

Materials Play a Strategic Role Today

Sept 7, 2010

Japan arrest Chinese boat captain

Sept 22, 2010

China blocks shipments of **Rare Earth Metals** to Japan

Sept 24, 2010

Japan releases captain

From oil and coal to clean energy requires significant materials innovation

Many promising energy technologies are limited by not having the right materials

Hydrogen Storage

Material needed that can absorb/desorb large quantity of hydrogen

Fuel cell electrocatalysts

Replace expensive Platinum. Find catalysts for more complex hydrocarbons

Solid State Lighting

Thermoelectrics

Need higher ZT factor for efficient recovery of waste heat into electricity

Lighter/Stronger materials

Reduce weight in transportation sector: cars, airplanes, ... e.g. Titanium

Solar cell materials

Battery materials

Membrane materials (oxygen, protons, ...)

Photovoltaics

Efficiency of PV material is key as most of the cost is in making panels.
Higher efficiency material reduces number of panels needed

Example: Thermoelectrics: A real opportunity for materials design and engineering

•co-generation at home scale

•electricity in vehicles from engine waste heat (e.g. diesel engines)

Waste heat conversion

reduce carbon emission by 8% (= remove 25% of all US cars)

Many materials issues on the energy efficiency and CO_2 reduction side of the problem

Cement -> Production of CaO leads to large CO₂ emission. In China 9% of all CO₂ is from cement

Can we make cement without CaO?

- **steelmaking** makes CO₂ (¹/₂ kg C / kg Fe) x 1.3 billion tonnes
- 1/20 of primary energy use in the world is to make steel

Can we make steel without CO₂ production ?

Materials Critical to Energy Innovation

Materials Data from: Eagar, T.; King, M. Technology Review (00401692) 1995, 98, 42.

The Materials Labyrinth

□100,000 known inorganic compounds

□2 Million known organic compounds

Many substances still to be discovered

□ How do we find the materials with good properties ?

The basic equations that describe matter are known ...

Quantum power: Density Functional Theory

Approximated in the Local Density Approximation (LDA) or Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT)

V_{eff} = average electrostatic potential from other electrons + exchange effect (Pauli principle) + correlation effects

Solving the equations of quantum mechanics let's us see inside materials

Delocalized electrons

Localized electrons

Molecular Dynamics Simulation

Diffusion channels inside of LiMnBO₃

Storage of electrical energy Critical for a CO₂-free future

Transportation: 1/3 of CO₂ emissions in the USA

Grid Storage for renewables

Some form of electrification is the solution

Hybrid Electric Vehicles

Full Electric Vehicles

Volta meets Schrödinger: Li-ion Batteries

Many properties of a material can now be predicted before a material is ever made

Can we put all this together and design (and make) new materials ?

Li Fe Og

LI, FeO

But plenty of challenges left ...

Phase diagrams

How accurate ? Voltage of electrode materials

Li mobility and diffusion (LiCoO₂)

Design Example: Optimization for Very High Charge Rate

LiFePO₄ : Low or High Rate ?

First experimental paper about LiFePO₄ : "An excellent candidate for the cathode of a low-power, rechargeable lithium battery"

Padhi et al. J Electrochem Soc (1997), p.1188

Li diffusion paths

Activation barriers for Li migration give good indication of kinetics

Ab-initio theory finds very high diffusion in b-direction and strong anisotropy

Along the a-axis: $E_a > 1 \text{ eV}$ Along the c-axis: $E_a > 1 \text{ eV}$ Along the b-axis: $E_a \approx 200-300 \text{meV}$

D ≈ 10⁻⁷ to 10⁻⁸ cm²/s diffusion length: 50 nm in about 1 ms

D. Morgan et al, ESSL **7**, A30 (2004). AND M. S. Islam, et al. Chem Mat **17**, 5085 (2005).

1D diffusions is problematic LiFePO₄

Need access to the (010) facet

Lots of inactive surface

Intergranular contacts more difficult to access.

Calculate Phase Diagrams

Intergranular and Surface Films in LiFePO₄

Kayyar, Qian & Luo, Appl. Phys. Lett. 95: 221905 (2009)

Dilute further to find rate limit of the material

Computing is scalable

The game changer for new materials design: High-Throughput Computing and the Materials Genome Project

Do for materials what genomics is trying to do for biology, what Google does for information

... but better

There are somewhere between 50,000 and 200,000 known inorganic crystalline compounds

High-throughput voltage calculations

What does one need to "design" ?

Methods to predict multiple properties: voltage, Li diffusion, stability, etc.

Method to predict crystal structure/stability

ldeas

An idea of what can be synthesized and how

Predicting Crystal Structure

Geoffroy Hautier, et al., Finding Nature's Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory. Chemistry of Materials 22 (12). pp. 3762 - 3767 (2010).

Concept of Probabilistic Structure Prediction Approach

Example: Look for "undiscovered" compounds in A-B-oxides

A and B can be any metal in any ratio Oxygen

1	IA H	IIA	_	Ρ	eri	00	lic	Ta	abl	le			IIIA	IVA	VA	VIA	VIIA	0 He
2	Li	Ве	of the Elements									в	°C	N	•	F	Ne	
3	Na	Mg	IIIB	IVB	VB	VIB	VIIB	_	- 111 -		IB	IIB	¹³ AI	Si	P	S	CI	Ar
4	۳	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	30 As	Se	Br	³⁸ Kr
5	Rb	38 Sr	¥	Zr	Nb	Mo	Tc	Ru	es Rh	Pd	Âg	Cd	49 In	so Sn	Sb	Te	50 	Хе
6	55 Cs	Ba	"La	'' Hf	Ta	W	Re	70 Os	n Ir	78 Pt	Au	so Hg	TI	Pb	Bi	Ро	a5 At	Rn
7	Fr	Ra	+Ac	Rf	Ha	Sg	NS	Hs	Mt	110	*** 111	112 112	113 113					
22														e.			202	
•	* Lanthanide Series		Se Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	os Dy	Ho	Er	te Tm	Yb	Lu		
+	+ Actinide Series		⁹⁰ Th	Ра	92 U	90 Np	94 Pu	⁸⁵ Am	98 Cm	Bk	⁹⁸ Cf	90 Es	100 Fm	Md	No	Lr		

Searching for new Ternary oxides (model trained on ICSD)

- Today there are about 5,000 known ternary oxide compounds (A-B-O) (source: ICSD)
- We searched in all A-B-O systems for possible new compounds
- 366 new compounds confirmed by DFT + datamining

Mg₂Mn₃O₈

G. Hautier, C.C. Fischer, A. Jain, et al., Chemistry of Materials, 22 (12), 3762-3767 (2010

Some example of newly predicted compounds

Lithium Batteries

About 25,000 battery compounds investigated so far

High-throughput voltage calculations

How do we learn from this ?

Example : Looking for Opportunity in Phosphates (PO₄³⁻)

Interesting "Light" and "safer" polyanions

Molecular Weight

Polyanions	(BO3) ³⁻	(SiO4) ⁴⁻	(PO4) ³⁻	(SO4) ²⁻
F.W.	58.8095	92.0831	94.9714	96.0636

Tested by **Legagneur** et al. - **2001** - Solid State Ionics \approx 6 mAh/g capacity

**Volume change is taken as a percentage of the Lithi

□ Materials are the cornerstone of energy innovation

□ Materials properties can be predicted **ab initio**.

□We will reach the point where properties of all materials are computed: **A Materials Genome**

All the work is really done by ...

Umicore Robert Bosch Company Duracell

BATT Program of **DOE**

Thank you