DE LA PHYSIQUE STATISTIQUE AUX SCIENCES SOCIALES

VIII. INCERTITUDE RADICALE, COMPLEXITE, STABILITE MARGINALE

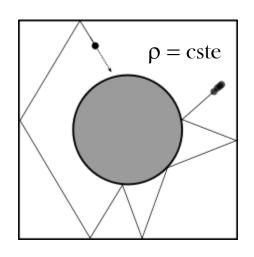
Chaire de l'Innovation L. Bettencourt

Jean-Philippe Bouchaud

1. Introduction

- Comment peut-on être « rationnel » dans un monde fondamentalement incertain et complexe ? Une approche scientifique est-elle possible, et sous quelle forme ?
- F. Knight, J. M. Keynes, H. Simon, N. Taleb, ...: « radical uncertainty », « black swans », « unknown unknowns », etc.
- Quel éclairage apporte la modélisation et la compréhension récente des systèmes « complexes » ?

Les détails d'une tornade (temps de formation, trajectoire) dependent de perturbations mineures telles le battement des ailes d'un papillon lointain, plusieurs semaines auparavant



Le billard de Sinai

1. Le proverbial « effet papillon »

- La physique du XIXème siècle: systèmes simples, trajectoires déterministes
- Mais en réalité (presque) tous les systèmes sont « chaotiques »
- → Croissance exponentielle des erreurs (paramètres, conditions initiales) l'effet papillon
- Les trajectoires individuelles sont *inconnaissables* mais la <u>statistique</u>
 de ces trajectoires peut être déterminée et est souvent très simple

$$\pi_{t} = \sum_{k=0}^{\infty} \varphi^{-k-1} A \mathbb{E}_{t} [\xi_{t+k+1} - \xi_{t+k}]$$
Inflation Espérance Chocs futurs de productivité

Cf. cours 5

There are known knowns;
These are things we know that we know.
There are known unknowns;
That is to say,
There are things that we now know we don't know.
But there are also unknown unknowns;
There are things we do not know we don't know.

D. Rumsfeld (2002)

1. « Unknown unknowns » et cygnes noirs

- La physique statistique (d'équilibre) et la théorie économique classique s'appuient sur des processus stochastiques stationnaires et ergodiques
- Peut-on vraiment connaître tous les états futurs <u>et</u> leurs probabilités ? (e.g. le smart phone en 1980 ?) <u>Risque</u> vs. <u>Incertitude</u> (Knight, Keynes, Taleb)
- ➤ Certains marchés dérivés (e.g. options, CDS) renseignent *partiellement* sur les probabilités d'évènements futurs (→ incitation à plus de marchés dérivés)
- Mais peut-on croire à l'agrégation des marchés quand l'information est fondamentalement inconnaissable? (*unknown unknowns* ou « cygnes noirs »)

1

The "Wilderness" of Bounded Rationality (Sims, Sargent):

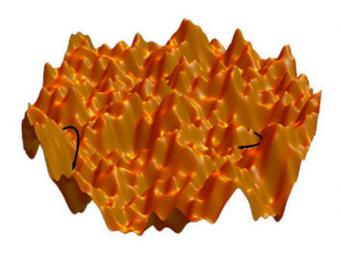
There are infinitely many ways to be boundedly rational and only one way to be rational.

Hence, the rational choice model disciplines researchers in their modelling of economic phenomena (→ "As If")

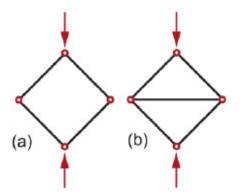
Est-il vraiment raisonnable de décrire cette foule comme un fluide d'agents optimisateurs auto-cohérents, comme supposé par le MFG?

1. La « jungle » de rationalité limitée

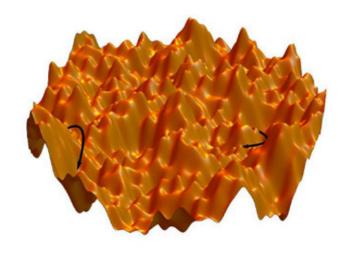
- L'hypothèse d'agents optimisateurs rationnels suppose une connaissance partagée du monde (je sais ce que tu sais et que tu sais ce que je sais...) <u>et</u> une capacité de calcul irréaliste dès que le problème est un peu complexe, cf. infra
- → Cf. Echecs : complexité combinatoire, ou « jeux à champ moyen » (MFG) : connaissance partagée <u>et</u> complexité analytique
- Herbert Simon : « Rationalité limitée » et « satisficing solutions » (solutions sous-optimales « sati-suffisantes »)
- As If (agrégation/apprentissage) préférable à la jungle de la rationalité limitée ?



© C. Cammarotta



2. Systèmes « complexes »

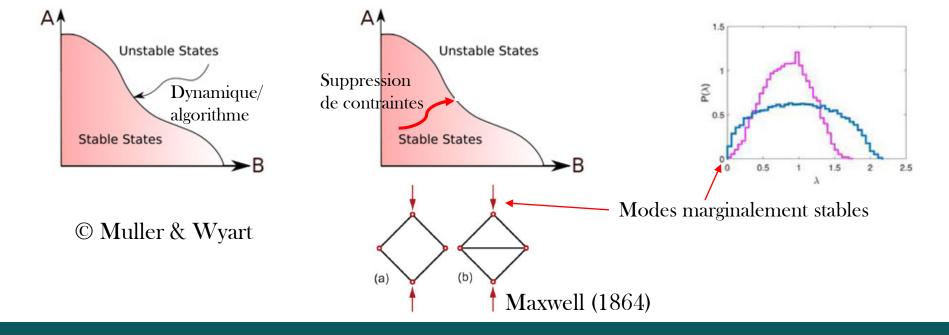


© C. Cammarotta

* Parisi: Physics, Complexity and Biology (2007).

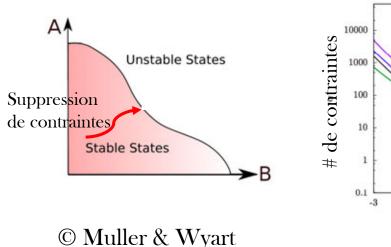
2. Systèmes « complexes » : un double effet papillon

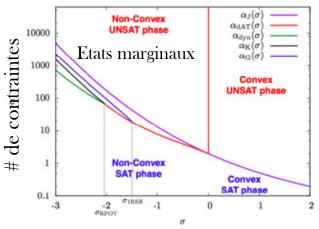
- De nombreux systèmes complexes sont tels que les probabilités elles-mêmes dépendent de manière critique des paramètres/conditions initiales/du temps (une définition de la complexité?*)
- ➤ Les *probabilités* sont inconnaissables (même quand tous les états du monde sont connus) et changent aléatoirement au cours du temps (non-ergodicité) → Probabilité des probabilités
- Les états typiques de ces systèmes sont « fragiles »

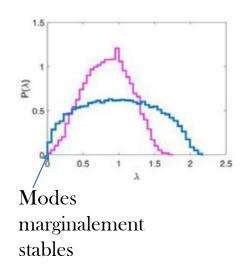


2. Systèmes complexes : stabilité marginale

- Scenario générique : la dynamique (réelle ou algorithmique) s'arrête sur des états « marginalement stables »
- ➤ De même, la suppression progressive de contraintes conduit à un état limite marginalement stable (« isostaticité »)
- Stabilité marginale : le spectre de valeurs propres λ de la matrice de stabilité linéaire « touche » zéro
- > (Pour de nombreux systèmes simples, l'équilibre atteint est stable)



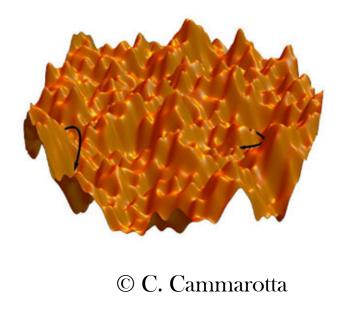


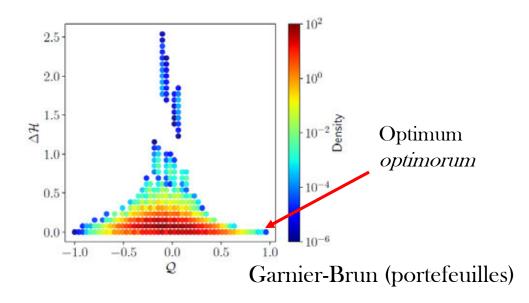


2. Systèmes complexes : stabilité marginale

Exemples:

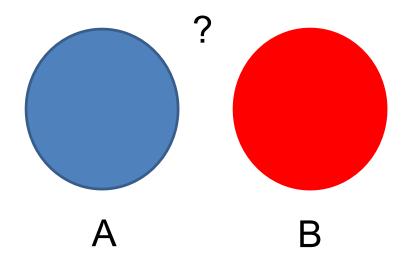
- Matière granulaire : transition de « Jamming » → réorganisations, avalanches
- Ecologie : # d'espèces sature la borne de May \rightarrow extinctions de masse (cf. 7)
- Economie : # firmes sature la condition de Hawkins-Simon → crises (cf. 7)
- Finance : si # de marchés dérivés = # états du monde → instabilité systémique (Hommes et al., Marsili et al.)
- CSP dans la phase UNSAT non convexe (cf. 7, F. Zamponi)
- Verres de spin (cf. infra)



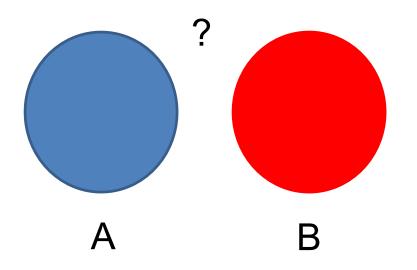


2. Systèmes complexes : Prolifération de solutions, « chaos »

- Scenario générique : le nombre d'optimums locaux est exponentiellement grand, et très différents les uns des autres
- ➤ L'optimum *optimorum* est exponentiellement difficile à trouver, <u>mais</u> de performance très proche de celle d'optimums secondaires → « satisficing »
- Ces optimums sont hyper-sensibles à la valeur des paramètres du modèle (« chaos », cf. infra) > l'hypothèse de connaissance partagée est intenable
- ➤ La dynamique explore de nombreux optimums de manière lente et intermittente → non-ergodicité, équilibres « ponctués »



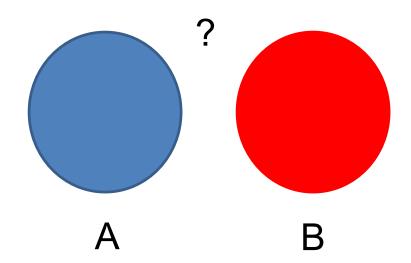
3. Un exemple canonique : les « verres de spin »



3. Un exemple canonique : les « verres de spin »

- ➤ Un modèle d'optimisation « métaphorique » : répartition de N firmes dans 2 régions A et B
- \triangleright Les firmes sont soit en symbiose (J>0) soit en concurrence (J<0)
- Elles peuvent s'établir soit dans la région A (S=1), soit dans la région B (S=-1)
- ightharpoonup Production totale : $Y = Y_0 + \sum_{ij} J_{ij} S_i S_j$
- ightharpoonup J $_{ij}$ aléatoires : modèle « SK » (champ moyen) des verres de spin

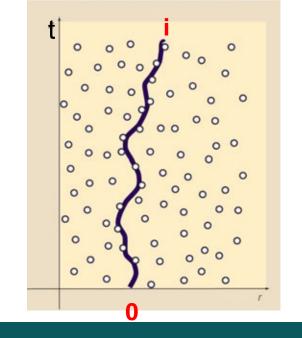
$$\mathbf{Y} = \mathbf{Y}_0 + \sum_{ij} \mathbf{J}_{ij} \, \mathbf{S}_i \mathbf{S}_j$$

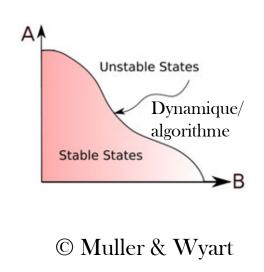


3. Un exemple canonique : les « verres de spin »

- L'optimisation de Y p/r aux variables S_i est un problème « NP-hard » : les meilleurs algorithmes connus nécessitent un temps exp(aN) pour trouver <u>la</u> configuration optimale
- Même un planificateur social bienveillant ne peut trouver <u>la</u> configuration optimale quand N est (un peu) grand
- Celui-ci *tâtonne,* mais son algorithme est piégé dans un optimum local, qui peut néanmoins être « sati-suffisant »

$$\mathbf{Y} = \mathbf{Y}_0 + \sum_{ij} \mathbf{J}_{ij} \, \mathbf{S}_i \mathbf{S}_j$$





3. Optimisation fragile

- Quand bien même on pourrait trouver les S_i optimaux, une petite modification des J_{ij} (d'ordre $N^{-1/6}$) change complètement la configuration optimale (« chaos ») cf. polymères dirigés, cours 4
- Non seulement le problème est difficile, mais il doit être parfaitement spécifié toute rationalité est *de facto* limitée
- Les algorithmes de type « descente de gradient » conduisent à des configurations marginalement stables + dynamique d'avalanches

In standard macroeconomic models rational expectations can emerge in the long run, provided the agents' environment remains stationary for a sufficiently long period.

Evans & Honkapohja, 2013; cf. Marcet & Sargent, 1989

4. Apprentissage dans un monde complexe

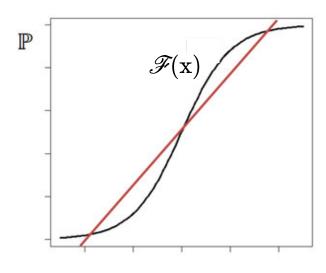
In standard macroeconomic models rational expectations can emerge in the long run, provided the agents' environment remains stationary for a sufficiently long period.

Evans & Honkapohja, 2013; cf. Marcet & Sargent, 1989

In the long run, we are all dead (Keynes)

4. Apprentissage dans un monde complexe

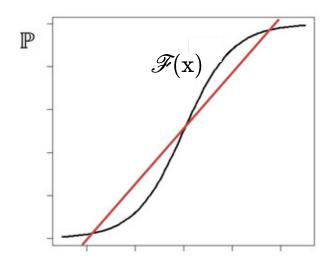
- L'apprentissage: Une réponse à la rationalité limitée?
- Sous certaines hypothèses restrictives (e.g. stationnarité, unicité, simplicité), l'équilibre en anticipations rationnelles peut être atteint par apprentissage (mais en combien de temps? Le monde change...)
- ➤ A. Un monde « simple » mais autoréférentiel; non-ergodicité
- ➤ B. Jeux complexes à deux joueurs → equilibres multiples, chaos
- C. Jeux complexes à N joueurs (jeu de la minorité, jeu type SK)



R. Farmer, JPB

4 – A. Apprentissage autoréférentiel

- Chaque agent i cherche à apprendre la probabilité d'un évènement binaire : $\mathbb{P} = \mathbb{P}(+), \mathbb{P}(-) = 1 \mathbb{P}(+)$
- ightharpoonup L'apprentissage oublie le passé lointain $P_{i,t+1} = (1 \alpha) P_{i,t} + \alpha \Theta_t$ (avec $\Theta = 1$ si + est réalisé), avec $P_{i,0}$ aléatoire
- La probabilité « vraie » est auto-réalisatrice et fonction de la moyenne des croyances : $\mathbb{P} = \mathscr{F}(\mathbb{E}_{i}[P_{i}])$ avec $\mathscr{F}(x)$ croissante
- \triangleright Les agents meurent avec prob. δ et renaissent avec un $prior \in [0,1]$

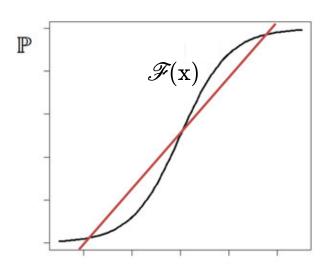


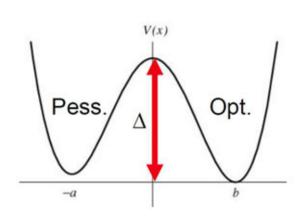
4 - A. Apprentissage autoréférentiel

- \triangleright Le cas $\mathscr{F}(x)=x$: les fourmis recruteuses d'Alan Kirman
- > P reste distribué à temps longs (probabilité de la probabilité)
- \triangleright La distribution stationnaire de \mathbb{P} est donnée par une loi beta:

$$\mathscr{P}(\mathbb{P}) = A(\kappa) \mathbb{P}^{\kappa-1} (1-\mathbb{P})^{\kappa-1} \qquad \kappa = \delta/\alpha^2$$

- \triangleright Probabilité piquée en 0,1 qd $\kappa \rightarrow 0$, avec un temps de bascule δ^{-1}
- ➤ Quasi non-ergodicité et désaccords persistants → marché actif et apparition d'inégalités fortes (cf. R. Farmer, JPB)





4 – A. Apprentissage autoréférentiel

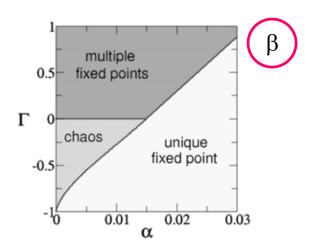
- \triangleright Le cas $\mathscr{F}(x)$ sigmoidal : 2 points fixes stables
- Longues périodes d'optimisme puis de pessimisme avec un temps de bascule qui dépend de manière exponentielle des paramètres : $\tau \sim \exp(\Delta/\alpha^2)$
- La probabilité de « krach » est <u>inconnaissable</u> à α faible, et ne peut pas être correctement estimée par les marchés (cf. 5, DSGE «+»)
- Quasi non-ergodicité (forte séparation des échelles de temps)

4 - B. Apprentissage: Jeux complexes (2 joueurs)

- Alice (A) et Bob (B) jouent à un jeu dont le règles sont stables dans le temps où chacun a N stratégies i=1,...,N et j=1,...,N
- Les gains respectifs sont donnés par des matrices Π_{ij}^A Π_{ji}^B , avec $\mathbb{E}[\Pi_{ij}^X] = 0$, $\mathbb{V}[\Pi_{ij}^X] = 1$, $\mathbb{E}[\Pi_{ij}^A\Pi_{ji}^B] = \Gamma$ tel que $\Gamma > 0$ = coopération
- Alice et Bob jouent les stratégies aléatoirement, avec des probabilités qui peuvent dépendent du temps $(p_1^A, p_2^A, \dots p_N^A), \quad (p_1^B, p_2^B, \dots p_N^B)$

$$\begin{cases} R_i^A(t) &= (1 - \alpha) R_i^A(t - 1) + \alpha \sum_j \Pi_{ij}^A p_j^B(t - 1) \\ R_j^B(t) &= (1 - \alpha) R_j^B(t - 1) + \alpha \sum_i \Pi_{ji}^B p_i^A(t - 1) \end{cases}$$
$$p_i^A(t) = \frac{1}{Z^A(t)} e^{\beta R_i^A(t)} \qquad p_j^B(t) = \frac{1}{Z^B(t)} e^{\beta R_j^B(t)}$$

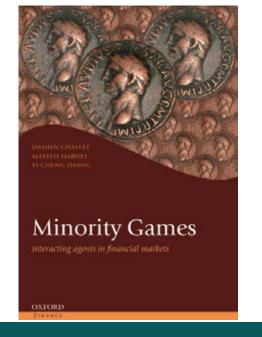
Equations de Sato-Crutchfield



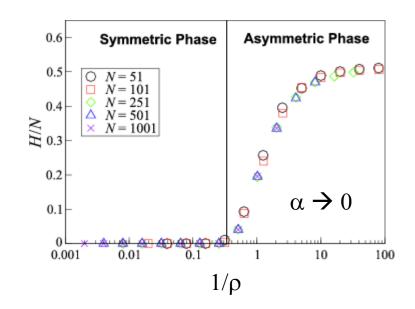
Galla-Farmer, cf. séminaire

4 - B. Apprentissage: Jeux complexes (2 joueurs)

- Alice et Bob estiment la performance des stratégies en moyennant leur gains sur un grand nombre de jeux entre $\mathbf{t} \mathbf{1}$ et \mathbf{t}
- Les probabilités choisies évoluent selon la « théorie du choix » (ou modèle « Logit »), avec un paramètre β
- \triangleright Quelle est la dynamique à temps longs ? (en supposant Π stable)
- ➤ Un diagramme des phases très riche : point fixe unique, équilibres multiples (cf. SK), cycles limites et chaos (cf. cours 7)



- Le jeu de la « minorité » (Challet, Marsili, Zhang)
- Chaque agent i=1,...,N doit au temps t décider $S_i=\pm 1$ en fonction d'une information commune $\mu_t=1,...,P$ $(\rho=N/P)$
- > L'agent i gagne si il/elle a fait le choix minoritaire, et perd sinon
- Chaque agent dispose d'un certain nombre de stratégies $\mu \rightarrow S_i$ aléatoires parmi 2^P mais fixes dans le temps, entre lesquelles il/elle choisit en fonction des performances passées, cf. supra.



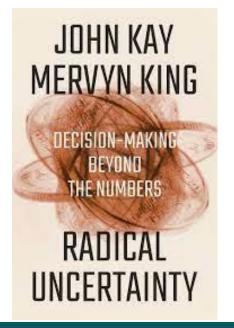
- Le jeu de la « minorité » (Challet, Marsili, Zhang)
- Pour $\rho = N/P$ faible ($< \rho_c$) le jeu est prévisible : μ permet de prédire le signe de la moyenne m des S_i (H>0)
- Pour $\rho > \rho_c$ le jeu devient imprévisible : aucune corrélation statistique H entre μ et m ne survit
- Le point critique $\rho = \rho_c$ est marginalement stable (hyper-sensible à de petites pertubations) et <u>attractif</u> (N↑ tant que le jeu est prévisible)

- Le jeu « SK » (Garnier-Brun, Benzaquen, JPB)
- \triangleright N agents i=1,..., N; deux stratégies $S_i = \pm 1$
- ightharpoonup Gain de l'agent i quand les autres jouent $S_j: S_i \sum_j J_{ij} \ S_j$
- \triangleright Matrice d'influence J_{ii} (non symétrique): coopération/compétition
- Evolution donnée par Sato-Crutchfield
- \rightarrow $m_i = \mathbb{E}[S_i]$ vérifie les équations dites de champ moyen « naif » :

$$\mathbf{m}_{\mathrm{i}} = anh[eta \sum_{\mathrm{i}} \mathbf{J}_{\mathrm{i} \mathrm{i}} \ \mathbf{m}_{\mathrm{i}}]$$

$$m_i = anh[eta \sum_j J_{ij} \ m_j]$$

- \triangleright $\beta < \beta_c$: une seule solution triviale, $m_i = 0$ (stratégies aléatoires)
- > $\beta > \beta_c$: un nombre de solutions $\sim \exp(a(\beta)N)$ régissant la probabilité $(1+m_i)/2$ que chaque agent joue $S_i=+1$
- \succ Solutions marginalement stables, chaotiques p/r aux J_{ij}
- Complexité Radicale » : Un modèle d'apprentissage qui converge vers un équilibre <u>fragile</u> (SOC) où les probabilités sont elles-mêmes inconnaissables (et dont on connait mal la mesure)



7. Conclusion: « Complexité Radicale »

7. Conclusion: « Complexité Radicale »

- Pourquoi ne sommes nous pas tous d'accord ? (ce qui justifie l'existence des marchés et leur permet de fonctionner) :
- Problèmes complexes et sensibles aux paramètres/spécifications
 Solutions « sati-suffisantes » hétérogènes (mais de mesure inconnue !)
- L'apprentissage souffre des mêmes problèmes (jeux complexes)
- Comment agréger ces décisions hétérogènes en présence d'interactions?
- Equilibres multiples, dynamique lente → modèles d'agents confrontés aux mêmes difficultés (ergodicité?)

7. Conclusion: « Complexité radicale »

- Des solutions optimales souvent <u>fragiles</u> (marginalement stables), cf. :
- Le problème du restaurant (RFIM, cours 6)
- Les chaines d'approvisionnement minimales (Leontieff, cours 7)
- Les équilibres écologiques (May, cours 7)
- L'endettement en excès (Minsky) → la crise de 2008
- Les marchés financiers sont-ils marginalement stables ? (e.g. MG)
- Le vaste monde des « Constraint Satisfaction Problems » (cf. situations socioéconomiques de ce type)

* The 2008 crisis was not predicted because economic theory predicts that such events cannot be predicted (R. Lucas, 2009)

7. Conclusion: « Complexité radicale »

- Mais dans ces conditions, quel est le statut de l'approche scientifique?
- <u>Privilégier</u> les scenarios possibles (même sans probabilités) aux prédictions quantitatives (cf. Keynes)
- <u>Identifier</u> les mécanismes à l'œuvre, en particulier les boucles de rétroaction déstabilisatrices et les instabilités systémiques
- <u>Remplacer</u> l'obsession de l'optimisation au profit de la résilience, en intégrant au mieux les instabilités potentielles
- <u>Imaginer</u> des signaux précurseurs permettant d'anticiper les effets collectifs*

Pour aller plus loin

- Références: voir page d'accueil du cours
- Séminaire: Doyne Farmer
 When Do Games and Economies
 Converge to Equilibrium?