightarrow vieillissement sous irradiation)</u>,
- Conserver toujours une grande rigidité étant donné la précision d'alignement requise,

Les structures internes supérieures :

- Positionner les grappes de commande dans l'axe des assemblages combustibles
- Immobiliser les assemblages combustibles

Les internes de cuve

VIEILLISSEMENT SOUS IRRADIATION DES INTERNES DE CUVE

Fissuration en service des vis du cloisonnement par corrosion sous contrainte assistée par l'irradiation (IASCC)

Aspect macrographique d'une vis fissurée

Vue en coupe d'une vis fissurée

Aspect micrographique d'une fissuration intergranulaire

Faciès de rupture intergranulaire d'une vis fissurée

Fracture des internes de cuve

irradiation dose: 5 - 10 dpa

Fracture des vis d'attache des internes de cuve

Boucles de Frank $\rho \approx 2 \ 10^{22} \ m^{-3} \quad \phi \approx 12 \ nm$

Channelling, adoucissement et localisation

Exemple : Localisation de la déformation plastique (aciers inox. irradiés)

Acier inox. 316L austénitique (cfc)

Mécanismes élémentaires d'interaction ?

Les simulations multiéchelles

Peut on prolonger la durée de vie des centrales REP à 60 ans et au-delà?

- Retour d'expertise matériaux
- Etudes expérimentales sur le comportement sous irradiation
- Modélisation à toutes les échelles

Demain

A Technology Roadmap for Generation IV Nuclear Energy Systems

December 2002

Ten Nations Preparing Today for Tomorrow's Energy Needs

Issued by the U.S. DOE Nuclear Energy Research Advisory Committee and the Committee IN International Feature

HE-EASING .

CIE-007-00

Le projet Gen IV

Un projet international

Des exigences accrues:

- Durabilité
- Surete et fiabilité
- Economie
- Non prolifération

Six concepts de réacteurs retenus

- Gas Cooled Fast Reactor GFR
- Lead Cooled Fast Reactor LFR
- Sodium Cooled Fast Reactor SFR
- Molten Salt Reactor MSR
- Supercritical Water Reactor SCWR
- Very High Temperature Reactor VHTR

Peut on réellement construire et <u>faire durer</u> ces « réacteurs concepts »?

Les nouvelles difficultés en terme de matériaux sont principalement liées au fluide caloporteur

Exigences en terme de matériaux

- SFR:
 - Une technologie explorée en terme de tenue au sodium liquide => modification des échangeurs?
 - Des améliorations incrémentales pour la tenue a chaud sous irradiation
 - Techniques de CND?
- VHTR

– Des exigences en terme de température irréalistes...

• MSR

- Matériaux en sel fondus...

Nouveaux réacteurs : Gen IV et Fusion Comparison avec les REP

Environment des matériaux. Comparaison avec les REP

	Fission	Fission	Fusion	NASA
	(Gen. I/II)	(Gen. IV)	(Demo)	space
	PWR			reactor
temperature maximale	<300°C	500-1000°C	550-1000°C	~1000°C
dose maximale	~50 dpa	~30-200 dpa	~150 dpa	~10 dpa
transmutation concentration He	~0.1 appm	~3-10 appm	~1500 appm (~10000 appm pour SiC)	~1 appm
Fluides caloporteurs	H ₂ O (REP: pression 155 bars)	He, H ₂ O, Pb- Bi, Na	He, Pb-Li, Li	Li, Na, or He-Xe

Pas nécessairement dimensionné comme appareil à pression

Considérations complémentaires

- Disponibilité et coût des matériaux
- Fabricabilité et technologie d'assemblage
- ➤ Inspection en service (milieu Na pour SFR)
 → Techniques de contrôle non destructif
- Approche de sûreté et certification
 Codification pour la conception nucléaire
 Effort spécifique au-delà de la R&D pour établir les règles et normes de conception mécanique pour le nucléaire

> Démantèlement et gestion des déchets

Après Demain ?

Alvéole de stockage de déchets C

 « C'est une idée magnifique de mettre le soleil en boîte...a part que nous ne savons pas construire la boîte! » (Sébastien Balibar)

- Matériau devant faire face a un plasma a haute température, très réactif
- Matériau du divertor soumis à une très forte érosion
- Matériaux de structure très fortement irradiés (fragilisation, gonflement...)

Un vrai défi pour le scientifique et pour l'ingénieur

Les déchets HAVL

 37×10^9 Bq/t d'uranium

Ci/t d'uranium

ie déchargement

La « non solution » américaine sans retraitement

La solution suédoise sans retraitement

The Swedish system

La stratégie française

• Produits de Fission:

- Vitrification
- Protection par des gaines d'aciers inox évitant le contact avec l'eau

Option de barrière d'ingénierie (Verres) pour eviter la diffusiondes PF

Actinides

- Plutonium: réintroduit dans le cycle
- Actinides mineurs (Am, Cm, Np)
- \Rightarrow Transmutation?
- \Rightarrow Stockage profond

Option de barrière géologique (argilite) qui piège les actinides

Les enjeux matériaux : les verres

Cristaux d'argile

Colle

Verre

- Conforter la ddv : 300000 ans
 - Essais dans l'argile
 - Étude de la sorption du Si sur PC
 - Modélisation chimie

500 nm

La corrosion

- Améliorer la prévision des vitesses de corrosion de l'acier dans l'argilite de Bure → terme source H2 ; ddv sur-conteneur
- La corrosion des déchets métalliques → terme source RN et H2
 - → Déchets compactés / colis béton
 - : Zr ; inox ; 718 ; AI ; Mg

Pour finir...

L'incident de Fukushima Daiichi 2. Progression de l'accident

- La mesure du niveau liquide indiquée ici est le niveau tassé. Le véritable niveau est supérieur du fait des bulles de vapeur présentes dans le liquide (émulsion)
- ~50% du coeur découvert
 - La température des gaines augmente, sans dégât significatif au coeur
- ~2/3 du coeur découvert
 - La température des gaines dépasse ~900°C
 - Gonflement / rupture des gaines
 - Relâchement de produits de fission par les ruptures de gaines

Gaines combustibles:

- Transparence aux neutrons
- Resistance mécanique
- Résistance à la Corrosion
- Tenue à l'Irradiation

$$M = \sigma_y / \lambda$$

- <u>Zirconium alloys</u>
 - Zircaloy-4
 - Sn (1.2%)
 - O (0.01%)
 - Fe,Cr (~30ppm)

Conclusions

Le matériaux et le nucléaire

- Une nécessité pour construire des dispositifs fiables et durables, aujourd'hui et demain
- Un passage obligé pour les options innovantes et pour la gestion du futur: indispensable pour « matérialiser les rêves »
- Un défi scientifique et technologique sans cesse renouvelé: la modélisation multiéchelle au cœur du problème