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Introduction

Let I" be a torsion-free arithmetic subgroup of a semi-simple Q-group G. It oper-
ates properly and freely on the symmetric space X of maximal compact subgroups of
the group G (R) of real points of G and the quotient X/I' is a manifold. If the Q-rank
rq(G) of G is not zero, X/I' is not compact and the main purpose of this paper is to
provide a suitable compactification X/I" for it. Topologically X/I" is a compact mani-
fold with interior X/I", whose boundary has the homotopy type of the quotient by I’
of the Tits building of parabolic Q-subgroups of G. However, from the differential-
geometric point of view, X/I" comes naturally equipped with a structure of (real ana-
Iytic) manifold “with corners” (with boundary if 7o, (G)=1), which is of interest in its
own right, and which we shall therefore not smooth out to a boundary in the general
case. As the notation suggests, we shall in fact first enlarge X to a space X, whose
construction involves the Q-structure of G, but not I'. It is a manifold with (countably
many) corners, on which G (Q) operates so that the action is proper for any arithmetic
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subgroup of G(Q). In the classical case where G=SL,, I'=SL,(Z) and X is the open
unit disc, our X is the union of X with countably many lines, one for each cusp point
on the unit circle, and X/I" is a compact surface whose boundary consists of finitely
many circles, one for each I'-equivalence class of parabolic points. Thus, the cusp
points, which are classically added to X, are here blown-up to lines, and this allows
us to get a space on which I still acts properly. In this case, and more generally if
G =SL,, our construction is equivalent to one of C. L. Siegel [27; §§1, 12].

The space X is set-theoretically the union of X and of euclidean spaces e(P), one
for each proper parabolic Q-subgroup P of G (the codimension of ¢(P) being equal
to the parabolic rank park(P) of P). For a given P, the set of e(Q)’s (QoP) is
organized into a corner X (P), isomorphic to R} x R"™* where R, is the closed half-
line of positive real numbers, n=dim X and k=park(P). By definition, the X(P)’s

form an open cover of X. Now we wish to consider the closure e—(IT) of e(P)in X as
a space obtained from e (P) by a similar construction, using the parabolic Q-subgroups
of P. However e(P) is a homogeneous space under the group P(R), which is not
semi-simple and the isotropy groups of P(R) are bigger than the maximal compact
subgroups of P(R). This led us to enlarge our framework, drop the assumption that
G is semi-simple, or even reductive, and replace X by a suitable generalization of the
above symmetric space, which we call a space of type S or §— Q. Our construction
has then a hereditary character well-suited for proofs by induction on dim G, besides
allowing us to handle directly a general arithmetic group. The price to pay is the
appearance of some technical complications, mainly in§§1, 2, 3; in first approximation,
it may be best for the reader not to dwell too much on them, and to keep in mind the
case of a semi-simple G.

The properties of X and X/I" are applied to the cohomology of I'. 1t is shown that
H(I', Z[I'])=0 except in dimension m=dim X —r,(G), where it is a free module Z,
and that we have an isomorphism

H(I;A)=H,_(I';1®4), (ieZ), ¢y

for any I'-module A. In particular, the cohomological dimension of I' is m. If X/I" is
compact, then /= Z and (1) is just Poincaré duality. If X/I" is not compact, then the
rank of /I is infinite and 7 is in a natural way a G (Q)-module which is a direct analogue
of the Steinberg module of a finite Chevalley group.

We now give some more details on the contents of the various paragraphs. Let G
be an affine algebraic group over a subfield £ of R. §1 is technical. It introduces a
normal k-subgroup °G of G which is more or less a supplement to a maximal k-split
torus of the radical of G, and discusses Cartan involutions of reductive groups. In
particular, it is shown that if G is semi-simple, X a maximal compact subgroup of G(R),
and Pa parabolic R-subgroup of G, then P(R)has a unique Levisubgroup stable under
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the Cartan involution 8y associated to K (see 1.9 for a more general statement).

§2 is devoted to spaces of type S—k, or more generally of type .S, but in this intro-
duction we limit ourselves to the former. The homogeneous space X of G(R) is of
type S—k if: (i) the isotropy groups H,(x€X) are of the form K- S(R), where S'is a
maximal k-split torus of the radical R(G) of G and K a maximal compact subgroup of
G (R) normalizing S(R); (ii) there is given a map x+— L_ of X to Levi subgroups of
G(R) such that L, ,=g™'-L, g and L,>H, (xeX; geG(R)). Condition (i) deter-
mines completely the homogeneous space structure of X (see 2.1), but there is a choice
involved in (ii) (unless G is reductive). If P is a parabolic k-subgroup of G, then X is
canonically of type S—k under P(R), the choice of the Levi subgroups being given
by Corollary 1.9 mentioned above.

§3 introduces the notion of geodesic action on a space of type S. For simplicity,
assume here G to be connected and semi-simple. Let P be a parabolic R-subgroup of
G, and Z the center of the quotient P/R,P of P by its unipotent radical. For xeX,
denote by Z(R), the unique lifting of Z(R) in the Levi subgroup of P associated to x
as above. There is then an action of Z(R) on X, which commutes with P(R), and is
given by x0z=xz, (zeZ(R), xeX ). The orbits of Z(R) are totally geodesic flat
submanifolds of X. If 4 is the identity component of the group of real points of the
biggest R-split torus of Z, then X becomes a principal A-bundle under this action.
For a simple example, see 3.5.

§4 reviews some facts on parabolic k-subgroups. If P is such a group, let A, be the
identity component of the group of real points of the greatest k-split torus of the
center of P/R,P. There is a canonical isomorphism Ap— (R%)?, where d=dim4,,
which is provided by a suitable set of simple k-roots. We let 4, be the closure of 4p
in R% It is therefore isomorphic to the positive quadrant (R, )%. In §§4.3, 4.5 we dis-
cuss various decompositions of 4p or Ap.

§5 defines the corner X (P) associated to P. Take the simplest case, where k=R
and P is minimal. We have then the familiar Iwasawa decomposition G(R)=K-A4-N,
where 4 is the identity component of the group of real points of a maximal R-split
torus of G stable under the Cartan involution 0. Then R,P(R)=N, P(R) is the nor-
malizer of 4-N in G(R), and the projection P— P/R, P maps A4 isomorphically onto
Ap. There is then a canonical isomorphism X— A4 x N and X (P) is defined to be 4 x N.
More intrinsically, in the general case, X (P) is the associated bundle X x 474, with
typical fibre A, associated to X, viewed as a principal 4p-bundle under the geodesic
action of Ap. The stratification of Ap in orbits of 4, yields a stratification of X(P)
into locally closed subspaces. In particular, X x 4% {0} = X/4, is the face e(P) asso-
ciated to P. If Q is a k-parabolic subgroup of G containing P, then X(Q) may be
identified to an open submanifold of X (P). In §6, it is shown that if G is reductive
and P minimal, the Siegel sets in X, with respect to P [3, §12] allow one to describe
the topology of X (P) around e(P). More precisely any point yee(P) has a funda-
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mental set of neighborhoods which are the closures of a suitable family of Siegel sets
(6.2). The space X, and hence also X (P), is a trivial bundle, and to any xe X is asso-
ciated a trivialization of X (P), whose cross-sections are orbits of the group °P(R).

§7 defines X, and shows that it is a Hausdorff manifold with corners, which is
paracompact if k is countable (7.8). The main point is the Hausdorff property, which
is derived from 6.5, itself an immediate consequence of a known property of Siegel
sets [3, Prop. 12.6]. It is also shown that the closure of e (P) in X can be identified to

the space ;:_(_I;_) associated by this construction to e (P), viewed as a space of type S—k
under P (7.3).

§8 describes the homotopy type of 0X and the cohomology with compact supports
of X.

In the last three paragraphs, k=Q, and I' is an arithmetic subgroup of G. It is
shown that I' acts properly on X and that X/I" is compact (9.3). The proof is mainly
an appeal to the main theorems of reduction theory [3, §§13, 15]. In turn, the proper-
ties of X and X/I' yield various strengthenings and generalizations of some results of
reduction theory, in particular with regard to the *“‘Siegel property” and related facts,
which are discussed in §10. Finally §11 gives the applications to the cohomology of I'
already mentioned.

In what follows, the notion of “manifold with corners” is taken for granted. Al-
though this notion has already occurred at various places, there was a lack of founda-
tional material on it, and we are grateful to A. Douady and L. Hérault, who have been
willing to supply it; their paper is included here as an appendix.

The main results of this work have been announced in a Comptes Rendus Note [7].

The first named author gave a set of lectures on this topic at the University of
Utrecht, in the Spring of 1971. We thank very much Mr. van der Hout, who wrote
them up and whose Notes were helpful to us in the preparation of the present paper.

§0. Notation and Conventions

0.1. Let G be a group. If L is a subgroup of G, then Z;(L)={geG | gxg!
=x(xeL)} is the centralizer of L in G and #'¢(L)={geG | g-L-g~'=L} the nor-
malizer of L in G. The center 2 (G) of G is denoted € (G). If xeG and 4 =G, then
*4=x-A-x"' and A¥=x"1-4-x. Let N, M be subgroups of G. Then N<1G means
that & is normal in G, and G=Muv<N that N is normal in G and G is the semi-direct
product of M and N.

0.2. Algebraic groups will be affine and defined over fields of characteristic zero
(mostly subfields of R); we follow the notation and conventions of [4]. If G is an
R-group, then G(R), endowed with the topology associated to the one of R, is a real
Lie group. The symbol L( ) will denote the Lie algebra both for algebraic groups and
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real Lie groups, as the case may be. Similarly, G° will denote the connected component
of the identity in the Zariski topology if G is an algebraic group or in the ordinary
topology if G is a real Lie group.

By definition, a parabolic subgroup of an algebraic group G is one of G°, i.e. a
closed subgroup P of G° such that G°/P is a projective variety [4]. If G is defined over
R, and H is an open subgroup of G (R), then a parabolic subgroup of H is by defini-
tion the intersection of H with a parabolic subgroup of G defined over R.

0.3. As usual, the radical (resp. unipotent radical) of a connected k-group G is
denoted RG (resp. R,G). Then the greatest connected k-split subgroup ([4], §15) of
RG is normal in G (because G (k) is Zariski dense in G, [4], §18) and is the semi-direct
product of R,G by any maximal k-split subtorus of RG. It will be denoted R,G and
called the split or k-split radical of G.

If G is not connected, then, by definition, its radical, unipotent radical and split
radical are those of G°; they are also denoted RG, R,G and R,G respectively.

0.4. Let k be a field of characteristic zero. A k-group H is said to be reductive if
H° is so, i.e. if R,H={e}. Let G be a k-group. Any reductive k-subgroup of G is
contained in a maximal one. The maximal ones are called the Levi k-subgroups of G
and are conjugate under R,G (k). If L is one of them, then G=Lo<R,G ([22], [6]).

Sometimes, the set of k-points of a Levi k-subgroup of G will be called a Levi
subgroup of G (k).

Recall that if k=R, every compact subgroup of G(R) is the group of real points
of a reductive k-group; hence every compact subgroup is contained in a Levi R-sub-

group.

0.5. If G is a Q-group, an arithmetic subgroup I of G is a subgroup of G(Q) which
is commensurable with ¢ (G) n GL,, (Z) for any injective Q-morphism ¢: G — GL,, ([3],

§7).
In this paper, k is a subfield of R, G a k-group, U the unipotent radical of G and P or
B (G) the set of parabolic k-subgroups of G. From §9 on, we assume k=Q.

I. CARTAN INVOLUTIONS. GEODESIC ACTION.
PARABOLIC SUBGROUPS
§1. The Group °G. Cartan Involutions

1.1. Assume G to be connected, defined over k. We put
OG = mnex (G ker a2 s (1)
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where, as usual, X(G), is the group of k-morphisms of G into GL,. The group °G is
normal in G, defined over k. If ae X(G),, its restriction to °G is of order <2, hence
is trivial on (°G)°, therefore

(°G)° = (Macx @y kera)’. 2
Any character is trivial on U, hence

°G =°Le<U 3
for any Levi k-subgroup L of G.

1.2. PROPOSITION. Assume G to be connected. Let S be a maximal k-split torus
of RG and A=S(R)°. Then G(R)=A><"G(R). The group °G(R) contains every com-
pact subgroup of G(R) and also, if k=Q, every arithmetic subgroup of G.

Let ae X (G), and let M be a compact subgroup of G(R). Then a(M') is a compact
subgroup of R*, hence contained in { +1}. Similarly a(M )< {1} if k=Q and M is
arithmetic. In both cases M ckera?, which yields the second assertion.

To prove the first one we may assume, by 1.1(3), that G is reductive. The group G
is the almost direct product of S and of (°G)?, as follows from 1.1(2) and ([3], Prop.
10.7), hence G(R)°=4-°G(R). Moreover An°G(R) is finite, hence reduced to {e}
since A is torsion-free. On the other hand, G(R) has finitely many connected compo-
nents, hence is generated by G(R)° and a compact subgroup H [21]; since H=°G (R)
by the above, this gives G(R)=A4-°G(R), whence the proposition.

We shall on occasion use a slight variant of 1.2:

1.2’. PROPOSITION. We keep the previous notation. Let S', S” be k-tori in RG
such that S' is k-split, S'+S" is a torus and S’ N S" is finite. There exists then a normal
k-subgroup N of G containing S" and °G such that G(R)=S"(R)%><N(R).

Dividing out by U reduces us to the case where G is reductive. The tori S’ and §”
belong to the center of G. Using the decomposition of a torus 7 in anisotropic and
split factors 7, and T; ([4], §8), we can write ¥ (G)°= VS’ where V% (G):-S; and
V'~ S’ is finite. Let Y be the set of elements in X (G), which are trivial on ¥, and let

N = Nacy kera?®.

Let S=%(G)J. It follows from ([3], 10.7) that the restriction map X (G), — X (S) is
injective, with finite cokernel, and that X(G)— X(S’) maps Y injectively onto a sub-
group of finite index. From this we see that No°G, G=N-S" and Nn S’ is finite;
therefore G(R)°=S’(R)%<N(R)°. Since N(R) contains °G(R), it meets every con-
nected component of G(R) by 1.2, hence G(R)=S"(R)°><N(R).
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1.3. LEMMA. Let L, L’ be two Levi k-subgroups of G, and N a normal k-subgroup
of G containing U. Then LN N is a Levi k-subgroup of N. The groups L and L' are
conjugate by an element of U(k)n Z (LN L").

We have G=Lo<U, hence N=(Nn L)<U. Moreover U< R,N, and since N is
normal, R,N< U, whence R,N="U, and the first assertion.

Let ue U(k) be such that “L=L"' (0.4) and let xe LnL'. Then u-x-u~'=x-v for
some ve U. Since u-x-u~! and x belong to L', we have ve L' n U= {e}, hence u cen-
tralizes LA L'

1.4. We recall now a few standard facts about maximal compact subgroups or
consequences thereof.

Let H be a real Lie group with finitely many connected components. Then any
compact subgroup of H is contained in a maximal one. If K is a maximal one, then
H is diffeomorphic to the direct product of K with a euclidean space. Moreover
K/K°=H/H®. Any two maximal compact subgroups are conjugate by an element of
H° [21].

If N is a closed normal subgroup of H, with finitely many connected components,
then the maximal compact subgroups of N are the intersections of N with the maximal
compact subgroups of H. If M is a closed subgroup of H with finitely many connected
components such that all maximal compact subgroups of H are conjugate by elements
of M (e.g. if H=K" M), then similarly the maximal compact subgroups of M are the
intersections of M with the maximal compact subgroups of H. (In both cases, by
taking a maximal compact subgroup K of H containing a maximal one of M, we see
that M n K is compact maximal in M for at least one K. It is then so for all maximal
compact subgroups of H by conjugacy.)

Let H-— H' be a surjective morphism of Lie groups whose kernel N has finitely
many connected components. Then the maximal compact subgroups of H' are the
images of the maximal compact subgroups of H. (This is well-known if H and N are
connected and the reduction to that case is immediate.)

1.5. PROPOSITION. Let P be a parabolic k-subgroup of G, S a maximal k-split
torus of R,G and A=S(R)°. Let K be a maximal compact subgroup of G(R). Then
K~ P is a maximal compact subgroup of P(R) and G(R)=K-P(R)=K-A4-°P(R). If
K-a-°P(R)=K-a'-°P(R) (a, d'€ A), then a=a'. The map which assigns to geG(R) the
element a=a(g)e A such that geK-a-°P(R) is real analytic.

The equality G(R)=K"-P(R) is well-known and follows from the Iwasawa decom-
position (see e.g. [8], 14.7). We have then G(R)=K"4-°P(R) by 1.2 applied to P. The
group K n P is a maximal compact subgroup of P(R) by 1.4 and is contained in °P(R)
by 1.2, hence we can identify (KnP)\P(R) and 4 x (KnP)\°P(R). Composing the
obvious maps
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G(R) > K\G(R) (K n P)\P(R) X A x (K n P)°P(R) % 4,

we get a real analytic map f: G(R) — A. Itisclear thatf(kap) =a (ke K, ac A, pe’P(R)),
which proves the uniqueness and analyticity of a.

1.6. PROPOSITION. Let G be reductive and let K be a maximal compact subgroup
of G(R). There exists one and only one involutive automorphism 0y of G(R) whose fixed
point set is K and which is “algebraic,” i.e. the restriction to G(R) of an involutive
automorphism of algebraic groups of the Zariski-closure of G(R) in G. Let p be the (—1)-
eigenspace of Oy in L(G(R)). Then L(G(R))=L(K)®p and (k, X)}—>K-expX is an
isomorphism of analytic manifolds of K x p onto G(R). Let N be a normal R-subgroup
of G. Then 6x(N(R))=N(R).

By a result of G. D. Mostow [22] (see also [5], §1), we may arrange that GeGL,,
Kc=O(n, R), and G(R) is stable under 8:g—g="¢g™ !, and then the latter automor-
phism has all the properties required from 0. There remains to prove the uniqueness.
Let then 6" be an involutive automorphism of G(R) whose fixed point set is K and
which is algebraic in the above sense. Since K meets every connected component of
G (R), it suffices to show that 6 and 8’ coincide on G(R)°, and hence that they define
the same automorphism of L(G (R)). For this, it is enough to prove that the (~1)-
eigenspaces p and p’ of 8 and 0’ are equal, and we may also assume G to be connected.

The group G is then the almost direct product of its derived group G’, which is
semi-simple, and of the identity component S of its center, which is a torus. Both
G’ (R) and S(R) are stable under ¢’, § hence

p=L(G)np @L(S)np’, p=L(GC)np @& L(S)np.

The group G’ n K is a maximal compact subgroup of G'(R) (1.4), hence L(G')np’
and L(G') np are both equal to the orthogonal complement of L(Kn G') in L(G’ (R))
with respect to the Killing form. The group S is the almost direct product of its
greatest R-anisotropic torus S, and its greatest R-split torus S, and S,(R)° is the
greatest connected compact subgroup of S(R) ([3], 10.8). We have then, using 1.4,

L(S(R)) = L(K n S)® L(S.(R)).

But 0, 6’ are the restriction to G (R) of an R-automorphism of G, hence they must leave
both S,(R) and S,(R) stable, whence

L(S)np=L(S) np = L(Si(R)).

Let now N be a normal R-subgroup of G. It is then also reductive. By [22] (see also
[SD there exists a maximal compact subgroup K; of G(R) such that the associated
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involution 6 leaves N(R) stable. There exists ge G(R) such that #K= K. But then
0 is conjugate to 6 under Intg, whence the last assertion.

1.7. DEFINITION. The automorphism 8 in 1.6 will be called the Cartan involu-
tion of G(R) with respect to X.

If G is semi-simple, then 6 is the usual Cartan involution, and the uniqueness is
obvious.

1.8. PROPOSITION. Let H be a R-subgroup of G containing U. Assume that all
maximal compact subgroups of G(R) are conjugate under H(R). Let K be a maximal
compact subgroup of G(R) and L a Levi subgroup of G(R) containing K. Let 6 be the
Cartan involution of L with respect to K and Ly =(HNLYN8g(HNL). Then L, is the
unique Levi subgroup of H(R) contained in L and stable under 0.

The group L, is stable under 6, hence is reductive ([5], 1.5), and contains every
subgroup of H'= Hn L stable under 6y, whence the uniqueness assertion. Let now
L’ be a Levi subgroup of H'. Since H(R)=H'+U(R), the group L’ is a Levi subgroup
of H(R). By a result of Mostow ([22], see also 1.9 in [5}), L admits a Cartan involution
0’ leaving L’ stable. Let K’ be its fixed point set. In view of the assumption on H there
exists he H(R) such that K="K’. Since "K’'cLn"L, there exists by 1.3 an element
ue H(R)n 2y (K) such that “*L=L. We have therefore K=*"K' and, by the unique-
ness of Cartan involutions (1.6),

OxeIntuh = (Intuh)-0'.

As a consequence “*L’ is a Levi subgroup of H(R) stable under 0, hence contained
in L,, hence equal to L, since L, is reductive; thus L, has all the required properties.

1.9. COROLLARY. Let P be a parabolic R-subgroup of G, K a maximal compact
subgroup of G(R) and L a Levi subgroup of G (R) containing K. Then L N P contains one
and only one Levi subgroup of P(R) stable under 6.

Since G(R)=K-P(R) by 1.5, this is a special case of 1.8.

§2. Homogeneous Spaces of Type S

2.1. LEMMA. Let R be a solvable connected normal R-subgroup of G containing U.

(i) Let K be a maximal compact subgroup of G(R). Then R has a maximal R-torus
normalized by K.

(@ii) If S is a maximal R-torus of R, then 4 3(S) contains a maximal compact sub-
group of G(R).

(iii) The subgroups of G(R) of the form K-S(R), where S is a maximal torus of R
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defined over R and K a maximal compact subgroup of G(R)n AN ¢(S), form one con-
Jjugacy class of subgroups of G(R). Let H=K-S(R) be one of them and H the Zariski
closure of H. Then H is reductive, H= H(R), S=Rn H and S(R)=Rn H.

(iv) Let L be a Levi R-subgroup of G containing H, and 8y the Cartan involution of
L(R) with respect to K. Then L R=S and 8y leaves H(R) and S(R) stable.

(i) Let L be a Levi R-subgroup of G containing K. Then R=(Rn L)><U, and
Rn L is a maximal torus of R which is normalized by L, hence by K.

(ii) In view of (i) this assertion is true for at least one maximal R-torus of R. Since
such tori are conjugate under R(R) ([8], 11.4), it is then true for all of them.

(iii) The first assertion follows from the conjugacy of maximal R-tori of R and of
maximal compact subgroups (1.4).

The Zariski-closure K of K is reductive and normalizes S, hence K° centralizes S.
We have H= K-S, H°=R°-S, hence A°, and therefore H, is reductive. Moreover,
K-S(R) contains H(R)°; but K is a maximal compact subgroup of G(R), hence a
fortiori of H(R), and consequently intersects every connected component of H(R);
therefore H(R)=K: H(R)°=H. We have S(R)cRn H, hence Sc R A. The group
RN H is normal in H, hence reductive. Since S is maximal reductive in R, it follows
that S= R H, whence also

S(R)cRnHc(Rn H)(R)=S(R),

which ends the proof of (iii).

(iv) Any subspace of the Lie algebra of L (R) which contains L(K) is stable under
O, hence L(H(R)) and H(R)° are stable under 0. Since H(R) is generated by K and
H(R)° (1.4), it is also stable under 6. The group LN R is a normal R-subgroup of L,
hence its group of real points is stable under 8 by 1.6. It is reductive, contains
R~ H=S, hence is equal to S.

2.2. Remark. Notation being as above, assume G to be connected. Then L is
also connected, hence centralizes the torus L n R. Tt follows that, in 2.2(iii), K cen-
tralizes S and K is the unique maximal compact subgroup of K S(R).

2.3. DEFINITION. A4 space of type S for G or G(R) is a pair consisting of a right
homogeneous space X under G(R) and of a family (L), x of Levi subgroups of G(R)
satisfying the two following conditions:

SI. There exists a connected normal solvable R-subgroup Ry of G containing U,
such that the isotropy groups H,(xe X) of G(R) in X are of the form K- S(R), where
S is a maximal R-torus of Ry and K is a maximal compact subgroup of G(R) nor-
malizing S (cf. 2.1).

SII. We have H,cL, and L,.,=(L,)® for all xeX and geG(R).
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We shall often say simply that X is a homogeneous space of type S under G(R).
Note that, by 2.1, Ry is completely determined by the action of G(R) on X. From §4
on, we shall be concerned only with the case where Ry = R,G is the k-split radical of
G, in which case we shall say that X is of type S—k. If moreover G="G, then the
isotropy subgroups are just the maximal compact subgroups of G(R). As explained
in the introduction, this is our main case of interest.

2.4. Remarks. (1) The condition SI of 2.3 implies that X is diffeomorphic to
aeuclidean space, G (R)° is transitive on X and the isotropy groups are conjugate under
G(R)°.

(2) Let X be a homogeneous space under G(R) for which the isotropy groups
H_(xeX) are reductive. Then it is always possible to find a family {L_},. y satisfying
SII. Indeed, choose yeX, a Levi subgroup L>H,, and put L, ,=L* for geG (R).
Since L8=L for ge H, the group L® depends only on y-g, and SII is then satisfied.

2.5. EXAMPLES. (1) Let G be semi-simple. Then Ry={e}, and the isotropy
groups are the maximal compact subgroups of G(R). Since they are equal to their
normalizers, X may be identified with the symmetric space of maximal compact sub-
groups of G(R).

(2) Let G be reductive and let C=% (G°)° be its radical. The group Ry is an R-sub-
torus of G, normal in G. The isotropy groups are then the subgroups K- Ry (R), where
K runs through the maximal compact subgroups of G (R). The group X n RG is maxi-
mal compact in RG(R). By standard facts on tori, there exists an R-split subtorus D
of RG normal in G, such that RG(R)=(K-Rx(R)nRG) x 4, with 4=D(R)°. The
group A operates properly and freely on X. On X/ A4, the isotropy groups of G(R) are
the groups K- RG(R), (K maximal compact), hence X/4 may be identified with the
space of maximal compact subgroups of 2G° (R). If G is connected, then 4 is central.
Note that when G is reductive, SII is vacuously fulfilled since we must have L, =G (R)
for all xe X.

2.6. LEMMA. Let X be a homogeneous space of type S under G(R) and
H ={H,},cx the set of isotropy groups of G(R) on X. Let G' be an R-subgroup of G
containing U such that G’ (R) is transitive on X. Then X satisfies S1 under G', the cor-
responding solvable group Ry being equal to (G' nRy)°-R,G'.

Let X be a maximal compact subgroup of G such that Kn G’ is maximal compact
in G'(R) and let xeX be such that K< H,; thus H,=H,N G’ contains a maximal
compact subgroup of G'(R); by conjugacy, this is then true for all xeX. The group
R'=(G'nRy)°R,G is a normal connected solvable R-subgroup of G’ and
R.R'=R,G'. Let S be a maximal R-torus of Ry. Then Ry=Sc<U, henceRyn G’
=(SNG")<U, and R’ =S"<R,G’, where S’ =(SnG')° is a maximal R-torus of R’,

-



Corners and Arithmetic Groups 447
and we have S’ =(Sn R’)°. Choose xe X such that S(R)= H,. Then
SR)NG' =S(R)NH,nG =S(R)n H,,
which shows that
S'(R)<H,, S(R)cS[R)NH, S (R)°=(S(R)nH). o))

Let K’ be a maximal compact subgroup of H,. We have already seen that it is
maximal compact in G'(R); by (1), it normalizes S’'(R). We wish to show that
H;=K'-S’(R), which will prove the lemma. For this, it is enough, by the last assertion
of 1.4, to prove that H,/S'(R) is compact.

Let A be the Zariski-closure of H, in G. The group S being normal in A, the set
M=(HnG)-S is an R-subgroup of G. Since H,=H(R) by 2.1, H,-S(R) is an open
subgroup of finite index in M (R). In particular, it is a closed subgroup of G(R). As
a consequence, H,-S(R)/S(R) may be identified with a closed subgroup of H,/S(R).
Since the latter is compact, so is the former. But H,/(H .~ S(R)) is isomorphic (as a
Lie group) to H.-S(R)/S(R), hence is compact, too. By (1), H,/(H,n S(R)) and
H./S’(R) have a common finite covering, hence H,/S'(R) is compact.

2.7. Restriction to subgroups. Examples. Let X and G’ be as in 2.6. Then X satisfies
SI with respect to G’ (R), and, by 2.4(2), there is then at least one way to make X of
type S under G'. We shall now indicate some cases in which this can be done in a
canonical manner. In the sequel, it will always be understood that X will be viewed
of type S under G’ with the choice of the Levi subgroups of G'(R) given below. These
will often be denoted L, ¢ (xeX).

(1) G’ is normal in G. We define L, ;. as G’ n L,. This applies in particular to G°.

(2) G is connected. By 2.2, H, has a unique maximal compact subgroup, say X..
Since G’ (R) operates transitively on X it follows that all maximal compact subgroups
of G(R) are conjugate under G'(R). We then define L, . as the unique Levi subgroup
of G’ n L, which is stable under the Cartan involution of L, with respect to K, (cf.
Prop. 1.8).

(3) G'=P is parabolic. We apply (1) to G° and (2) to P=G°.

Remark. Assume G’ to satisfy one of the above three conditions. Let ge G(R) and
G"=G'%. Then G” satisfies the same condition, and we have

Lx ‘56" = (Lx, G’)g (X € X) . (4)
2.8. Let X be a space of type S under G. It is the total space of a principal fibration

with structure group U(R), where U(R) operates as a subgroup of G(R). Let V' be a
(necessarily connected) R-subgroup of U normal in G. Let n:G—> G’ =G/¥V and
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o:X—> X' =X/V(R) be the natural projections. Let x, ye X be such that ¢(x)=0(y).
Then xey-V(R), hence L,=L; for some veV(R) and n(L,)=n(L,). It is then im-
mediate that X" is of type S under G', with Ry.=mn(Ry), and L,,=n(L,) for all
xeX. Assume V to be defined over k. Then n(R,G)=R,G’, therefore X' is of type
S—kif X is so.

§3. Geodesic Action

In this section, X is a space of type S under G(R); for xe X, H, is the isotropy sub-
group of x and L, the Levi subgroup of G(R) associated to x.

3.1. LEMMA. Let P be a parabolic R-subgroup of G, Z the center of P/R,P and
n:P— R/R,P the canonical projection. Let Y be the greatest compact subgroup of Z (R).
Then, for xeX, Zy=Zn(H,NP) is generated by n(Rx(R)) and by Y. In particular
it is independent of xe X.

We have Ry n R, P=U, therefore n defines an injective homomorphism of R,/U
into P/R,P, whose image is a torus which is normal, hence central; we have thus
n(Ry)c=Z. We have n(Ry)=mn(S) where S is any maximal torus of Ry, hence, by 2.1,

n(Ry) R)=n(H,nRy) forany xeX.

On the other hand, H,=K-(H,n Ry), where K is a suitable maximal compact sub-
group of G(R), hence

H,nP=(KnP)(H,nRy)
Zo=Znn(H,nP)=n(KnP)nZ)n(H, N Ry).

The group K P is maximal compact in P(R) (1.5), hence = (K P) is maximal com-
pact in (P/R,P) (R) (1.4), and then n(KnP)n Z is maximal compact in Z(R) (1.4).
Therefore n(KnP)n Z=Y, whence the lemma.

Remark. Let S; be the R-torus of Z which is generated by the greatest R-aniso-
tropic torus of Z and by the image of Ry. We have then S; (R)°=(Z,)°. Let S, be an
R-torus in Z such that Z° is the almost direct product of S; and S,. Then S, (R)°n
N Zy={e} and S, (R)° maps isomorphically onto Z(R)/Z, under the natural projec-
tion. The torus S, splits over R, and it follows from 1.2’ that there exists a normal
R-subgroup N of P containing Ry and all compact subgroups of P(R) and such that
P(R)=S5,(R)°><N(R).

3.2. Definition of the geodesic action. Let P, Z, Z,, be as before. We shall define
here an action of Z(R) on X which commutes with P(R), is trivial for Z, and defines
a proper and free action of Z(R)/Z,.
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By 2.7(3), X'is canonically of type S under P. For xe X, let L. be the Levi subgroup
of P(R) associated to x; it is contained in L,. Let Z, =% (L.). It follows from 1.8 and
the definition of L}, (2.7) that Z, is the unique lifting of Z(R) in P(R) which is stable
under the Cartan involution of L, with respect to a maximal compact subgroup of
H,. Given ze Z(R), let z, be its lifting in Z,. Fix xeX. Let ye X and geP(R) be such
that y=x-g. Let us put

Yo, z=x28. )]

Let g’ P(R) be such that x-g’'=y. Then g'=h-g for some he H,n Pc L;; the element
h then commutes with z,, hence x-z,+ g’ =x-z.-g. This shows that the right hand side
of (1) depends only on x, y, z and justifies the notation of the left hand side.

LEMMA. We have

(i y-poyz=(yo,z)'p, (x,yeX;peP(R), zeZ(R)).
(ii)) yo,z=yo, z, (x,x', yeX; zeZ(R)).

Let geP(R) be such that y=x-g. For peP(R), we have y-p=x-g-p, hence
(y'p)o.z=xz,gp=(yo.z)p, 2

which gives (i).

Let now 2eG(R) and set P’ =P". Then Int/ induces an R-isomorphism of Z onto
Z'=%(P’/|R,P’). Let us also denote by z" the image of ze Z under this map. It is clear,
by “transport de structure,” that we have

(yo,2) h=yho,. 2" (x,yeX;zeZ(R)). (3)

Let x'eX, and choose AP (R) such that x-h=x". By (3), applied to y-A~%, we
have, taking (i) into account:

yo,z=(y-h o, z)h=yo, 2"

but, since #eP(R), we have z"=z, whence (ii).

In particular, this shows that the actions o, and o,. are the same. We may therefore
omit the reference point, and get an action

yi(x,z2)>x0z (xeX;zeZ(R))
of Z(R) on X. By (1), with g=e:

xoz=x2z, (xeX;zeZ(R)), @)
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which shows that
(x02)0z' =x0(z'2) (xeX;z z2’eZ(R)).
We can now write (3) in the form
(xoz)h=x-hoz", (xeX,zeZ(R), heG(R)), Q)

where o refers to the geodesic action of Z (R) on the left-hand side and of *Z(R) on
the right-hand side.

3.3. DEFINITION. The action y defined above is called the geodesic action of
Z(R)on X.

The reader will note that this action depends only on the structure of type S of X
under P. If P is reductive, then Z is a subgroup of P, and the geodesic action is just
the ordinary action.

3.4. PROPOSITION. The geodesic action commutes with P(R). The group Z, op-
erates trivially and Z(R)/Z, operates freely.

(In fact, the action of Z(R)/Z, is a principal bundle action, see 3.6.)

The first assertion follows from 3.2(i). If zeZ, then, by 3.1, z,e H, for all xeX,
hence z acts trivially by 3.2(4).

It also follows from 3.1 that if ze Z(R), z¢ Z,, then z,¢ H, for any xe X, hence
Z(R)/Z, acts freely on X.

Remark. The group Z, contains the maximal compact subgroup of Z (R). We may
therefore write Z(R)=2Z, x A, where 4 is the identity component of the group of real
points of an R-split torus of Z. By 3.4, and 3.2(4), the orbit x 0 Z(R) of xe X may be
identified with x- A, i.e. with the orbit of x under the ordinary action of the identity
component of the group of real points of an R-split torus. If G is reductive, and hence
X is a symmetric space with negative curvature, then x- A, is a totally geodesic flat
submanifold, isometric to a euclidean space, and the orbits of 1-dimensional subgroups
of A, are geodesics, whence the terminology.

3.5. EXAMPLE. Let G=SL, and X be the upper half-plane. Let G(R) act on X by
(% B =(az+b) (cz+a) .
¢ d

Let P be the group of upper triangular matrices in G. The group Z, has two elements
+1. Let A=Z(R)/Z,. The stability group of i is SO (2, R) and the Cartan involution
associated to it is gi»'g™". For x=i, L,=2Z, is the group of diagonal matrices in
G(R). For a4, let a(a) be the square of the upper left entry of the lifting of a in 4.

-
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Then, for z=x+iy, we have
zoa=x+iu(a)y.

Hence the orbits of A4 are the vertical lines and on each such line, identified to R*
by the y coordinate, z+ z 0 a is the multiplication by «(a).

If we take as model of X the open unit disc, then the choice of a parabolic R-sub-
group P of G corresponds to that of the fixed point P, of P(R) on the unit circle.
The orbits of Z(R)/Z, under the geodesic action are then the geodesics abutting to Pg.

3.6. Bundles defined by the geodesic action. Let P, Z, Z, be as before. Let T be an
R-split torus in ¥ (P/R,P) whose intersection with Zj, is finite and 4 be the image of
T(R)° into Z(R)/Z,. By 1.2/, there exists a normal k-subgroup M of P containing
Ry and all maximal compact subgroups of P(R), such that P(R)=T(R)%<M (R).
Since P(R) commutes with A4, the latter operating by geodesic action, we have an
action of 4 x M (R) onto X defined by

x> (xo0a)m, (acA, meM(R);xeX).

3.7. PROPOSITION. The above action of Ax M(R) on X is transitive. For x€X,
H_nPcM(R) and the isotropy group of x in Ax M(R) is {e} x (H,nP).

Let xeX. Then (x 0 A)- M (R)=x-A4,- M (R)=xP(R)=X, which proves the first
assertion. The space X is of type S under P(R) (2.7) and in particular the isotropy
group H,NP of x under P(R) is generated by a maximal compact subgroup K, of
P(R) and a subgroup of Rx(R). Since both of these groups are contained in M (R),
we have H.nPcM(R) for all xeX. Let now ac4 and meM(R) be such that
(x 0 a)-m=x. We then have a,-me H, NP hence a,-me M (R) and a,=e, whence the
proposition.

3.8. COROLLARY. Let xeX. The map (a'm)>(x 0 a)-m (a€A; me M(R)) in-
duces an isomorphism u.: A x (H.nP)\M(R) X X of (A x M (R))-homogeneous spaces.
The space X is a trivial principal A-bundle, and the orbits of M (R) are cross-sections of
this fibration.

By 3.7, u, is an analytic bijective map of (4 x M (R))-spaces. Since these are ho-
mogeneous spaces, it is then an isomorphism. This proves the first assertion; the
second one is an obvious consequence.

Remark. Since Z, contains the greatest compact subgroup of Z(R), we may in
particular, in 3.6, choose T such that A=2Z(R)/Z,; hence 3.8 applies to the geodesic
action of Z(R)/Z, on X.

3.9. Structure of type S for X/A. We keep the previous notation and let 6: X" —
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- X' =X/ A be the canonical projection. In view of 3.4, P(R) commutes with ¢, whence
a transitive action of P(R) on X'. For xeX, the fibre F,=0¢"1(0(x)) is x- 4, (3.2),
hence the isotropy group of o (x) is (H,nP)" A,. The condition SI is then fulfilled,
with respect to P, if we let Ry. be the subgroup of P generated by Ry and the inverse
image of 7. In particular if Ry=R,G and T is the greatest k-split torus of € (P/R,P),
then Ry,=R,P.

For xe X, let L, p be the Levi subgroup of P assigned to x by the condition SII. If
yeF,, then L, is conjugate to L, by an element aeA,. But A,c L., hence L,=L, and
therefore, by construction (2.7), L, p=L, p. Thus xi— L, pis constant along the fibres
of 6, and S1I is clearly satisfied for the action of P(R) on X" if we put L,.=L_ , for
any xeo ™! (x). This choice will be understood in the sequel. Therefore X" is canonically
of type S under P; by the end remark of the previous paragraph, it is also of type S—k
if X is so under G.

The group Z(R) is commutative, therefore the geodesic action of Z(R) goes over
to an action on X', trivial on 4, and commuting with P(R). In view of the definition
of L. (x'eX’), it is clearly the geodesic action of Z(R) on X', for the structure of
space of type S under P just defined.

3.10. Assume G to be connected, and let G’ be as in 2.6. Then, by 2.7(2), X is
canonically of type S under G’ and for xe X the Levi subgroup L; of G’ (R) associated
to x is contained in L,. The group % (G/U) is reductive, therefore the canonical homo-
morphism G'/U— G’/R,G' maps € (G/U)n(G'/U) isomorphically onto an R-sub-
group of €(G'/R,G’). Let xeX. Since Ly<L,, an element ze¥(G/U) (R)n(G'/U)
and its image in ¥(G’'/R,G’) have the same lifting associated to x. Consequently, the
geodesic actions of z on X, with respect to the structures of type S under G and G, are
the same.

If G’ is parabolic, then G'/U is parabolic in G/U, hence contains € (G/U ), which
is then identified to a subgroup of ¥ (G’/R,G’), and this identification is compatible
with the geodesic actions on X under G and G'. Returning to the situation of 3.2, we
may in particular apply this to two R-parabolic subgroups Pc @ of G, which play the
role of G’ and G in the preceding discussion, and get:

3.11. PROPOSITION. Let PcQ be two parabolic R-subgroups of G. Then
% (Q/R,Q) may be canonically identified with a subgroup of ¢ (P/R,P ), and the geodesic
action of € (Q/R,Q) (R) on X is the restriction of the geodesic action of € (P/R,P) (R)
on X.
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II. CORNERS
§4. Parabolic k-Subgroups

4.1. In this section, we review some standard facts on parabolic subgroups and fix
some notation. We recall that if H is a k-group, B (H) is the set of parabolic k-sub-
groups of H. Let R be a connected normal solvable k-subgroup of G and 7n: G — G/R
the canonical projection. Then P—n(P) induces a bijection of P(G) onto P (G/R)
whose inverse map is given by Q="' (Q). Assume now R to be k-split [4, §15],
which is automatically the case if R is unipotent. Then n(k): G (k) - (G/R) (k) is sur-
jective, hence the bijection B (G) - P (G/R) preserves conjugacy classes over k. In
particular the classification of parabolic k-subgroups up to conjugacy over k is ‘‘the
same’ in G, G/U or G/R,G; this reduces us to the case of reductive groups. Let .S be
a maximal k-split torus of G°/U, ,@=&(S, G/U) the set of k-roots of G°/U with
respect to S, and 4 a basis of @ ([8], §5). By [8, §5], the conjugacy classes in P (G)
with respect to G°(k) are in 1—1 correspondence with the subsets of 4. The class
corresponding to J= 4 is represented by the standard parabolic subgroup P;: the
image P,/U of P, in G/U is the semi-direct product of its unipotent radical U, by the
centralizer Z(S;) of S;, where S;= (.., kera)®, and its split radical is S, U,. Given
PeB, the only J such that P is conjugate to 2, under G° (k) will be denoted 7(P) and
called the type of P.

4.2, Let Pe B(G). The quotient Sp=R,P/(R,P* R,G) is a k-split torus, and is also
the greatest k-split torus in Cp=%(P/(R,P- R,G)). We let Ap be the identity compo-
nent of S, (R). Let P’'e B(G) be conjugate to P under G°, and let xe G° be such that
*p’ = P. Then Intx induces an isomorphism of Cp. onto Cp. If P’?= P with ye G°, then,
since P’ is its own normalizer in G°, yex-P’. Clearly, Intp’ (p’eP’) induces the trivial
automorphism of Cp., hence Inty induces the same isomorphism of Cp. onto Cp as
Intx. Since we may take ye G°(k), this isomorphism is defined over k, hence defines
a canonical isomorphism

op.p:Sp 3 Sp. (€3]

Let in particular P’ =P, be standard. Then Sp.=S,/S,. The elements of 4 -1 de-
fine a basis of X*(S,/S,)®Q, where X*( ) denotes the group of rational characters
[4], which is carried over onto a basis of X*(Sp)®Q, to be denoted in the same way.
We thus have a canonical isomorphism:

Ap 3 (RY)*. 2

4.3. Let Q be a parabolic k-subgroup containing P and let J=1 (Q). The inclusion
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R,0<R;P induces an injective morphism of S, into Sp which maps S, onto
(Naes_r kera)®. Let Ap o=({Nses_s kera)n Ap. Then the product decomposition

AP=AP,Q X AQ (3)
corresponds to the factorization
(R3)*™ = (R x (RY)*; @

The group Ap associated to P, viewed as subgroup of Q, is Ap/A4,, i.€. is the isomorphic
image of Ap o under the canonical projection. Thus, our 4, above can be written
Ap o, and then (3) takes the form

AP,GO= AP,Q X AQ, GO~ (5)

For a subset L of 4—1, let

Apy = (Neer kera) N 4p, (6)
where P(L) is the parabolic subgroup of type Iu L containing P. In particular

Ap oy = Ap, Apa_1y = Ago = {e}.

4.4. The isomorphism 4.2(2) yields an open embedding of 4, into R*~!. The
closure of 4p is R4~ and will be denoted 4, (or Ap ¢ if we wish to emphasize the
ambient group). The elements of A—1 are then coordinates on A, taking all positive
values (zero included), and they identify 4p to the positive quadrant in R*~". The

action of 4, on itself by means of translations extends to one on 4p, given by coor-
dinate-wise multiplication.

4.5. For every Lc A-1, let 0, be the point with coordinates

0 w¢L
“("L)={1 ZiL

In particular:

0 =(0,0,...,0), o, ,=(1,1,...,1)=e.
Then Ap-0,=Ap(L) is the face of A, given by

Ap(L) = {xedp|a(x)=0(x¢L), x(x) # 0(xeL)}. (1)
In particular:

Apog=Ap(0)={0p}, Ap(d—1I)=Apr0, 1= A4p,
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and we have the orbit space decomposition:

dp= HLCA—I I‘IP (L) 2
The isotropy group of o is 4p(1y; We have
Aprop=AppuyoL=Appey (Led-=1I), &)

and the orbit map a+—>a-0, extends to a diffeomorphism:
Ap py 3 ClL(4p(L)). 4)

In this formula, the right-hand side is the closure of Ap(L) in Ap and the left-hand side
is defined as in 4.3, but with G replaced by P(L).

§5. The Corner X (P ) associated to a Parabolic Subgroup

5.0. From now on, X is a homogeneous space of type S—k for G (2.3). Thus we
have Ry= R,G. This latter condition determines uniquely the isotropy groups H, (xe X)
of G(R) on X; it involves the k-structure of G, as the case of a torus already shows.
Note that X is also of type S — k under G° or under the group °(G®) of 1.1. If G°=°(G°),
the isotropy groups in X are the maximal compact subgroups of G(R). By 2.1 and
2.4(2), G always has a homogeneous space of type S—k.

5.1. We keep the previous notation. By 3.8 and the definition of 4, (4.2), X'is a
principal 4,-bundle under the geodesic action. By definition, the corner X (P) asso-
ciated to P is the total space of the associated bundle with typical fibre Ap:

X(P)=X x**4,. 1)

Thus X (P) is the quotient of X' x 4p under tke equivalence relation: (x, z)~(x", z')

if and only if there exists ae Ap such that x=x"0 a and z'=a-z. The space X(P) is

endowed with a natural (real analytic) structure of manifold with corners coming from

that of the fibres (the components of the boundary being the e(Q) described below).
In view of 4.5(2), we have

X(P)=[lresr X(P, L), @
where

X(P,L)=X x*"A4p 0. €))
By 4.5(3)

X(P,L)=X[Apqy x """ ® Ap pay = X/Apwys “)



456 A.BOREL AND J-P.SERRE
in particular

X(P,0)=X]4p, X(P,4-1)=X. (5)
Let us put

ex(Q) =e(Q) = X/4y, (QeP),

in particular e (G°) = X. By 3.9, e(Q) is canonically of type S—k under Q. The equality
(2) can be written

X (P)=loecp, =re(Q)- (6)
We have a principal fibration

X — e(Q) with structural group  A,. N

Let J be a subset of L. Then P(J)<=P(L)=Q. Replacing X, G, P by ¢(Q), Q, P(J),
we then have also a principal fibration

Ve, g e{@) = e(P(J)) with structural group  Ap - (8)

We have the factorization Ap;,=Ap,, o X Ao. The group A, ;, operates by geodesic
action on the fibration (7), and the action induced on e(Q)is the geodesic action of
Ap, e Which underlies (8).

The group P(R) operates on X, and commutes with 4p. The action of P(R) extends
then to X (P), leaving the faces ¢(Q) stable. Since 4, is commutative, its action on X
also extends to X (P), leaving each e(Q) stable, and it still commutes with P(R).
Moreover, P(R) operates on the fibrations (7), (8).

5.2. Let ¥ be a normal unipotent k-subgroup of G, and #n:G— G’ =G/V the
canonical projection. The group V(R) operates properly and freely on X, and
X'=X/V(R) is canonically of type S—k under G’ (2.8). Moreover, if ¢: X —» X’ is the
canonical projection, then L,,=n(L,) (xeX). If Pe‘P and P'=n(P), then A4p. is
canonically identified with A, and one checks that the geodesic actions of 4, on X
and X' commute with o. As a consequence, X (P) is a principal ¥ (R)-bundle over
X'(P'), and the projection t:X(P)-» X' (P') extends a. For every Qo P, Qe P the
restriction of T to ex(Q) is the projection of a principal V(R)-fibration with base

ex(Q)-

5.3. PROPOSITION. Let P<Q be two parabolic k-subgroups of G and I,=1(Q)—
—I(P). The inclusion X(Q) <> X (P) is an isomorphism of manifolds with corners of X (Q)
onto an open subset of X(P). We have Clyp, e(Q)=]]o>r=r,res €e(R)=€(Q) (P),
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where e(Q) is viewed as a space of type S—k under ¢ (5.1), and e(Q) (P) is the corner
of e(Q) associated to the parabolic k-subgroup P of Q.
The canonical factorization (4.3(3))

Ap=Ap g X 4y

yields an embedding

Apg % /IQ - A, (1)
which, for every L= A —1(Q), induces a homeomorphism

Apg x Ag(L) 3 Ap(LUly), (L<d-1(Q)). )
We have clearly

X x4, = X xAre*4e(4,, x d,), 3

X x4, (L) = X x*7e*4e(4,, x Ay(L)). (4)

In view of (1), (2), this yields
X (Q) =X x*7(Apy x Ap), ©))
e(Q(L) =X (Q,L) = X x**(4,(LUTy), (Le4=1(0). ©)

The inclusion X (Q)c, X (P) is then defined by the inclusion (1) of the typical fibres in
the right-hand sides of (5) and 5.1(1). By (2) and (6), its restriction to X (@, L) is an
isomorphism of X(Q, L) onto X(P, L ul,). Taking 5.1(4) into account, we get
canonical isomorphisms

e(Q (L)) = X[Agu, = X(@Q.,L)~ e(P (Lu I(Q)) > X/Aprory
(Led-1(Q). (D

Thus X (Q, L) is endowed with structures of space of type S under both Q and P (5.1).
It is immediate from the definitions that the latter structure can also be associated to P
viewed as a subgroup of Q, hence the inclusion commutes with the geodesic action
of Ap.

Let J=A—I(P). The closure of Ap(J) is the set of points of 4, on which the
elements of 4—1(P)—J are zero. Therefore

Cl(/IP (J)) = L[LCJ Ap (L) . ®
But
Cl{e(P(N)) = X x** Cl{4p(7)) ©)
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whence

Cl(e(P(J)) = I_ILCJ X(P,L)= HP(])DR:P,R&‘D e(R). (10)

Let nowJ=1I,i.e. P(J)=Q. Wehave Ap=Ap, x Ay and 4, acts trivially on CI(4,(J))
whence

Cl{(e(Q)) = (X/4p) x 472 Cl(4p (I,)). (1)
In view of 4.5(4), this can be written

Cl(e(Q)) = (X/Ag) x *7* dpg (12)
or, taking 4.3 into account

Cl(e(Q)) = () (P). (13)
Together with (10) and 4.3, this proves the second assertion of 5.3.

5.4. Canonical cross-sections. Let JoL be subsets of A—I(P). Put Q=P(J),
R=P(L) and consider the fibration 5.1(8) with structural group 4,

vo.r: X (P, L) > X (P,J) 1)
which can also be written

vo,r:€¢(R) — e(Q). 2

The space X (P, L) is of type S under Q, associated to R,;R, hence it is of type S under
°0(R), and the isotropy groups in °Q(R) are its maximal compact subgroups.

Let yeX(P, L) and M its isotropy group in °Q(R). By 3.6, the map A, zx
x °Q(R)- X (P, L) defined by (a, g)+>(y 0 a)-¢ induces an isomorphism

By Ag g X X(P,J) 3 X(P, L), 3)

which commutes with °Q (R) acting in the usual way on X (P, L) and X (P, J). The
images of the sets {a} x X (P, J) are the orbits of °Q (R) and will be called the canonical
or standard cross-sections of the fibration (1).

Let now xeX. For Qo P, denote x, its projection on e(Q). The trivialization

Ui Apxe(P)3 X ()
induces one of the associated bundle X (P)

”x:‘IPxe(P)QX(P) (5)

«
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which commutes with 4, and °P (R). It is immediate from the definitions that, on the
face e(Q), this trivialization coincides with the trivialization given by (3) with y=Xxq,
and J=0. If we replace G by Q, we get similarly an isomorphism

ps: Ap g X e(P) = Clypy e(Q) = e(Q) (P) (6

(cf. 5.3). We have then X (P)xAp o x Ay x e(P), whence also an isomorphism
px: g x e(Q) (P) = X (P) M

which commutes with 4, and °P(R), acting in the obvious way. It is immediate from
the definitions that the diagram

Ap,o % e(P) 25 ¢(Q) (P)
l W ©)
Ay x e(P) = X(P),

where the vertical arrows are the canonical injections, is commutative, and that all
maps commute with the natural actions of °P(R) and A4,.

Together with 5.3, this shows the commutativity of the following diagram, where
the vertical arrows are inclusions:

Az x e(R)(0) 5 X (0)
Lol ™
g x e(R) (P) 3 X (P)

5.5. PROPOSITION. Let Q, Re P be such that Q ~ ReP. Then the geodesic ac-
tion of Ay on X extends to a geodesic action on e(R).

Let P=0n R. Then e(Q) and e (R) may be canonically identified to faces of X (P)
(5.3) and Ay, Ag to subgroups of 4p. The action of 4 is then defined by the extended
geodesic action of 4p on X(P).

Remark. Let P'e B, P’ P. The canonical inclusions X (P)o X(P’) and Agc 4,
being compatible with the extended geodesic actions, it is clear that the above action
of A, on e(R) can also be defined using the corner X(P’).

5.6. Let geG(k), PeP, P'=P* and I=I(P)=I(P’). Then Intg~' induces an
isomorphism o: A, — Ap. compatible with the identifications of both groups with
(R% )~ (4.2), hence it extends to an isomorphism of A, onto 4, also denoted ar»a®.
We have

x-p-g=(xg) p* (xoa)yg=(xgloa® (acApxeX,peP(R)) §))
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cf. 3.2(5); therefore x—»x'g extends to an isomorphism of X (P) onto X(P'), also
denoted x> x5, which also satisfies (1) with xe X(P). Let Qe R, Q> P and Q' =Q°.
Then x+»>x® induces an isomorphism e(Q)— e(Q?) which is induced by passage to
the quotient from the translation x+» x-g. Translation by g also gives rise to a com-
mutative diagram of trivializations:

g x e(Q) (P) > Ay x e(Q) (P)
i Loxs @
X(P) -  X(P)

The map p, (resp. py,) commutes with 4, x °P(R) (resp. 44 x °P’ (R)) (5.4). In par-
ticular, if ge@, then @=Q’, a®=a (ae4y), and all maps in (2) commute with Ap.

§6. Topology of X (P ) and Siegel Sets

6.1. Let PeB, and I=1I(P). For ¢>0, we put

Ap,={acdp|a(a)st, (xed-1I)}

JP_,={aeJP|a(a)§t, (€4 ~D)}. ®
Let xeX. A Siegel set in X, with respect to P, x, is a set

S=6,,=(x04;,)w @

where o is a relatively compact subset of °P(R).
Let x, be the canonical projection of x on e(P). Then, if y,: Apx e(P)— X is the
canonical isomorphism of 5.5, we have

#;1 (6r,w) =Ap, X Xp'w. 3

In particular, every point yeX has a neighborhood of this form. If P=G°, then
Ap={e}, and the Siegel sets with respect to P are just relatively compact subsets.
Let S’ be a maximal torus of R, P stable under the Cartan involution of L, with
respect to a maximal compact subgroup of H,.Let 4'= S’ (R)°. Then P (R)= A'><"P(R)
and there is a canonical projection 6: A" — Ap. Let ye X. There exists pe P (R) such that
y=xp. Write p=a’-q with a’e A’ and ge°P(R). Then y=(x0 ¢ (a'))-¢, and

(yodp)o=(xo00(a')A4p,)qw.

From this it is clear that any Siegel set with respect to x, P is contained into one with
respect to y, P and conversely. Thus the choice of the origin matters little.

6.2. PROPOSITION. For Qo P, QeB, let Je A—1 such that Q=P (J) and x, be
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the canonical projection of x onto X(P,J). Let yee(P) and pe®P(R) be such that
y=xp'p. Let =G, , be a Siegel set with respect to P, x.

(i) The closure G of G in X(P) is compact. We have
EnX(P,J)=(xg04p,4,)d,

where Ap g = Ap g N Ap .. In particular, the left-hand side is a Siegel set in X (P, J),
with respect to P and xy, and any such Siegel set can be obtained in this way.

(ii) Let t;,—0 and w; be a fundamental decreasing sequence of relatively compact
neighborhoods of e in °P(R), (i=1, 2, ...). The closures in X (P) of the sets (x 0 Ap )"
prw,; form a fundamental system of neighborhoods of y.

The canonical isomorphism , extends to Apx e(P)= X(P) and 6.1(3) implies

/4;1(_6—)=1‘1-P,txx1"6s (1)

which proves (ii) and the first part of (i). The second part of (i) follows from (1) and
5.4(6).

6.3. It is clear from the definitions and the equalities
G(R)=K-G"(R), G°(R)=(G°nH,)°(G°)(R)

(1.2, 1.4) that Siegel sets do not change if we replace G by G° or °(G°). Similarly, let
V be a normal k-subgroup of R,G and let X'=X/V(R), viewed as usual as a space
of type S—k for G’ = G/V (2.8). Then the image of a Siegel set in X under the canonical
projection is a Siegel set in X', and any such set can be obtained in this way. In
particular, in discussing properties of Siegel sets in X, we may always assume G to
be connected, reductive and even to have no non-trivial central k-split torus. The
most important ones will be deduced from reduction theory. For this, we have to
relate the present Siegel sets to those considered in [3], which are subsets of reductive
groups.

6.4. Assume then G to be reductive, Let P be a minimal parabolic k-subgroup of
G and K a maximal compact subgroup of G(R). Let L be the Levi subgroup of P(R)
stable under the Cartan involution 8 (1.9), Sp=Lp R;(P) and Ap=(Sp)°. The ele-
ments of A define a surjective homomorphism A, 2 (R%)* which goes over to the
canonical isomorphism 4,2 (R% ) under the natural projection Ap — 4, and whose
kernel is Ap "€ (G).

We now want to prove:

(H, 0 RG)° = (H, n 4p)°, (xeX fixed under K). )

The group H,n R,G is contained in P, stable under 6 (2.1(iv)), hence contained in
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Lp (1.9), and we have

(H, " R,G)° = (H, n Lp 0 RP)° = (H, n Ap)° = (H, n R;P)°. 2
The group H,n R,G is contained in R,P, and H = K-(H,n R,G), hence

Hx o] RdP = (K N RdP)'(Hx N RdG),
(H, " R;P)° = (K n R;P(R)°)°-(H, n R,G)°.

But R, P(R)° is the semi-direct product of Ap and R,P(R), hence is contractible, and
has no compact subgroup # {e}. Therefore

(Hx N RdP)o = (Hx n RdG)O

which, together with (2), proves (1).
Define 45 , in the same way as 4p ,. A Siegel set of G(R) (with respect to X, P, S”)
is then a set of the form

€ =6 ,=K4p,0, 3

where o is a relatively compact subset of °P(R). This is the definition of a standard
normal Siegel set in {3, §12], except that we do not require S’ to be defined over &,
and w to be a neighborhood of e. The maximal tori defined over R of R, P are conjugate
under P(R). Therefore, given P, we may always choose x so that S’ is defined and split
over k.

Let xe X be such that K H,. Then

x'S;,u,:(onP,,)-w:G,)a, “)

is a Siegel set of X, with respect to P, x, as defined in 6.1. By definition (see 2.3 and (1)),
H,=K-(H,nR,G)°=K-(H,n A}p)°. Since H, N A} is the intersection of the kernels
of the elements of 4, we have

H, =6, &=n'x6¢), %)

where n,:G(R)— X is the orbital map g+ x-g. Thus the Siegel sets in G(R), with
respect to K, P are the inverse images of the Siegel sets in X with respect to P, x, where
x is fixed under K.

6.5. PROPOSITION. Let G be reductive. Let P be a parabolic k-subgroup of G,
P, be a minimal parabolic k-subgroup of G contained in P, and ge G° (k). Let xee(P),
{x,} (n=1,2,...) a sequence of points of X which tends to x in X(P,) and such that
{x»*8}nz1 is relatively compact in X(P,). Then geP (k).
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Fix a point x,€ X. By 6.2, there exists a Siegel set =&, , in X, with respect to
Xo, Py, Which contains x, and x,* g for all n’s. Let then a,€ Ap , and p,€w be such that
x,=(xo04,)p, (n=1,2,...). Let I be such that P=P,,. Then e(P)=X(P,, I). The
isomorphism

B= e Ap, X e(Po) 3 X (Py)

of 5.4 maps A4p, pxe(P,) onto e(P). Thus, if we write p~* (x)=(a, b) with ae Ap,,
bee(P,), we have o(a)=0 for ae4—1. As a consequence

lima(a,)=0 (xed-1I). )

We now fix a maximal compact subgroup K of the stability group of x,, let =:
G(R) - X be the orbital map gr»>x,'g and &' =n"!(S). Then &' is a Siegel set in
G (R), with respect to K, P, (6.4), and we have &' =K' A4} , o, in the notation of 6.4.
Let then g, be an element of A}, which maps onto a, under the natural projection.
Our assumptions and (1) imply

a, Pp, Gy P, g€S  (n=1,2,..),
limea(a,) =0 (aed = 1I).

We have then geP by Prop. 12.6 of [3].

§7. The Manifold with Corners X

7.1. We shall denote by X or X(G) the disjoint union of the sets e(P) (PeB)
(where, by definition, e(G°)=X). For Pe P, we identify X (P) with y-p e(Q) (see
5.1(6)). We have then

X(P)nX(Q)=X(R), (P,Qe%), ¢y

where R is the smallest parabolic k-subgroup of G containing P and Q. By 5.3, the
inclusion map X (P')— X(P) (P<P’eP) is an isomorphism, of manifolds with cor-
ners, of X(P’) onto an open submanifold of X(P). There exists therefore one and
only one structure of manifold with corners on X such that the X (P)’s are open sub-
manifolds with corners of X. The space X will always be endowed with that structure.

For every Pe B, the subspace e(P) has an open neighborhood which meets only
finitely many e(Q)’s (Q€ B), namely X (P). Consequently the e(P)’s (PeP), or their
closures in X, form a locally finite cover of X.

By definition, we have

X=HPE$8(P)=UPG$X(P)’ @
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and the X(P) (PeP) form an open cover of X. For Qe P, we let

Y(Q)=Urcaw X(P). 3
We have then also
Y (@) = [Irecp rngep e(R). @)

7.2. (i) The space X is canonically of type S under G° and PB(G)=P(G°) by
definition. Therefore X(G)=X(G°).

(ii) Assume G to be reductive. Then R,G (R) operates trivially on X, and X is of type
S under G/R,G, and also under G°/R,G. Since B (G)=P(G/R,G)=PB(G°/R,G), we
also have natural identifications

X(G) = X(G/R,G) = X(G°/R,G).

(iii) Let ¥ be a connected unipotent normal k-subgroup of Gand n:G— G’ =G/ V,
o:X - X'=X/V(R) the canonical projections; the latter is the projection map of a
principal fibration with structural group V' (R). By 5.2, for every Pe B (G), this fibra-
tion extends to a principal fibration

X(P)-X'(P|V) with structural group V(R)
commuting with Ap, which is therefore also compatible with the inclusions

X(Q)o X(P) (@oP; Qe P). It follows that these principal fibrations match to give
one for X over X'.

7.3. PROPOSITION. (i) The embedding e(P)— X (PeB) extends to an isomor-
phism of manifolds with corners of eT—P) onto the closure of e(P) in X.

(ii) For Qe'B, the space Y(Q)=Upcn() X (P) is an open neighborhood of e(Q).
For xeX, the isomorphism ji.: Ay x e(Q) 3 X (see 5.4) extends to an isomorphism of
Ay x e(Q) onto Y(Q), which commutes with A,, acting on Ay x e(Q) via its natural
action on Ay, and on each e(Q'), (Q'e B(Q)), by geodesic action (5.5).

(In (i), e(P) means the manifold with corners extending e(P), where e(P) is
endowed with its canonical structure of space of type S—k under P (5.1).)

(i) Let Z be the closure of e(Q) in X. Let PeB. Since X (P) is open, Z meets e(P)
only if X(P)ne(Q)+9, i.e. if P Q. Therefore Z is the union of the spaces X (P)nZ
for PeP, P<Q. By 5.3, ZnX(P) may be canonically identified with e(Q) (P),
whence (i).

(ii) Since the X (P)’s are open in X, the space Y (Q) is an open neighborhood of
TQ). For PeB(Q), we have, by the above and (6), (7) of 5.4, an isomorphism

Hy: Ay % e(Q)(P) 3 X (P) @

<
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which commutes with 4,5, °P(R) and with the inclusions
e(Q)(P)>e(Q)(P) and X(P)—> X(P) (P c=P;P,PeB(Q)).

This proves that the maps p,, for PeP(Q), match and define an isomorphism
teiAgxe(Q) Y(Q) commuting with 4,5, whence (ii). From now on, we identify
e(P) with the closure of e(P) in X(Pe ).

7.4. COROLLARY. Let P, QeP. Then e(P)ne(Q) is equal to e(PnQ) if
P~ Qe P and is empty otherwise. In particular e(P)=e(Q) if and only if P=(Q.
This follows from 7.3(i) and the definition.

7.5. COROLLARY. Let P, Qe P. Then e(P)ne(Q)#D<>e(P)ce(Q)<«>PcQ.
This follows again from the fact that, by 7.3(i), e(Q) is the union of the ¢(Q’)
with Q'e B(Q).

7.6. PROPOSITION. The action of G(k)-R,G(R) on X extends to one on X, which
preserves the structure of manifold with corners of X, and in particular permutes the
faces e(P) (PeB). For geG (k) R,G(R) and PP, we have e(P)-g=e(P?).

This is clear from 5.6, in particular 5.6(1) and 7.2, or by “transport de structure.”

7.7. COROLLARY. Ler P, Qc'B.
(1) {geG(k)|PF=0}={geG(k)|e(P)gne(Q)#0}
~{geG (k)| e(P)g=e(Q)). _
@) {geG (k)| P*nQeP)={geG (k) [e(P)gne(Q)#0}.
(3) Q(k)={geG’ (k)| e(Q): gne(Q)0}.
(1) and (2) follow from 7.4, 7.6. By (2) the right-hand side of (3) is {geG°(k) |
0%~ Qe P}, which is known to be Q (k).

7.8. THEOREM. The manifold with corners X is Hausdorff. If k is countable, then
X is countable at infinity.

To prove the first assertion, we proceed by induction on dim G. If dim G=0, then
X is reduced to a point, so we assume our assertion to be true for every k-group G’
of dimension <dim@G.

Let y, y’e X and let {¥,} (resp. {V,}) (n=1, 2,...) be a fundamental sequence of
neighborhoods of y (resp. y') such that ¥V, n ¥V, #0 for all n. We have to prove that
y=y'. Since a corner X{P) (PeP) is open, by definition, and Hausdorff, it suffices
to show that y and y’ belong to one. Assume first U=R,G # {e}. Let X' =X/U(R).
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By 7.2, the projection X — X’ extends to one ¢ of X onto X’, and we have
s(X(P)=X'(P/U), o '(X'(P/U))=X(P), (Pe®).

Since X’ is Hausdorff by induction, we have o (y)=0(y")eX’(P/U) for some Pe P,
whence y, y'eX(P).

This reduces us to the case where G is reductive. Let P, P'e P be the parabolic
k-subgroups such that yee(P) and y’ee(P’). By 7.1(1), X(P)n X(P') is the union
of the e(Q), with Qe P, 0> P, P’. Since these are finite in number, there exists Qe P
such that e(Q)n V,n ¥V, #0 for all n’s. The points y and y’ then belong to the closure
of e(Q), which may be identified with e (Q) by 7.3. If Q # G°, the induction assumption,
applied to Q and e_(_é_), shows that y=y’. So assume Q=G", i.e. V,nV, nX#0 for
alln’s, and let x,e V,nV, nX (n=1, 2,...). Thus both y and y’ are limit points of the
sequence {x,}. Let P, be a minimal parabolic k-subgroup of G contained in P, and
ge€G° (k) be such that P, P’¢. We have then

%y yee(P)e X (Po), xg — ¥'-gee(P) < X (Po).

We may assume x,, x, g€ X (P,) for all n’s. The x,-g then form a relatively compact
subset of X(P,), and we have geP by 6.5. The relation P'8 n P> P, then yields

PAP=(P*nPF ' oP5’

whence e(P'), e(P)c X(P5 *); this shows that y and y’ are contained in one corner,
and finally that y=y' since, as remarked above, each corner is Hausdorff.

Assume now k to be countable. Then so is G (k), and also B, since the latter is the
union of finitely many orbits of G° (k). Since each e(P) is a countable union of com-
pact subsets, the second assertion follows.

7.9. COROLLARY. Let Pe‘B and xeX. Then the closure in X of a Siegel set S
with respect to x, P is contained in X(P) and is compact.

The closure A =Cly;,(S) of S in X (P) is compact by 6.2. Since X is HausdorfT,
this implies that 4 is compact and closed in X, hence 4= Clg(S).

§8. Homotopy Type of 6X

8.1. Retracts

We recall some basic facts about absolute retracts (AR) and absolute neighborhood
retracts (ANR) in the category of metric spaces. Proofs can be found in [24], {16], [17]
and [19], App. IL
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A metric space X is an AR if and only if the following equivalent conditions are
satisfied :

(AR,) X is a retract of any metric space which contains it as a closed subspace.

(AR,) For any continuous map /> 4 — X, where 4 is a closed subspace of a metric
space Y, there exists a continuous map F: Y — X which extends f.

Similarly, the fact that X is an ANR can be characterized by the equivalent condi-
tions:

(ANR;) For any embedding of X as a closed subspace of a metric space Z, there
is a neighborhood of X in Z of which X is a retract.

(ANR,) For any continuous map f:4 — X, where A4 is a closed subspace of a
metric space Y, there is a neighborhood U of 4 in ¥, and a continuous map F: U— X,
such that F extends f.

The property of being ANR is local ([24], p. 8); every metrizable manifold (with
boundary) is an ANR ([24], p. 3).

If X and Y are ANR’s, every weak homotopy equivalence f: X' — Y is a homotopy
equivalence ([24], th. 15).

If X is an ANR, then (cf. [24], p. 5):

X is an AR« X is contractible <> all n,(X) are 0.

8.1.1. LEMMA. Let Y be a metric space, X a closed subspace of Yandf:X—Z a
continuous map of X into a topological space Z. Assume X isan ANR and Z is contractible.
Then f can be extended to a continuous map F: Y- Z.

By (ANR,) we can choose a neighborhood U of X in Y of which X is a retract.
The map f can be extended to a continuous map f': U— Z; since Z is contractible,
f’ is homotopic to a constant map. Since a constant map can be extended to Y, the
same is true for f, by the “homotopy extension theorem,” cf. [12], p. 1-05.

8.2. Nerves

We need a variant of Weil’s theorem ([30], p. 141) comparing a space with the
nerve of one of its covers.

Let ¥ be a space, and (Y,); a locally finite cover of ¥ by closed non-empty sub-
sets. Let T be the nerve of that cover; it is a simplicial complex, whose set of vertices
is I; a simplex s of T is a finite subset of J such that Y,={");, Y, is non-empty. We
denote by S the set of simplices of T, and by | 7’| (resp. by |s], for s€5) the geometrical
realization of T (resp. s); we put on | T| the weak topology: a subset U of |T'| is open
if and only if Un|s| is open in |s| for any seS ([19], p. 41). We make the following
assumptions:

(1) T has finite dimension, i.e. there exists an integer N such that Card(s)<N for
all seS.

(2) All the Y,, seS, are absolute retracts, cf. 8.1.
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8.2.1. THEOREM. The spaces Y and |T| have the same homotopy type.

We prove a more precise statement. Identify | 7] as usual with the subspace of R
made of those (x;);; with 0<x;<1, Y x;=1, and {i| x,>0}eS. If ie], call | 7| the
subspace of |T| made of those (x;) such that x,>x; for all jel. If seS, we put
[Tl={ies | Til; it is the star of the barycenter of s in the first barycentric subdivision
[T} of | T|, see below; it is contractible. The refined form of th. 8.2.1. is

8.2.2. THEOREM. (i) There exist continuous maps f: Y — |T| and g:|T| - Y such
that f(Y,)<|T}| and g(|T||)< Y, for every iel; they are unique, up to homotopy.

(i) If f and g are chosen as in (1), fog and g.f are homotopic to the identity.

Proof of (i).

(i,) Construction of f: Y —|T)|.

If n>0, call S(n) the set of se S with Card (s)>n, and put ¥,=Jsc5n, ¥, We have

O=YycYy ,ccY,c¥ =Y.
We use decreasing induction on » to construct a continuous map
Jor Xy = T

such that f, (Y,) = | T for all se S (n). To get f, from f,_;, we have to define f, ;: ¥, —
—|T| for every s with Card (s)=n, and f, , is known on all ¥, with ¢>s, #+#s. Using
assumption (2) together with Lemma 3.2 of [24], one sees that the union of those ¥,
is an ANR, which is closed in Y; the existence of f, ; then follows from Lemma 8.1.1
since | 7| is contractible. This completes the induction process, hence the construction
of fy=f.

The uniqueness of f (up to homotopy) is proved in a similar way; one uses the fact
that, if Z is an AR (resp. an ANR), the same is true for Z x [0, 1].

(i,) Construction of g:|T| - Y.

Let T be the first barycentric subdivision of 7. The set of vertices of T is S. A
subset o of S is a simplex of T! if and only if it is totally ordered by inclusion; we then
denote by s (o) (resp. ¢ (o)) its smallest (resp. biggest) element. We identify the topolog-
ical spaces | T%| and | 7| in the usual way; a vertex s of | T*| corresponds to the bary-
center of the simplex |s| of | T|; moreover, |s| is the union of the simplices |o| with
t(o)cs. The star of s in [T is | Tyl =Nics | Til=Us0)=s lol-

If ¢ is a simplex of T, put Y,=Y,., One checks easily that the condition
g(IT )= Y, for all iel is equivalent to g(|o|)c= Y, for all ¢’s. Since the Y,’s are con-
tractible, the existence of g follows from the “‘aspherical carrier theorem” ([19],
p. 75-76); the same argument proves the uniqueness of g, up to homotopy.

Proof of (ii).

(iiy) The maps gof,1dy:Y — Y are homotopic.

L
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The proof is analogous to (i,). Using decreasing induction on n, one constructs
homotopies

F,Y,x[0,1] »Y

between g.f and Idy, such that F,(¥,x [0, 1])e Y, for all seS(n). To get F, from
F, ., we have to define F, 1Y x [0, 1] Y| for every s with Card(s)=n, and F, ; is
known on the union of Y, x {0}, ¥, x {1} and all ¥, x [0, 1] with t=>s, 1 #s; since Y
is an AR, the corresponding extension problem is solvable by (AR,).

(ii,) The maps fog, 1d)q):|T| - |T| are homotopic.

Both maps send each simplex |a] of | T!|=|T] into { T5(ayl» which is contractible.
We then apply the aspherical carrier theorem, as above.

83. The e(P)'s.
We go back to the hypotheses and notation of §7; we assume moreover that the
ground field k is countable. The manifold with corners X is Hausdorff and countable

at infinity (th. 7.8), hence metrizable ([24], th. 1); the e(P)’s, for Pe P, make up a
locally finite closed cover of X (7.1, 7.3).

8.3.1. LEMMA. For every Pe B, e(P) is an absolute retract.
Note first that, from the topological point of view, “corners” and “boundaries”

are the same thing, hence e(_P—) is a metrizable manifold with boundary; by 8.1, it is
an ANR. Moreover, it is known that a metrizable manifold with boundary has the
same homotopy type as its “interior” (this follows for instance from the collar theo-
rem of M. Brown [10] - in the present case, we may also use the differentiable struc-

ture of e_(—P) to get a differentiable collar, cf. the Appendix to the present paper).
By 3.9, the interior e(P) of e_(—P) is a homogeneous space of type S—k under P(R),
hence is homeomorphic to some euclidean space. This shows that e(P) is contractible;
by 8.1, it is an AR.

8.3.2. Remark. Instead of the (global) collar theorem, one may use a local defor-
mation argument to prove that

(e (P)) - m(e(P))

is surjective for all i, hence that all n;(e(P)) are 0. The fact that e(P) is an AR then
follows from 8.1.

8.4. Comparison between 0X and the Tits building of G.
Recall that GO is the biggest element of B, and that X=e(G); all other e(P)’s
are contained in the boundary 6X of X. We denote by I the set of maximal elements
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of P {G°}; by abuse of language, an element of [ is called a maximal parabolic sub-
group of G.

8.4.1. THEOREM. The ¢(P)’s, for Pel, make up a locally finite closed cover
of 8X. This cover has properties (1) and (2) of 8.2. Its nerve is the Tits building T of G.

(Recall cf. [29], that the Tits building of G is the simplicial complex whose set of
vertices is I, and whose simplices are the non-empty subsets s of 7 such thatP,=
={\pes P is a parabolic subgroup of G. It is canonically isomorphic to the building
attached to the Tits system of G° (k)/RG (k) constructed in [8], cf. Bourbaki, LIE IV,
§2, exerc. 10.)

The cover of 8X given by the e-(_P_) is locally finite (7.1). If 5 is a finite non-empty
subset of 1, we know (cf. 7.4) that (Mp., 8—(7;5 is non-empty if and only if Py=(\p., P
is parabolic, i.e. if and only if s is a simplex of the Tits building 7. If this is the case,
we have Card (s)</, where [ is the rank of the corresponding BN-pair (i.e. the k-rank
of the semi-simple group G°/RG, or equivalently the semi-simple k-rank of G°/R,G,
cf. [8], def. 4.23); moreover, by 7.4, the intersection of the e—(?ﬂ, for Pes, is ;(13;),
which is an AR by 8.3.1. All the assertions of 8.4.1 are now obvious.

8.4.2. COROLLARY. The spaces 0X and |T| have the same homotopy type.
This follows from 8.2. More precisely, 8.2.2 gives homotopy equivalences

f:0X > |T| and g:|T| - 0X

which are canonical and inverse to each other, up to homotopy, and allow us to iden-
tify the homology groups

H,(0%,Z) and H(T,Z) (i=0,1,...)

of 6X and T. By transport de structure, this identification is compatible with the action
of G (k) on both groups.

8.4.3. Remark. For each xe X, the geodesic action (3.2) allows one to construct
an explicit homotopy equivalence g, :| T| - .X of the type required in 8.2.2. We sketch
the construction:

Let T* be the first barycentric subdivision of T and ¢ a simplex of T7; let ¢ be a
point of ||. If s is a vertex of o (hence a simplex of T'), we denote by ¢, the s-coordinate
of ¢. Choose now a maximal simplex s, of T containing all the seo, so that P=P, is
a minimal parabolic subgroup of G, contained in all P, for seo. If 4 is the correspond-
ing basis of the k-roots (cf. 4.1), the elements s of ¢ may be identified with subsets of
4. For every aed, put

aa(t) = Zats t.u
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where the sum extends to those seo which do not contain «. We have a,(¢)e{0, 1],
and one of them at least is 0. Let a(¢) be the element of 4, whose coordinates are
a,(t), cf. 4.3. Using the natural map X x 4, —» X, we get a point x-a(r) of X, which
belongs to dX and does not depend on the choice of s,. We now define g, , on la| by
the formula

gx, 0 () =x-a(t).

One checks that the g, , are compatible with each other, and define a continuous map
g,:1T| - éX having the required property (there is also a natural extension of g, to a
map g,:C(|T|)— X, where C(|T) is the cone on |T}).

It would be interesting to have a similar explicit construction for one of the maps
f:i0X-\T).

8.5. Homotopy type of | T|.

We keep the notations of 8.3 and 8.4. In particular, ! denotes the k-rank of the
semi-simple group G°/RG; the dimension of the Tits building T'is /—1. The following
result is known (cf. [28], [14]):

8.5.1. THEOREM. The space |T| has the homotopy type of a bouguet of (I—1)-
dimensional spheres with the weak topology.

(When /=0, this means that T is empty.)

We just outline the proof.

Assume /31, and choose an (/—1)-dimensional simplex s of 7. Let Z be the set of
“apartments” of T containing s (see, e.g., Bourbaki LIE 1V, §2, exerc. 10). It is known
that any apartment A is isomorphic to the Coxeter complex of the Weyl group W of
G, hence is a subdivision of an (/— 1)-sphere. This allows us to identify |A| with the
sphere S,_;. Now, form the bouquet

Bol‘: VAEIIAI’

of the spheres |A|, with AeZ, choosing for base-point a point of |s|. The inclusion
maps {4]| — | T| define a continuous map

i:Boy — |T|

and the refined form of th. 8.5.1 is:

8.5.2. THEOREM. The map i:Bos— |T| is @ homotopy equivalence.

This is proved by remarking first that each apartment 4 contains a unique (/-1)-
simplex s, which is opposite to s (the corresponding notion for parabolic subgroups
being the one defined in [8], n° 4.8). Moreover, the (- 1)-simplices which are not
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opposite to s make up a contractible subcomplex T’ of T, and T’ contains all the faces
of the s,’s. Pinching |T’| to a point, one thus gets a map

j:IT| = Bog

which is a homotopy inverse of i (for more details, see {14]).

8.5.3. Remark. Note that Boy, i and j all depend on the choice of s, i.e. of the
choice of a minimal parabolic subgroup P of G. Hence, one can only assert that the
homotopy equivalences i and j between | T'| and Boy are compatible (up to homotopy)
with the action of P (k) on both spaces. Note also that X can be identified with the set
of maximal k-split tori in P/R,G; in particular, P(k) acts transitively on X. When
moreover G is reductive, Z may be identified with P(k)/Z(S) (k), where S is a maxi-
mal k-split torus of P, and Z(S) its centralizer in G°; in particular, writing P as a
semi-direct product Z(S)- R, P, one sees that R, (P) (k) acts transitively and freely on
X, if =1, this implies that Card (2)=¥N,.

8.6. Homology and cohomology of X and 0X.
Putting 8.4 and 8.5 together we get:

8.6.1. THEOREM. The boundary 0X of X is empty if I=0. If 1= 1, it has the homo-
topy type of a bouguet of an infinite number of (1—1)-spheres.

For /=1, this means that X has an infinite number of components, and that each
component is contractible.

8.6.2. COROLLARY. The space X is (I—2)-connected, i.e. n,(0X)=0fori<[-2.
In particular, 60X is connected if />>2 and simply connected if />3. When /=2,
7, (0X) is a free (non-abelian) group with an infinite basis.

Denote by H,(8.X) the reduced homology groups of 0.X, defined by:
A,(3%)=H,(6X,Z) if i>1
H,(0X)=Ker:Hy(0X,Z) > Z.

Th. 8.6.1 implies:

8.6.3. COROLLARY. If I>1, the only non-zero H,(0X) is H,_,(0X); it is free
abelian of infinite rank.
On the other hand, Lemma 8.3.1, applied to P=GP, gives:

8.6.4. LEMMA. The space X is contractible. We have
Hy(®)=H°(X)=Z and H,(X)=H'(X)=0 for i+#0.
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Denote now by H:{X) the i-th cohomology group of £ with compact carriers [13},
the coefficient group being Z.

8.6.5. THEOREM. The groups H:(X) are O for i#d—1, where d=dimX. The
group H™'(X) is free abelian; its rank is 1 if 1=0 and R, if 121,

Let Q= HZ(X) be the orientation group of X; it is a free abelian group of rank 1
whose bases correspond to the two orientations of X. If /=0, X is equal to X, hence
is an orientable manifold, and Poincaré duality gives a canonical isomorphism

Hic(X)=Ha—i(X)®Qx’

whence the required result since H;(X)=0 for j>0 and Ho(X)=Z.

Assume now /1. Since X is contractible, the homology exact sequence yields an
isomorphism between H; (0.X) and the relative homology group H,, (X, 6X). On the
other hand, Poincaré duality for manifolds with boundary (see below) gives isomor-
phisms

H(®)=H, (X, 02)® Q.
By 8.6.3, this gives H!(X)=0 for i#d—/, and

HI' ()= H,_, (0X)® & = A, (T) ® 2y, (8.6.6)
which is free abelian of infinite rank, see above.

8.6.7. Remark. Poincaré duality for non-compact manifolds with boundary is
well-known, but not easy to find in the literature. One can for instance prove it by
the sheaf-theoretic method of Cartan’s seminar ([13], p. 20-04 and 20-05). Another

possibility is to apply Poincaré duality to the manifolds (with empty boundary) X and
X and to use the exact sequence

«o = HU(X) > HI(£) - H(0X) » H(X) - -

The details may be left to the reader.

8.6.8. Remark. The isomorphism
H N (®)=H,_,(T)®Q, validfor I>1, (8.6.6)

is canonical, hence compatible with the natural action of G (k) on both groups. Using
8.5.3, this gives information on the action of P(k) on H?"'(X), where P is a minimal
parabolic subgroup of G. Let us assume for simplicity that G is reductive, and put
B=P(k), H=Z(S) (k), where S is a maximal k-split torus of P. One then finds that
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the Z[B]-module H} '(X) is isomorphic to the induced module Z.[B]® 75,2y In
particular, if we write B as a semi-direct product B= Ho<U, we see that the Z[U}-
module H!™'(X) is free of rank 1; this is analogous to what happens in the Steinberg
representation of a finite group endowed with a BN-pair, cf. [28].

III. THE QUOTIENT OF £ BY AN ARITHMETIC SUBGROUP
From now on k=Q and I is an arithmetic subgroup of G(Q) (0.5).
§9. The quotient X/I"

9.1. LEMMA. Let Y be a locally compact space, Z a closed subspace with empty
interior, L a discrete group which operates continuously on Y and leaves Z stable. As-
sume the following condition to be fulfilled:

(*) For any compact subsets C, D of Y

{geL|Cgn D (Y=Z)+0} isfinite.

Then L operates properly on Y.

Let C’, D’ be compact subsets of ¥ and C, D compact neighborhoods in Y of C’
and D' respectively. Let ge L be such that C'-gn D’ #0. Then C-gn D is a neighbor-
hood of some point in Y, hence it meets Y—Z, and we have

E={geL|CgnD #0}c{geL|C-'gnDn (Y —Z)+0}.
Therefore E is finite by (*), which proves the lemma.

9.2. In this section, we consider the following situation: V is a real Lie group, T
a locally compact principal ¥-bundle, L a discrete group operating continuously on 7.
Let H be the group of homeomorphisms of 7, ¢: L — H the natural homomorphism
and identify V with a subgroup of H. Assume that ¢ (L) normalizes V¥ and that o is
injective on N=0"*(a (L) V). We identify N with a subgroup of V. Let 1: T »T'=
=T/V be the natural projection. It follows from our assumptions that L commutes
with & and that the action of L on T'induces one of L’ = L/N on T’ by passage to the
quotient.

LEMMA. We keep the previous notation and assumptions.

(i) Assume L' to act properly on T’ and N to be discrete in V. Then L acts properly
onT.

(ii) Assume moreover V|N and T'/L’ to be compact. Then T|L is compact.

(i) Let C, D be compact subsets of T, and E={geL | C-gn D#0}. Then n(E) is
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finite, hence E consists of finitely many subsets of the form N-gn E, with geE. But,
for gelL:

N-gnE={ng|neN and CnnD-g”'#0},

and the latter set is finite since ¥ acts properly on T and N is discrete in V.
(i) Our assumptions imply the existence of compact subsets Cc T and D<= N such
that T'=n(C)-L' and V'=D-N. We have then

T=C-V-L=(C-D)-L
with C-D=|_J,.p (C*d) compact since both C and D are.

We now prove one of the main results of this paper:

9.3. THEOREM. The group I operates properly on X. The quotient X|T is compact.

Let I'’ be a subgroup of finite index of I'. If our assertions are true for I'', then they
are true for I'. We may therefore replace I' by I' n G°. Moreover, X is canonically of
type S—Q under G°, and X(G)=X(G°) (7.2). Thus we may (and do) assume G to be
connected.

We prove the theorem by induction on dim G. Assume first that V=R, P # {e}. Let
0:G-»G =G/V and n: X~ X'=X/V(R) be the canonical projections. The group
I'" =0 (I)is arithmetic in G’ [2], ' n V is arithmetic in ¥, V(R)/(I' n V(R)) is compact
[3; 8.4], X' is canonically of type S—Q under G' (2.8). The space X is a principal
V(R)-bundle and X/ (R)=X"(7.2(ii)). By induction assumption I’ operates proper-
ly on X' and X'/I"" is compact. Our conclusion then follows from 9.2. This reduces us
to the case where G is connected and reductive.

We now prove that I' acts properly. In view of 9.1, applied to Y=X, Z=0X and
L=T, it suffices to show that if C, D are compact subsets of X, then

E={yel'[CyaDnX#0} isfinite. ¢))

Fix xeX and let Pe B. The closure Clx(S) in X of a Siegel set & with respect to P, x
is compact (7.9) and every point in the corner X (P) has a neighborhood of this form
(6.2). Since the corners X (P), where P runs through the set B, of minimal parabolic
k-subgroups of G, form an open cover of X (7.1), it suffices to consider the case where
C=Clx(S), D=CI3(&’), where S (resp. &) is a Siegel set with respect to x and a
minimal parabolic k-subgroup P (resp. P'). There exists ge G (k) such that P'=P*
(4.1). Then &’-g~1 is a Siegel set with respect to P, x. Since any two Siegel sets are
contained in a bigger one (see 6.1), we may assume that &'=G-g. We may also as-
sume the set @ occurring in the definition of G in 6.1 to be compact. Then & is closed
in X, hence equal to Clx (&)~ X. Under those conditions, (1) may therefore be written

E={?EF|6'?F‘6£¢¢} is finite . )
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Let n: G(R) - X be the map gi>x-g, and let &' =n"1(S). By 6.4, S=n(S&') and &’
is a Siegel set in G(R), with respect to a maximal compact subgroup K of H,, P and
a suitable maximal torus S’ of R,P. We have then E = {yeI' | &'y n &'-g # 0}.

It follows from the end remark in 6.1 that we may change at will the origin x used to
define the Siegel sets. In particular (6.4), we may assume x to be such that S is defined
and split over k. Then &’ is a Siegel set in the sense of [3, §12], and the finiteness of E
follows from Theorem 15.4 in [3].

In view of the relation between Siegel sets in X and in G(R) (6.3). and of Theorem
13.1 in [3], there exists a Siegel set © in X (with respect to some minimal parabolic
Q-subgroup P) and a finite subset C of G(Q), such that X=&-C-I'. By 7.9, the closure
M of @-C in X is compact. Since I acts properly on X, the family of sets M-y (yeI)
is locally finite in X, hence is closed in X. On the other hand, it contains X, which is
dense in X. Therefore M- I'=X and M is mapped onto X/I" under the natural projec-
tion. Hence X/I' is compact.

9.4. PROPOSITION. Let n:X— X/I" be the natural projection. For PeB, let
Ip=ANG(P)NT and e'(P)=n(e(P)). Let D be a set of representatives for B/I'.

(i) We have e' (P)=e(P)/T'p and, for Qe B,

e(P)ne(Q)#0<>e (P)=¢(Q)<>3yel suchthat P'=Q. 1)

The set D is finite and X|T =] [pep €' (P).

(i) Clg;r(e'(P))=n(e(P)). ()
IfIT'cG® then Tp=T NP and
n(e(P))=e(P)/Tp=]lgep yrs € (Q); 3)

in particular e' (Q) is in the closure of ¢’ (P) if and only if Q is conjugate under I to a
subgroup of P. ‘

(i) The first equality and (1) follow from 7.7 and imply the last equality of (i).
Since the e(P)’s (Pe ) are permuted by I" and form a locally finite family in X (7.1),
it follows that the e’ (P) form a locally finite family in X/I", parametrized by D. Since
X/I" is compact, this shows that D is finite. (The finiteness of B/I" also follows from
[3; 15.6].)

(ii) We have e(P)-y=e(y~*-P-y) (yel), therefore (7.1) the ;(T’)- y(yel) form
alocally finite familyin X, and e (P)-I'is closed in X. It is the inverse image of (:3—(—1J))’
hence the latter is closed, and contains the closure of e’ (P). On the other hand, e(P)
is dense in e (P), hence e’ (P) is dense in z(e(P)), which proves (2). The first equal-
ity in (3) follows from 7.7, and the second one from (i), applied to ?(7) and Ip.
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9.5. Clearly, any compact subgroup of G(R) has a fixed point in X. Since I acts
properly (9.3), it acts freely if and only if it is torsion-free. Assume this to be the case.
Then n: X — X/I" is a local homeomorphism and X/I inherits the structure of mani-
fold with corners of X. Let yee(P), y'=n(y)and U’ a sufficiently small neighborhood
of y’. Then U’ is isomorphic under =, as a manifold with corners, with a suitable
neighborhood U of yeX(P). In particular the faces of the corner are the e’ (Q)n

NnU'(QeP; OoP).

§10. Strong Separation Properties

10.1. Distinguished neighborhoods of e(P). We keep the notation of §9. For xe X,
PeP and >0, we put

Usre=(x04p,) "P(R). ey
Since x is fixed under a maximal compact subgroup of °P(R), we also have

Us pe = (x045,) (°P(R))". @
In the notation of 5.4, (1) may be written

Us,p,e = Hx (4,0 X €(P)) €)
and U, p,, is closed in X; in view of 7.3, we have therefore

Ux,P,t:ux(/fP,tXéTP—))’ Upe=Usp.n X, 4

and U, p , is a neighborhood of e(P) in X. Any neighborhood of e(P) containing
some U, p , will be called distinguished.

10.2. LEMMA. The neighborhood U, p. , is stable under Ap , x °P(Q), where the
semi-group Ap ; acts by geodesic action and °P(Q) by ordinary action, and p, commutes
with Ap ; x°P(Q). If V is a neighborhcod of e—(IT) stable under I' "\ P, then V is dis-
tinguished.

We have clearly 4p ,-Ap ;=Ap,, hence also Ap, . Ap,y=Ap,,. Together with 7.3
and 7.6 this implies the first assertion.

Let ¥ be a neighborhood of e(P). Let C be a compact subset of e(P). As t varies,
the sets p, (4p, , x C) form a family of compact sets whose intersection is C. Therefore
V contains one of them. By 9.3, we may choose C so that e(P)=C-(I'nP). If
V-(I' nP)=V, we have then for a suitable ¢, taking 7.3 into account:

V=V(nP)>pu(dp, x C)-(I' nP)=p(dp,x C-(I nP))=U,p,.-
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10.3. PROPOSITION. We keep the previous notation. Let n: X — X/T" be the natu-
ral projection and assume G to be connected. There exists t >0 such that the equivalence
relations defined on U, p ,by I and I N P are the same. For any such t, the isomorphism
W, induces an isomorphism

p;:/fp_,xe—(—PS/(FmP)Sn(ﬁx.P’,), €))

such that the following diagram

Bx o~

fIP,r X e_(—P) = Ui p:
idoxn] . 1" @
Apx e(P)(L nP)S (0,5,

is commutative. The geodesic action of Ap 1 on U, p , commutes with n and induces an
action on n(U, p,). All the maps in (2) commute with Ap ;.

By 9.4, the equivalence relations defined on e(P) by I" and I n P are the same, and
n(e(P))=e(P)/(I nP). By 9.3, there exists a compact subset C of ¢(P) such that
e-(—P_)z C-(I'nP). Since I operates properly (9.3), there is a neighborhood U of C in
X such that, for any yel', U-yn U#£9 implies Cyn C#9, and hence yeI' n P. Since
C is compact, there exists >0 such that y (4, ,x C)< U. We wish to show that any
such ¢ satisfies our conditions.

Leta, beU, p ,and yel be suchthata:y=>5. Since I' n P commutes with , (10.2),
there exist a’, b'ep,(dp, % C) and o, tel' " P such that a=a’-o, b=>b"-17. We have
then b'=a’-6:y-17%, hence -yt 'el'nP and yel N P.

This proves the first assertion. The other assertions then follow immediately from
7.3 and 10.2.

10.4. PROPOSITION. Let P, Qe B, x, ye X and ge G(Q). Then the following four

conditions are equivalent:
(i) Us,p,: 80U, o,:#9 forall t>0.

(i) U, p,.'8n U, o,#0 forall t>0.

(iii) e(P)-gne(Q)=0.

(iv) P¥n Q=R is parabolic.
If they are fulfilled, the sets U, p , g U, o, (t>0) form a basis of °R(Q)-invariant
neighborhoods of e(R).

It follows from 10.2 that we may assume x=y. Moreover, replacing P by P?, we
may take g=e.

The equivalence of (iii) and (iv) follows from 7.7. Clearly, (iii) = (ii). By 9.3, there
exist compact subsets C<e(P) and C’ <e(Q) such that

C-(FAP)=¢(P) and C'-(I' nQ)=e(Q).
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For t>0, let
D, =p,(dp, xC), Dj=p,(dy,xC). 1))
We have then
Uope=D(FnP), U,p,=D(I'nQ). (2)

The D, (resp. D;) are compact and their intersection is C (resp. C’). Since I' acts
properly on X (9.3), there exists ¢>0 such that

{yeI' | D,y n D; =90} = {yel' | C-y n C' # 0} 3

and the set of such y’s is finite. Let in particular {y}; <,<n be those yeI" which satisfy
(3) and are contained in (I'nP)-(I'n Q); for each of them choose a decomposition

p=0;17" (6;elnP;rel nQ;i=1,..,m). 4)

If now gel’ nP and 1€’ ~ Q are such that D, o n D;- 1 #0, then, for some i<m, we
have 6-7"'=g¢,;"7; ' and hence

ot

-1
. ro=1 telnPnQ.

This implies readily
Ux,P,t N (7x,Q,z = U1§i§m(Dt"7i nDiu)(FanPn Q). &)

Assume now (ii). Then there exists i(1 <i<m) such that D, o,n D;- 1,0 for all £>0,
hence such that C- o, C' - 1,#0. This proves that (iii) holds. Clearly, (i) => (ii). Assume
again (ii) to hold. Then, (iii) holds and U, p ,-gn T, ,..is a neighborhood in X of

any point in e(P)-gne(Q). Therefore
X N (Ux,P,t‘g n Ux,Q,t) ;é w’

by 10.1(4) this is condition (i).
Assume R to be parabolic. Then e(P)ne(Q)=e(R) by 7.4, and the left-hand side

of (5) is a closed neighborhood of e (R), which is stable under °R(Q)=°P(Q) ~°Q(Q),
hence distinguished (10.2). For each i(1 <i<m) we have

Uso Dyr6y 0 Dyt = Cra;n C'ry,
hence, given s> 0, there exists £>0 such that
Dyo,nDj 1= U, p,, (1SiZm);

(5) then shows that the left-hand side of (5) is contained in U, r.s» whence the last
assertion.
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10.5. COROLLARY. There exists t>0 such that for any P, Q€ B, we have

Uep,nU, 0, #0 ifandonly if e(P)ne(Q)#0.
This follows from 10.4 and the finiteness of B/I".

10.6. PROPOSITION. Let P, QeB, x, ye X. For t>0, let
E = {Ver IUx,p,:'W\ Ux,Q,t # ‘D}

(i) E, is the union of finitely many double cosets modulo (I' nP) and (I' 1 Q).
(ii) For t small enough,

E, = {yel' | e(P)yne(Q) # 0} = {yel' | P~ Q is parabolic}.
(i) Let D, and D; be as in 10.4(1). Then E,=(I' nP)-F,-(I' n Q), where

F,={’))€FID,')JHD,'#0},

and F, is finite since D, and D, are compact and I' acts properly on X (9.3).
(ii) Since F,is finite and decreasing as ¢ — 0, it is independent of ¢ for ¢ small enough.
Our assertion then follows from 10.4.

10.7. Let PeP. Let S’ be a maximal split torus of R, P and A’ the identity com-
ponent of S’ (R). Then P(R)=A"><"P(R), and there is a natural projection o: 4 — 4p.
We let for 1>0

P(t)=0""(4p,) °P(R). )

In the notation of 6.1, we can also write this P(¢)=A} ,-°P(R), and (1) shows that
P(t) does not depend on the choice of 4’

10.8. PROPOSITION. Let P, QB and K, K' be maximal compact subgroups of

G(R).
(i) Let geG(Q) and assume that K-P(t)-gnK'-Q(t)#0 for all t>0. Then

P& Q is parabolic.

(i) Given t>0, the set of yeI for which K-P{t} ynK'-Q(t)#0 is the union of
Sinitely many double cosets modulo (I' nP) and (I' n Q).

(ili) There exists t>0 such that K-P(t)-I' nK'-Q(t)=0 unless P? n Q is parabolic
Jfor some yel.

Let x (resp. y) be a point of X fixed under K (resp. K'). Then K-P(¢) (resp. K'-Q (1))
is the inverse image of U, p , (resp. U, o .) under the orbital map gisx-g (resp.
g+—+y-g). Therefore (i) follows from 10.4, (ii) from 10.6 and (iii) from 10.4, 10.6.

10.9. COROLLARY. Assume G to be connected and K-P(t)-gnK'-P(t)#0 for
all 1>0. Then geP(Q).
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Indeed, P#n P is parabolic by 10.8. But in a connected algebraic group, two con-
jugate parabolic subgroups whose intersection is parabolic are identical. Hence g nor-
malizes P, and then geP.

10.10. Remark. In §10, the ground field & is the field of rational numbers. How-
ever, the definitions in 10.1, 10.7 and the statements 10.4, 10.5, 10.8(i), (ii) and 10.9
make sense in the context of §§6, 7 where & is any subfield of R. For P, Q minimal
these assertions can be proved using representative functions as in [3, §§14, 15], but
we do not know whether they are true in general.

§11. Cohomology of Arithmetic Groups

We keep the hypotheses and notations of §9: k=Q and I" is an arithmetic subgroup
of G(Q). Moreover, we assume that I' is torsion-free.

11.1. Qualitative results

By 9.3 and 9.5, X/I" is a compact C®-manifold with corners, hence is homeomor-
phic to a compact C*-manifold with boundary (cf. Appendix), and can be triangu-
lated ([23], §10). Moreover, X is contractible (8.3.1), hence is a universal covering of
X/I'. These properties imply:

a) The group I is isomorphic to the fundamental group of £/I', hence is finitely
presented.

b) The space X/I" is a K(I', 1)-space. Its cohomology (or homology) is isomorphic
to the one of I'. More precisely, if 4 is a I'-module, and A the corresponding local
system on X/I', there are canonical isomorphisms

H, (I, A)~ H,(X/T, A) and HY(I', A)~ H'(XI, A)
for any g.
¢) The group I is of type (FL) in the sense of [26], p. 84. Indeed, a triangulation

of X/I lifts to a I-invariant triangulation of X and the corresponding complex of
simplicial chains

05C;,>Cyy o> Co=Z->0 (d=dimX)

gives a Z [I']-free resolution of finite type of the Z [I']-module Z.

Remark. The above results depend only on the existence of a compactification of
X/TI' as a manifold with boundary (or even as a finite complex), and not on the struc-
ture of the compactification; in the semi-simple case, they are due to Raghunathan
[25].

11.2. Comparison between X|T" and its boundary 0X/I’
Let I be the Q-rank of G/RG.
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PROPOSITION. The inclusion map 0X|I" — X|I' is an (1—2)-homotopy equivaience.

(This means that the natural maps =;(6X/I") > n,;(X/I') are bijective for i</—2.)

Since 7, (X/I')=T and =;(X/I')=0 for i #1, we have to prove that n, (0X/')—» T
is an isomorphism if />3, and that =, (0X/I")=0 for i< /-2, i #1. This in turn follows
from the fact that 6.X has the homotopy type of a bouquet of (/—1)-spheres (8.5.1),
hence is simply connected if />3, and =,(0X)=0 for i</-2.

11.3. Euler-Poincaré characteristics
If Y is a finite complex, we denote by x(Y) its Euler-Poincaré characteristic; we
put x (I')=yx(X/I'), cf. [26], p. 91, prop. 9.

PROPOSITION. (a) x(6X/I')=0.

(b) If d=dim X is odd, or if R,G # {e}, we have x(I')=0.

Assume first I' to be “net” [3, §17], hence contained in G°, let ¥=R,G(R). The
space X has a natural structure of principal V-bundle, cf. 7.2, (iii). By [3, 17.3],
T'{(F V) is torsion-free, hence acts freely on X/V. This implies that X/I" has a
fibering with typical fiber N=V/(I' n V). If dim V' >1, it is well-known that y (N)=0,
hence y (I')=x (X/I') =0 which proves the second assertion of (b).

Now, if Pe B is distinct from G°, its unipotent radical is non-trivial. Hence, by the
above, applied to P, we see that the image ?—(7’—) =e(P)/Tp of e—(P—) in X/I" (cf. 9.4)
is such that x(e_'(f’i)=0. But the ¢’ (P) make up a finite cover of 0X/I', and their
intersections are either empty or of the form ;’TQ) for some Q#G°, hence have
zero Euler-Poincaré characteristic. By an easy combinatorial argument, this implies
that y (6X/IN=0.

If dimX is odd, the duality of manifolds with boundary implies that y(X/I")
=4y (6X/I'), which is 0 by (a). This concludes the proof when I' is net; the general
case follows by a covering argument, using [3, 17.4].

Remark. The fact that x(I')=0 when d is odd can also be proved by the method
of Harder [18].

11.4. Duality theorem
We keep the above notation. In particular d=dim X and / is the Q-rank of G/RG.

11.4.1. THEOREM. We have H'(,Z[I'])=0 for i#d~1 and the group
I=H*"YTI, Z[I]) is free abelian of rank 1 if 1=0 and of infinite rank if I>1.

This follows from theorem 8.6.5 together with the elementary fact that H(I', Z[I'])
=H!(X, Z) for all i (cf. for instance [1], n° 6.3).

Note that the right action of I' on Z [I'] defines on H*~!(I", Z[I']) a structure of
I'-module. This I'-module is the dualizing module of I':

11.4.2. THEOREM. There is a homology class ee H,_ (T, I) such that, for every

<
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I'-module A, and for every integer g, the cap-product by e defines an isomorphism
Hq(r, A) - Hd,,_q(r, I®A).

This follows from theorem 4.5 of [1], combined with theorem 11.4.1 and 11.1.
Remark. In the language of [1], I is a duality group. It is a “Poincaré duality
group” if 7 is isomorphic to Z, i.e. if [=0, or, equivalently, if 6.X=0.

11.4.3. COROLLARY. We have cd(I')=d-1.
(Recall that cd(I") is the cohomological dimension of T, cf. (26], p. 84.)
This is clear from theorem 11.4.2.

11.4.4. THEOREM. Let A be any arithmetic subgroup of G(Q) (which may have
torsion). Then A is of type (WFL), ved(4)=d—1, H'(4, Z[4])=0 for i#d~1I and
H"Y(A, Z[4]) is isomorphic to 1.

(For the definitions of “type (WFL)” and “‘ved,” see [26], n® 1.8.)

This follows from 11.1, 11.4.1, 11.4.3 applied to the torsion-free subgroups of finite
index of 4. (Notice that H'(4, Z[4]) is isomorphic to H*(I', Z[I']) if I' is of finite
index in 4, cf. [1], prop. 3.1.))

EXAMPLES. ved(SLs(Z))=5-2=3; ved(Sps(Z))=6—2=4.

11.5. Duality in cohomology
Let R be a commutative ring and € an injective R-module. If ¥V is any R-module,
we define V' as Homg (¥, Q). We also define I" as Homy(7, ).

11.5.1. THEOREM. For every R[I'|-module V and every integer q, H*(I', V)" is
naturally isomorphic to H*"'~%(I', Homg (V, I')).
This follows from the isomorphisms

HY(L, VY2 H, . ([LV®I) (theorem 11.4.2)
Hy (I, V@Iy=H ', (V®I)) (elementary)
(V¥ ®I) @ Hom, (V,I') (linear algebra).

EXAMPLES. a) Ris a field, =R, and V' is the dual vector space of V.
b) R=Z and Q=Q/Z.

11.6. Remark. If K is a number field, L an affine K-group, and 4 an arithmetic
subgroup of L(K), the above results can be applied to 4, viewed as an arithmetic
subgroup of the Q-group G = Ry oL, cf. [3], n° 7.16. We leave the details to the reader;
he will notice, in particular, that the Q-rank / of G/RG is equal to the K-rank of L/RL
[8; 6.21}.
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Appendice

Arrondissement des variétés a coins

par A. DOUADY et L. HERAULT

1. Secteurs

On pose S;=RY xR""* C’est le secteur type d’indice k dans R". Soient U un
ouvert de S, F un espace vectoriel réel de dimension finie, fune application de U dans
F et x,elU. On dit que f admet 1e.#(R", F) pour dérivée en x, si f(x)=f(x,)
+A(x—x0)+n(x) pour xeU, ou n(x) est o(x—x,). La dérivée, si elle existe, est
unique. On définit comme d’ordinaire les applications de classe C!, C', C® de U
dans F.

On dit que f est analytique ou de classe C“ en un point xe U si f est induite au
voisinage de x par une application analytique d’un ouvert de R” dans F.

PROPOSITION. 1.1. Si U=S;nV, ou V est un ouvert de R", toute application de
classe C* de U dans R se prolonge en une application de classe C* de V dans R.

C’est un cas particulier du théoréme de prolongement de Whitney ({31}, [20]). On
pourrait trouver pour ce cas particulier une démonstration plus simple que celle du
cas général.

Soient U et U’ des ouverts de Sy et S respectivement, et f une application de U
dans U’. On dit que f est de classe C® (resp. C*) si elle est de classe C® (resp. C*)
de U dans R". On dit que f est un difféomorphisme si elle est bijective et si f'et f ~*
sont C®; on a alors n=n"si U#0.

2. Variétés a coins

En prenant pour modeles les ouverts des S§, k<neN, et pour changements de
cartes les difféomorphismes C® (resp. C®), on obtient une catégorie locale qui est celle
des variétés a coins C*® (resp. C*). (On peut aussi définir une variété A coins comme
un espace annelé localement isomorphe & un modéle muni du faisceau des fonctions
C* (resp. C*).)

Soient X une variété a coins et xe X. Il existe une carte ¢ de X centrée en x i.c. telle
que ¢ (x)=0. Si cette carte est a valeurs dans un ouvert de Sy, on dit que » est la
dimension de X au voisinage de x et k est 'indice de x. On définit comme d’ordinaire
I’espace vectoriel tangent T, X. L’image réciproque de S; dans T,.X par T,¢ est le
secteur rentrant ST, X (il ne dépend pas du choix de la carte); son intérieur est noté
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ST, X. On dit que teT, X est rentrant (resp. strictement rentrant, resp. sortant, resp.
strictement sortant) si 1€ ST, X (resp. ST, X, resp. — ST, X, resp. —ST.X).

On note X I’ensemble des points de X d’indice >k. C’est le k-bord de X. L’en-
semble X=X — X est Pintérieur de X, X’ est le bord de X. On dit que X est une
variété a bord lisse si X =0.

Soit ¥ une variété (sans bord) et soit X un fermé de V. On dit que X est une piéce
a coins de V si, pour tout x,€X, il existe un voisinage U de x, dans V et des fonctions
U, ..., t, de classe C* (resp. C”) sur U telles que d, u,, ..., d, u, soient linéairement
indépendants et que X n U soit ’ensemble des xe U tels que u, (x)=0, ..., u, (x)>0.

On dit qu’un champ de vecteurs @ sur une variété a coins X est strictement rentrant
(resp. strictement sortant) si 8 (x)e ST, X (resp. 0(x)e— ST, X) pour tout xe X (il suffit
de le vérifier pour xe X?). Sur toute variété 4 coins paracompacte, il existe un champ
de vecteurs de classe C® strictement rentrant (resp. sortant), comme on le voit avec
une partition C* de I'unité.

Soient X une variété & coins séparée, 6 un champ de vecteurs de classe C* sur X,
strictement rentrant. Pour xeX, soit y,: I, — X la courbe intégrale maximale de 6
d’origine x. L’intervalle 7, contient l'origine et est ouvert 4 droite; si xe X, lintervalle
I, est un voisinage de 0. Soit g,(x) la borne supérieure de I,. La fonction g4: X >R
est strictement positive et semi-continue inférieurement.

3. Plongement d’une variété a coins comme piéce i coins d’une variété

PROPOSITION 3.1. Toute variété @ coins paracompacte peut étre plongée dans
une variété sans bord comme piéce d coins C*.

Démonstration. Soit X une variété a coins paracompacte, et choisissons sur X un
champ de vecteurs 8, de classe C* strictement rentrant. On construit, au moyen d’une
partition de 'unité, une fonction 7: X — R, de classe C®, strictement inférieure a
0, €t strictement positive sur XV, Posons d=n0,. Le champ de vecteurs 0 est de
classe C™®, strictement rentrant, et gy> 1.

On voit alors que I'application exp8: X — X, qui, & xe X associe 7.(1), ol y, est la
courbe intégrale de @ d’origine x, est un difféomorphisme de X sur une piéce & coins
de X, cqfd.

PROPOSITION 3.2. Toute variété a coins R-analytique paracompacte peut étre
plongée dans une variété R-analytique sans bord comme piéce a coins de classe C°.

La démonstration est analogue a celle donnée par Whitney et Bruhat ([32]) pour
prouver que toute variété R-analytique paracompacte admet une complexification.

COROLLAIRE. Soient X une variété a coins R-analytique paracompacte et & un
faisceau analytique cohérent sur X. On a H(X; & )=0 paur tout q>0.
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Démonstration. Plongeons X comme piéce & coins dans une variété R-analytique
V et soit W une complexification de V. D’aprés un résultat de Grauert ([15], p. 470,
1.11), tout voisinage ouvert U de X dans ¥ admet un systéme fondamental de voisina-
ges de Stein dans W, donc X admet dans W un systéme fondamental de voisinages
de Stein. On obtient alors le corollaire en appliquant un résultat de Cartan ([1],
prop. 6), cgfd.

PROPOSITION 3.3. Sur toute variété R-analytique a coins paracompacte, il existe
un champ de vecteurs strictement rentrant de classe C°.

Démonstration. Soit X une piéce a coins d’une variété R-analytique paracompacte
V. D’aprés ([15], Th. 3), on peut plonger ¥ dans R* pour k assez grand. Le fibré T,
admet dans le fibré trivial ¥ x R* un supplémentaire analytique, par exemple I’ortho-
gonal. Il résulte alors de ([15], Prop. 8) que tout champ de vecteurs C® sur ¥ peut
étre approché par un champ de vecteurs analytique au sens suivant: si 8 est un champ
de vecteurs C® et ¢: ¥ = R une fonction continue strictement positive, il existe un
champ de vecteurs 6’ de classe C® sur ¥ tel que pour tout x€ ¥V on ait |6’ (x)—0(x)|
<e&(x). Alors, si 8 est strictement rentrant sur X, on peut choisir ¢ de fagon que ceci
entraine que 8’ est strictement rentrant sur X, cqfd.

4, Champs de vecteurs strictement sortants

Soient X une pi¢ce & coins d’une variété V, et 0 un champ de vecteurs de classe C®
(resp. C®) sur V, strictement sortant de X. Pour xeV, soit y,:]—a’(x), a(x)[ >V la
courbe intégrale maximale de 8 d’origine x dans V. S’il existe un z4e]—a’(x), a(x)[
tel que 7,(¢o)eX™), on voit en prenant des coordonnées locales que la courbe 7, sort
de X en #,, i.e. qu’il existe £>0 tel que y,(Jto—¢, to])=X et y,(Jto, to+e[)cV—-X.
Il en résulte que 7, (]—a’ (%), to]) =X et y.(Jto, a(x)[) = ¥ — X, et il existe au plus un
tel ¢.

PROPOSITION 4.1. Avec ces notations, il existe un voisinage M de X dans V
tel que:

(@) pour tout xe M, il existe un b(x)e]—a’ (x), a(x)[ et un seul tel que y,(b(x))
exW;

(b) Papplication b:M— R ainsi définie est continue.

Démonstration. Soit xoe XV, 11 existe un voisinage U de x, dans ¥, des fonctions
Uy, ..., u; de classe C® sur U et un nombre m>0 tels que XN U= {xeU:u,(x) >
=0,..., 4 (x) >0}, #;(x0)=0 et {O(x), du;><—m pour xeU, i=1,..., k. 1l existe
alors un voisinage U’ de x, dans U et un nombre >0 tels que, pour tout xe U’, on ait
[=r, +r]le]-a’(x), a(x)[ et y.([—r, +r])=U. Soit U” I’ensemble des xe U’ tels
que u;(x)<mrpouri=1,..., k. Pour xeU”,onay,(—r)eUn Xety,(r)eU~X, donc
il existe un b(x)e]—r, +r[ tel que y,(b(x))eX ™.
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Pour xeU”, te]—r, +r[eti=1,..., k, posons #;(x, t)=u;(y,(t)). On a dh,/3t <0
et i;(x, t) tend vers u; (7, (r)) <O (resp. u, (7. (~7))>0) quand ¢ tend vers r (resp. —r),
donc I’ensemble des couples (x, ¢) tels que A;(x, t)=0 est le graphe d’une fonction
b;:U" > J—r,r[ de classe C®, et b=inf,(b,) est continue. La proposition en résulte.

PROPOSITION 4.2. Avec les mémes notations, soit M comme dans la Prop. 4.1;
Papplication ¢ : x> (7.(b(x)), b(x)) est un homéomorphisme de M sur un voisinage W de
XD % {0} dans X xR.

Démonstration. 11 est clair que ¢ est continue. Son image est ’ensemble des
(%1, 1)e XM xR tels que —te]—a’(xy), a(x;)[ et @, (—t)eM. Cet ensemble est un
voisinage de X x {0} et I'application (x;, t)~>7,, (~t) de W dans M est continue.
Or cette application est ¢ !, d’oti la proposition.

PROPOSITION 4.3. Avec les mémes notations, supposons V séparée et M ouvert.
La relation R {x, y}:3t tel que y=1y,(t) est une relation d’équivalence entre éléments de
M et le quotient M/R admet une structure de variété C* (resp. C®) et une seule telle
que 'application canonique y: M — M/R soit une submersion. Cette application induit
un homéomorphisme de X sur M/R.

Démonstration. 11 est clair que R est une relation d’équivalence. L’ensemble
Qc M xR des couples (x, t) tels que te]—a’(x), a(x)[ et y,(t)e M est ouvert dans
M xR et &:(x, t)—(x, (1)) de Q dans M x M est une immersion dont I'image est
le graphe de R. 1l suffit de voir que @ est un homéomorphisme de £2 sur un fermé de
M x M, la premiére assertion résultera alors de ([9], 5.9.5). Le graphe de R est
¢~ (Q X x1,R2), donc est fermé, et I'inverse de @ est

(@ 1 (xs, 1), @ H(xy, ) (07 (xy, 1), £ = 1),

qui est continue, d’ol la premiere assertion.
L’application y/X*" est continue, et son inverse est I'application déduite de
x>y, (b(x)), donc est continue.

5. Fonctions tapissantes

DEFINITION. Soient U un voisinage de 0 dans Sy et 4 une fonction U—~R. On
dit que % est tapissante en O si k se met au voisinage de O sous la forme 4(x)
=f(x)"x;... s, o fest C® et >0.

Remarque. Dans cette définition, si / est analytique, il en est de méme de f.

PROPOSITION 5.1. Soient U et U’ deux ouverts de S; contenant 0 et ¢ un dif-
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Jféomorphisme de U sur U’ tel que ¢ (0)=0. Si h est une fonction sur U tapissante en 0,
la fonction @4 (h)=ho@ ™! sur U’ est tapissante en 0.

Démonstration. Soit u; la fonction x> x;. L’application ¢ permute les faces de Sy
au voisinage de 0 suivant une permutation ce$,. La fonction ¢, (u;) est nulle sur la
o (i)-¢me face au voisinage de 0, et a une dérivée normale >0, donc est au voisinage
de 0 de la forme g;u, (;), ol g; est C® et >0. Alors @, (h) =@ (f) g1 --- & Uy ... Uy AU
voisinage de 0.

DEFINITION. Soient X une variété  coins, et % une fonction sur X. On dit que
h est tapissante en un point x de X s’il existe une carte centrée en x telle que I'expres-
sion de A dans cette carte soit tapissante en 0.

Remarques

5.2. Si hest tapissante en x pour une carte, elle ’est pour toutes d’aprésla prop. 5.1.

5.3. Si & est tapissante en x, elle I’est au voisinage de x.

5.4. Si xeX, h est tapissante en x<>h est C*® au voisinage de x et A(x)>0. Si x
est d’indice k> 1, et si & est tapissante en x, on peut trouver une carte centrée en x telle
que I’expression de A soit vy ... u;.

5.5. Un barycentre de fonctions tapissantes est tapissante. Sur toute variété a coins
paracompacte, il existe une fonction tapissante de classe C*.

PROPOSITION 5.6. Sur toute variété da coins R-analytique paracompacte, il existe
une fonction tapissante de classe C*.

Démonstration. Soient X une variété a coins R-analytique paracompacte, (U;) un
recouvrement de X par des domaines de cartes, et pour tout #, #; une fonction tapis-
sante analytique sur U,. La fonction g; ;=Log(h;/h;) se prolonge en une fonction
analytique sur U;nUj, eton a g; y=g; ;+&; « sur U;nU;n U,. D’aprés le Cor. de
la Prop. 3.2, il existe des fonctions analytiques c;: U;—R telles que g; ;=c;—c;.
Les fonctions e “‘h; se recollent alors en une fonction analytique tapissante sur X,
cqfd.

PROPOSITION 5.7. Soient X une variété a coins, h une fonction tapissante sur X
et 0 un champ de vecteurs strictement sortant sur X. Il existe un voisinage N de XV dans
X tel que on ait {0(x), d,h) <0 pour tout xe N— X',

Démonstration. Soit x, un point de X et soit (uy, ..., 4,) un systéme de coordon-
nées centré en x, tel que A=u, ...u,. Soient 6,,..., 8, les coordonnées de 0 dans ce
systéme, ie. 0,=(0,du;). On a #6,,...,0,<0 au voisinage de x,, d’ou (6, dh)
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=Y uy... ;... u8;<0, et (B, dh) <0 en tout point olt un au plus des »; s’annule, car
alors la somme posséde un terme non nul.

6. Arrondissement des coins

PROPOSITION 6.1. Soient X une variété d coins paracompacte et h une fonction
tapissante sur X. Supposons que X soit une piéce a coins d’une variété V et soit 6 un
champ de vecteurs C® sur V strictement sortant de X. Soit M un voisinage ouvert de
XY dans V répondant aux conditions de la Prop. 4.1. Alors, il existe un voisinage N
de XV dans M n X tel que I'application yr:x— (3 (x), h(x)) soit un homéomorphisme
de N sur un voisinage de M|R x {0} dans M{RxR .

Démonstration. Avecles notations de la proposition 4.2, soit fune fonction continue
strictement positive sur X telle que ’ensemble N, = {(x, ¢):0< < f(x)} soit contenu
dans W. Posons N=¢ ! (N,). L’ensemble N est un voisinage de X*) dans M n X, et,
quitte & diminuer £, on peut supposer qu’il répond a la condition de la Prop. 5.7. On
a alors le diagramme commutatif

N, 2L N XU AR xR,
i= !
xOv—*% . MR

ol 7 est propre, y; est un homéomorphisme et, pour tout xe X, la fonction
t—h(p~*(x, t)) est strictement croissante sur [0, f(x)] car sa dérivée est >0 pour
t>0. La proposition en résulte.

THEOREME ET DEFINITION 6.2. Soient X une variété @ coins paracompacte
de classe C™ (resp. C®), h une fonction tapissante de classe C* (resp. C®) et 6 un
champ de vecteurs strictement sortant de classe C* (resp. C*) sur X. Soit N un voisinage
ouvert de X dans X répondant aux conditions de la Prop. 6.1. Il existe alors une variété
@ bord lisse X de classe C® (resp. C®) et une seule, ayant méme espace topologique
sous-jacent que X, telle que les structures de X et X coincident sur X—X®, et que y
soit un difféomorphisme (resp. un difféomorphisme C®) de N muni de la structure induite
par X sur un ouvert de M/R xR .. On dit que X est la variété obtenue en arrondissant

X au moyen de h et 0.

Démonstration. 1l reste 4 voir que Y induit un difféomorphisme (resp. un diffé-
omorphisme R-analytique) de N— X sur un ouvert de M/R xR, mais cela résulte
du théoréme d’inversion locale, cqfd.
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