PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

JEAN-PIERRE SERRE

Groupe de Grothendieck des schémas en groupes réductifs déployés

Publications mathématiques de l'I.H.É.S., tome 34 (1968), p. 37-52.

http://www.numdam.org/item?id=PMIHES_1968__34__37_0

© Publications mathématiques de l'I.H.É.S., 1968, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www.ihes.fr/lHES/Publications/Publications.html), implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

GROUPES DE GROTHENDIECK DES SCHÉMAS EN GROUPES RÉDUCTIFS DÉPLOYÉS

par JEAN-PIERRE SERRE

Les représentations linéaires du schéma en groupes GL_n , sur l'anneau de base \mathbf{Z} , forment une catégorie additive où la notion de suite exacte a un sens évident. On en déduit un « groupe de Grothendieck » $R_{\mathbf{Z}}(GL_n)$. Si, au lieu de \mathbf{Z} , on prend le corps \mathbf{Q} pour anneau de base, on obtient de même un groupe $R_{\mathbf{Q}}(GL_n)$. L'opération d'extension des scalaires définit un homomorphisme

$$i: R_{\mathbf{z}}(GL_n) \to R_{\mathbf{Q}}(GL_n).$$

La structure de $R_q(GL_n)$ est bien connue; elle est fournie par la théorie des caractères (cf. par exemple n° 3.8). Grothendieck a posé la question suivante :

L'homomorphisme $i: R_z(GL_n) \to R_0(GL_n)$ est-il un isomorphisme?

(L'intérêt de cette question est que le groupe $R_{\mathbf{z}}(GL_n)$ joue un rôle « universel » pour les opérations sur les représentations linéaires ou les fibrés vectoriels, par exemple les λ -opérations; cf. Sém. Géom. Alg., I.H.E.S., 1966/67, exposé X, Appendice.)

Nous verrons (th. 5, n^0 3.7) que la réponse est affirmative; plus généralement, on peut remplacer \mathbb{Z} par un anneau principal \mathbb{A} , et GL_n par un schéma en groupes réductif déployé sur \mathbb{A} , au sens de [4], exposé XXII. La démonstration est donnée au § 3. C'est une simple application de la théorie des « homomorphismes de décomposition », due à Brauer (cf. Giorgiutti [5]). Il est toutefois nécessaire d'étendre la théorie de Brauer aux représentations linéaires d'un schéma en groupes affine et plat; c'est ce qui est fait au § 2, dans le cadre un peu plus général des comodules (sur une cogèbre plate). Le § 1 contient divers résultats préliminaires.

§ 1. COMODULES

1.1. Hypothèses et notations.

La lettre A désigne un anneau commutatif à élément unité. Tous les modules, produits tensoriels, etc., sont relatifs à A.

La lettre C désigne une cogèbre (ou « coalgèbre ») sur A, de coproduit d (Bourbaki, Alg., chap. III, 3^e éd.). On suppose:

- (i) que C possède une counité (à droite et à gauche), notée e;
- (ii) que C est co-associative.

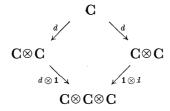
Rappelons ce que cela signifie:

C est un A-module

d est une application linéaire de C dans $C \otimes C$

e est une application linéaire de C dans A

- et l'on a :
 - (i) Le composé $C \xrightarrow{d} C \otimes C \to C$ est l'identité, la seconde flèche étant $e \otimes I$
 - (i') Même énoncé que (i), avec $e \otimes I$ remplacé par $I \otimes e$.
 - (ii) Le diagramme



est commutatif.

De plus, nous supposerons dans toute la suite que C est un A-module *plat* (Bourbaki, Alg. Comm., chap. I, § 2).

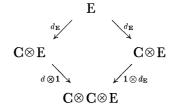
1.2. Comodules.

On appelle comodule à gauche sur C, ou simplement comodule, le couple formé d'un A-module E et d'une application linéaire

$$d_{\rm E}:{\rm E}\to{\rm C}\otimes{\rm E}$$

vérifiant les deux conditions suivantes :

- (i) Le composé $E \to C \otimes E \to E$ est l'identité, la première flèche étant d_E , la seconde $e \otimes I$.
 - (ii) Le diagramme



est commutatif.

L'application $d_{\rm E}$ s'appelle le coproduit de E; nous la noterons souvent d. Exemples. — a) La cogèbre C, munie de son coproduit d, est un comodule.

- b) Si E est un comodule, de coproduit d, et si M est un A-module, le module $E \otimes M$, muni de $d \otimes I$, est un comodule.
- c) La somme directe d'une famille de comodules a une structure évidente de comodule.

Soient E et E' deux comodules. Un morphisme $f: E \rightarrow E'$ est une application linéaire de E dans E' telle que le diagramme

$$\begin{array}{ccc}
E & \xrightarrow{f} & E' \\
\downarrow^{d} & & \downarrow^{d} \\
C \otimes E & \xrightarrow{1 \otimes f} & C \otimes E'
\end{array}$$

soit commutatif. L'ensemble $\operatorname{Hom^{C}}(E, E')$ des morphismes de E dans E' est un sous-A-module de l'ensemble $\operatorname{Hom}(E, E')$ des applications linéaires de E dans E'.

Soit F un sous-module (relativement à A) du comodule E. Du fait que C est plat sur A, on peut identifier $C \otimes F$ à un sous-module de $C \otimes E$. Supposons que d_E applique F dans $C \otimes F$; la restriction $d_F : F \rightarrow C \otimes F$ de d_E munit alors F d'une structure de comodule (cela se vérifie facilement en utilisant la platitude de C); on dit que F est un sous-comodule de E. Par passage au quotient, d_E définit une application $d_{E/F} : E/F \rightarrow C \otimes E/F$; d'où une structure de comodule sur E/F. Si $f : E \rightarrow E'$ est un morphisme de comodules, le noyau N (resp. l'image I) de f est un sous-comodule de E (resp. E'), et f définit par passage au quotient un isomorphisme du comodule E/N sur le comodule I. On en déduit que la catégorie des comodules est une catégorie abélienne, où la notion de sous-objet coïncide avec celle de sous-comodule; le foncteur « d'oubli », qui associe à tout comodule le A-module sous-jacent, est fidèle, exact, et commute aux limites projectives finies et aux limites inductives quelconques. En particulier, toute somme de sous-comodules et toute intersection finie de sous-comodules sont des sous-comodules. (Tout ceci résulte simplement des propriétés analogues du foncteur $E \mapsto C \otimes E$.)

1.4. Un exemple de morphismes.

Soit E un comodule, et soit E_0 le A-module sous-jacent à E. Le produit tensoriel $C \otimes E_0$ du comodule C et du module E_0 est muni d'une structure naturelle de comodule (cf. 1.2), de coproduit $d \otimes 1$. L'application linéaire

$$d_{\rm E}: {\rm E} \rightarrow {\rm C} \otimes {\rm E}_0$$

est un morphisme de comodules : cela ne fait que traduire l'axiome (ii) des comodules. Comme de plus $(e \otimes I) \circ d_E = I$, on voit que d_E identifie E à un sous-comodule de $C \otimes E_0$, ce sous-comodule étant même facteur direct (comme A-module) de $C \otimes E_0$.

1.5. Construction de sous-comodules.

Lemme 1. — Soit $f: M \to M'$ un morphisme de A-modules, et soit N' un sous-module de M'. Soit N (resp. N_C) l'image réciproque de N' (resp. de $C \otimes N'$) dans M (resp. dans $C \otimes M$) par f (resp. par $I \otimes f$). On a $N_C = C \otimes N$. (En d'autres termes, le foncteur « produit tensoriel par C » commute aux images réciproques de sous-modules.)

Soit g le composé $M \rightarrow M' \rightarrow M'/N'$. On a $N = \operatorname{Ker}(g)$ et $N_C = \operatorname{Ker}(1 \otimes g)$. Puisque C est plat, on a $\operatorname{Ker}(1 \otimes g) = C \otimes \operatorname{Ker}(g)$, cf. Bourbaki, $\operatorname{Alg.\ Comm.}$, chap. I, § 2. D'où $N_C = C \otimes N$.

Proposition 1. — Soit E un comodule sur C et soit H un sous-A-module de E. Soit F l'ensemble des $x \in E$ tels que $d_E(x) \in C \otimes H$. Alors F est un sous-comodule de E, contenu dans H, et c'est le plus grand sous-comodule de E jouissant de cette propriété.

Montrons que F est un sous-comodule de E. Par définition, F est l'image réciproque de $C \otimes H$ par l'application $d_E : E \rightarrow C \otimes E$.

D'après le lemme 1, il s'ensuit que $C \otimes F$ est l'image réciproque de $C \otimes C \otimes H$ par l'application $I \otimes d_E : C \otimes E \to C \otimes C \otimes E$.

Pour prouver que $d_{\mathbb{E}}(F)$ est contenu dans $C \otimes F$, il suffit donc de prouver que $(\mathfrak{1} \otimes d_{\mathbb{E}})(d_{\mathbb{E}}(F))$ est contenu dans $C \otimes C \otimes H$. Mais, vu l'axiome (ii) des comodules, on a $(\mathfrak{1} \otimes d_{\mathbb{E}}) \circ d_{\mathbb{E}} = (d \otimes \mathfrak{1}_{\mathbb{E}}) \circ d_{\mathbb{E}}$. Or $d_{\mathbb{E}}(F)$ est contenu dans $C \otimes H$, et il est clair que $d \otimes \mathfrak{1}_{\mathbb{E}}$ applique $C \otimes H$ dans $C \otimes C \otimes H$; on a donc bien vérifié que F est un sous-comodule de E.

Puisque $(e \otimes I) \circ d_E = I_E$, on voit que F est contenu dans $(e \otimes I)(C \otimes H)$, donc dans H. Enfin, si F' est un sous-comodule de E contenu dans H, on a $d_E(F') \subset C \otimes F' \subset C \otimes H$, d'où $F' \subset F$, ce qui achève de démontrer la proposition.

Dans ce qui suit, nous dirons qu'un comodule est de type fini (resp. libre, projectif, etc.) si c'est un A-module de type fini (resp. libre, projectif, etc.).

Proposition 2. — Supposons A noethérien. Soit E un comodule sur C, et soit M un sous-module de type fini de E. Il existe alors un sous-comodule F de E, de type fini, contenant M.

Puisque M est de type fini, il en est de même de $d_{\mathbb{E}}(M)$. Il existe donc un sousmodule H de E, de type fini, tel que

$$d_{\mathbb{E}}(\mathbf{M}) \subset \mathbf{C} \otimes \mathbf{H}$$
.

Soit F l'ensemble des $x \in E$ tels que $d_E(x) \in C \otimes H$. D'après la prop. 1, F est un souscomodule de E contenu dans H; comme A est noethérien, il en résulte que F est de type fini. D'autre part il est clair que F contient M.

Corollaire. — Le comodule E est réunion filtrante de ses sous-comodules de type fini.

§ 2. RÉDUCTION DES COMODULES ET GROUPES DE GROTHENDIECK

2.1. Hypothèses et notations.

On conserve celles du § 1, et l'on suppose en outre que A est un anneau de Dedekind (Bourbaki, Alg. comm., chap. VII, § 2). L'hypothèse de platitude faite sur C revient alors simplement à dire que C est un A-module sans torsion.

On note K le corps des fractions de A, et C_K la cogèbre $C \otimes K$ sur le corps K. On identifie les comodules sur C_K aux comodules sur C qui sont des K-espaces vectoriels (i.e. tels que les homothéties définies par les éléments non nuls de A soient bijectives).

On note V l'ensemble des idéaux premiers non nuls de A. Si $v \in V$, on note k_v le corps résiduel A/v correspondant et C_v la cogèbre $C \otimes k_v$ sur le corps k_v . Ici encore, on identifie les comodules sur C_v aux comodules sur C qui sont annulés par v.

2.2. Une propriété de relèvement.

Proposition 3. — Tout comodule sur C qui est de type fini (en tant que A-module, cf. 1.5) est isomorphe à un quotient d'un comodule projectif de type fini.

(Noter que, puisque A est un anneau de Dedekind, « projectif de type fini » équivaut à « sans torsion et de type fini »; lorsque A est principal, cela équivaut à « libre de type fini ».)

Soit E un comodule sur C de type fini, et soit E_0 le A-module sous-jacent. Plongeons E, au moyen de d_E , dans le comodule $C \otimes E_0$, cf. 1.4. Puisque E_0 est de type fini, on peut trouver un A-module libre de type fini L et un homomorphisme surjectif $p: L \to E_0$. D'où un morphisme surjectif de comodules

$$1 \otimes p : C \otimes L \to C \otimes E_0$$
.

Mais, puisque E a été identifié à un sous-comodule de $C \otimes E_0$, son image réciproque F dans $C \otimes L$ est un sous-comodule de $C \otimes L$; le morphisme $f : F \to E$ induit par $I \otimes p$ est surjectif. Comme E est de type fini, il existe un sous-module N de type fini de F tel que f(N) = E. D'après la prop. 2, appliquée à F, il existe un sous-comodule P de F, contenant N, et de type fini. L'application $f : P \to E$ est surjective; donc E est isomorphe à un quotient de P. D'autre part, P est un sous-module de $C \otimes L$, qui est sans torsion; donc P est sans torsion, c.q.f.d.

Corollaire. — Soit E un comodule de type fini. Il existe une suite exacte (de comodules) :

$$0 \rightarrow P_1 \rightarrow P_0 \rightarrow E \rightarrow 0$$

où Po et P1 sont projectifs de type fini.

D'après la prop. 3, il existe une suite exacte $P_0 \rightarrow E \rightarrow o$ où P_0 est projectif de type fini. Le noyau P_1 de $P_0 \rightarrow E$ est sans torsion et de type fini, donc projectif.

2.3. Groupes de Grothendieck.

Soit Com_A (resp. Com_K , Com_v) la catégorie abélienne des comodules sur C (resp. sur C_K , sur C_v) qui sont de type fini comme A-modules (resp. comme K-espaces vectoriels, comme k_v -espaces vectoriels). Nous noterons R_A (resp. R_K , resp. R_v) le groupe de Grothendieck de la catégorie Com_A (resp. Com_K , Com_v) vis-à-vis des suites exactes. Si E est un objet de Com_A , nous noterons $[E]_A$, ou simplement [E], son image dans R_A ; nous emploierons des notations analogues pour Com_K et Com_v .

Nous aurons également besoin de la catégorie additive Com_P des comodules sur C qui sont projectifs de type fini, et du groupe de Grothendieck R_P correspondant (pour les suites exactes). Si l'on associe à un objet P de Com_P son image $[P]_A$ dans R_A , on obtient une application additive $Ob(Com_P) \rightarrow R_A$, d'où un homomorphisme $\alpha: R_P \rightarrow R_A$.

Proposition 4. — L'homomorphisme $\alpha: R_P \rightarrow R_A$ est un isomorphisme.

C'est un cas particulier d'un résultat général de Grothendieck (cf. par exemple [5], chap. I, prop. 3.4). Rappelons-en brièvement la démonstration :

Si E est un objet de Com_A, choisissons une suite exacte

$$(*) \qquad \qquad 0 \rightarrow P_1 \rightarrow P_0 \rightarrow E \rightarrow 0$$

où P_0 et P_1 sont des comodules projectifs de type fini (cf. cor. à la prop. 3). Montrons que l'élément $[P_0]$ — $[P_1]$ de R_P est indépendant du choix de la suite exacte (*). En effet, si

$$o \rightarrow P_1' \rightarrow P_0' \rightarrow E \rightarrow o$$

est une autre suite exacte du même type, soit Q le noyau du morphisme $P_0 \oplus P_0' \to E$ somme des morphismes $P_0 \to E$ et $P_0' \to E$. Les deux projections $Q \to P_0$ et $Q \to P_0'$ sont surjectives; leurs noyaux sont respectivement isomorphes à P_1' et P_1 . D'où :

$$[P_0] + [P_1'] = [Q] = [P_0'] + [P_1]$$
 dans R_P ,

i.e.
$$[P_0] - [P_1] = [P'_0] - [P'_1]$$
.

Si l'on pose $\beta(E) = [P_0] - [P_1]$, on obtient donc une application $\beta: Ob(Com_A) \to R_P$. On vérifie par un argument analogue au précédent que β est additive. D'où un homomorphisme

 $\beta: R_A \rightarrow R_P$.

Il est immédiat que $\alpha \circ \beta = 1$ et $\beta \circ \alpha = 1$. La proposition en résulte. Remarque. — Nous identifierons désormais R_P et R_A au moyen de α .

2.4. Les homomorphismes i et j.

Le foncteur qui associe à un objet E de Com_A son produit tensoriel $E\otimes K$ par K est un foncteur *exact* de Com_A dans Com_K . Il définit donc un homomorphisme

$$i: \mathbf{R}_{\Lambda} \to \mathbf{R}_{\kappa}$$

des groupes de Grothendieck correspondants.

Soit d'autre part $v \in V$. La catégorie Com_v s'identifie (cf. 2.1) à une sous-catégorie pleine de Com_A ; le foncteur d'inclusion $Com_v \rightarrow Com_A$ définit donc un homomorphisme

$$j_v: \mathbf{R}_v \rightarrow \mathbf{R}_{\mathbf{A}}$$

des groupes de Grothendieck correspondants.

Nous noterons

$$j: \coprod_{v \in V} \mathbf{R}_v \to \mathbf{R}_{\mathbf{A}}$$

l'homomorphisme somme des homomorphismes j_v .

Remarque. — Soit Com_t la catégorie des comodules sur C qui sont de type fini et de torsion (comme A-modules). On voit tout de suite que le groupe de Grothendieck de Com_t s'identifie à la somme directe $\coprod_{v \in \operatorname{V}} \operatorname{R}_v$ des R_v ; l'homomorphisme j est simplement l'homomorphisme déduit de l'inclusion $\operatorname{Com}_t \to \operatorname{Com}_A$.

Théorème 1. — La suite $\coprod_{v \in V} R_v \xrightarrow{j} R_A \xrightarrow{i} R_K \to o$ est une suite exacte.

Il est clair que $i \circ j = 0$. L'application i définit donc un homomorphisme $\varphi : \operatorname{Coker}(j) \to \mathbb{R}_K$; il nous faut montrer que φ est un isomorphisme.

Lemme 2. — Soit E un comodule sur C qui soit un K-espace vectoriel de dimension finie (i.e. un objet de Com_K).

- a) Il existe un sous-comodule F de E qui est un réseau de E.
- b) Si F₁ et F₂ sont des réseaux de E qui sont des sous-comodules, on a :

$$[F_1] \equiv [F_2] \mod Im(j)$$
 dans R_A .

(Rappelons qu'on appelle *réseau* du K-espace vectoriel E tout sous-A-module F de E qui est de type fini et qui engendre E comme K-espace vectoriel, cf. Bourbaki, Alg. Comm., chap. VII, § 4.)

Soit M un réseau de E. D'après la prop. 2 du nº 1.5, il existe un sous-comodule F de E qui est de type fini et contient M; c'est un réseau de E; d'où a).

Dans les hypothèses de b), le comodule $F_1/F_1 \cap F_2$ est de torsion. On a donc $[F_1/F_1 \cap F_2] \in Im(j)$, d'où :

$$[F_1] \equiv [F_1 \cap F_2] \mod Im(j).$$

Le même argument montre que $[F_2] \equiv [F_1 \cap F_2] \mod \operatorname{Im}(j)$, ce qui achève de démontrer le lemme 2.

Revenons à la démonstration du théorème 1. Si $E \in Ob(Com_K)$, choisissons dans E un réseau F qui soit un sous-comodule, et notons $\psi(E)$ l'image de [F] dans Coker(j). D'après le lemme précédent, $\psi(E)$ ne dépend pas du choix de F. De plus, la fonction

$$\psi: \mathrm{Ob}(\mathrm{Com}_{\mathtt{K}}) \to \mathrm{Coker}(j)$$

est additive. En effet, si

$$o \rightarrow E' \rightarrow E \rightarrow E'' \rightarrow o$$

est une suite exacte de Com_K , soit F un réseau de E qui soit un sous-comodule, et soit F' (resp. F'') l'image réciproque (resp. l'image) de F dans E' (resp. dans F''). La suite

exacte
$$0 \rightarrow F' \rightarrow F \rightarrow F'' \rightarrow 0$$

montre que [F] = [F'] + [F''], d'où $\psi(E) = \psi(E') + \psi(E'')$.

Ainsi, \(\psi \) définit un homomorphisme

$$\psi: \mathbf{R}_{K} \rightarrow \mathbf{Coker}(j)$$
.

Il est immédiat que $\varphi \circ \psi = 1$ et $\psi \circ \varphi = 1$; le théorème en résulte.

Remarque. — On pourrait également déduire le théorème 1 du fait que la catégorie Com_K est équivalente à la catégorie quotient Com_A/Com_t ; cf. [5], chap. I, prop. 4.2.

2.5. Les homomorphismes de décomposition.

Soit $v \in V$. Le foncteur qui associe à tout objet P de Com_P son produit tensoriel $P \otimes k_v$ avec k_v est un foncteur exact de Com_P dans Com_v . Il définit donc un homomorphisme

$$q_v: \mathbf{R}_{\mathbf{P}} \to \mathbf{R}_v$$
.

D'où, en identifiant R_P et R_A (cf. 2.3) un homomorphisme de R_A dans R_v , que nous noterons encore q_v .

Théorème 2. — Il existe un homomorphisme $d_v: R_K \to R_v$ et un seul tel que $q_v = d_v \circ i$. D'après le théorème 1, l'homomorphisme i identifie $R_A/\text{Im}(j)$ à R_K . Comme $\text{Im}(j) = \sum_{v \in V} \text{Im}(j_v)$, on voit donc qu'il suffit de démontrer le résultat suivant :

Lemme 3. — Pour tout $w \in V$, le composé $R_w \xrightarrow{j_w} R_A \xrightarrow{q_v} R_v$ est nul.

Soit $X \in Ob(Com_w)$. Écrivons X comme un quotient P/Q, où $P, Q \in Ob(Com_P)$, cf. cor. à la prop. 3. On a

$$j_w([X]_w) = [X]_A = [P]_A - [Q]_A$$

$$q_v([P]_A) = [P/vP]_v, \qquad q_v([Q]_A) = [Q/vQ]_v.$$

et

Il nous faut donc démontrer que

(*)
$$[P/vP]_v = [Q/vQ]_v \quad \text{dans } R_v.$$

Notons d'abord que l'on a $P \supset Q \supset wP$ puisque P/Q est annulé par w. L'injection $Q \rightarrow P$ définit un morphisme

$$Q/vQ \rightarrow P/vP$$
.

Si $w \neq v$, cet homomorphisme est un isomorphisme (car les localisés de P et Q en v coïncident). D'où a fortiori (*). Si w = v, on a la suite exacte (dans Com_v):

$$o \rightarrow vP/vQ \rightarrow Q/vQ \rightarrow P/vP \rightarrow P/Q \rightarrow o$$
.

Mais les comodules P/Q et vP/vQ sont isomorphes. En effet, soit x un élément de A dont l'image dans l'anneau local A_v engendre l'idéal maximal vA_v de A_v . On a en particulier $x \in v$; l'homothétie de rapport x applique P dans vP et Q dans vQ, donc définit un morphisme $\overline{x}: P/Q \rightarrow vP/vQ$. Par localisation en v, on voit que \overline{x} est un isomorphisme, d'où notre assertion.

On a donc
$$[P/Q]_n = [vP/vQ]_n$$
 dans R_n ,

et la suite exacte écrite ci-dessus montre que $[P/vP]_v = [Q/vQ]_v$, ce qui achève la démonstration du lemme.

Remarque. — L'homomorphisme $d_v: R_K \to R_o$ s'appelle l'homomorphisme de décomposition relativement à v. Sa définition est locale : il ne dépend que de l'anneau de valuation discrète A_v .

Un comodule est dit *simple* (ou *irréductible*) s'il est non nul et s'il n'admet aucun sous-comodule distinct de 0 et de lui-même. Soit S_v l'ensemble des classes de comodules simples sur C_v ; d'après le cor. à la prop. 2, tout $E \in S_v$ est de dimension finie sur k_v , i.e. est un objet de la catégorie Com_v , et sa classe $[E]_v \in R_v$ est définie.

Proposition 5. — Les $[E]_v$, $E \in S_v$, forment une base du groupe abélien R_v .

C'est une simple conséquence du fait que tous les objets de Com, sont de longueur finie.

De même, si S désigne l'ensemble des classes de comodules simples sur $C_{\mbox{\scriptsize K}}$, on a :

Proposition 6. — Les $[E]_K$, $E \in S$, forment une base de R_K .

La matrice de $d_v: R_K \to R_v$ relativement aux bases ci-dessus est appelée la matrice de décomposition de C relativement à v.

2.7. Un théorème d'isomorphisme.

Lemme 4. — Soit $v \in V$. Supposons que v soit principal. L'homomorphisme

$$j_v \circ d_v : \mathbf{R}_{\mathbf{K}} \to \mathbf{R}_{\mathbf{A}}$$

est alors nul.

Soit $E \in Ob(Com_K)$. Choisissons un réseau F de E qui soit un sous-comodule de E sur C. On a :

$$d_v([E]_K) = [F/vF]_v$$

et

$$j_v \circ d_v([E]_K) = [F/vF]_A = [F]_A - [vF]_A$$
.

Mais, si v est engendré par un élément x, l'homothétie de rapport x définit un isomorphisme de F sur vF, et l'on a

$$[\mathbf{F}]_{\Lambda} = [v\mathbf{F}]_{\Lambda}$$
.

D'où

$$j_v \circ d_v(\lceil \mathbf{E} \rceil_{\mathbf{K}}) = \mathbf{0},$$

ce qui démontre le lemme.

Théorème 3. — Faisons les hypothèses suivantes :

- a) A est principal.
- b) Tous les homomorphismes de décomposition d_v $(v \in V)$ sont surjectifs.

Alors $i: R_A \rightarrow R_K$ est un isomorphisme.

Vu le théorème 1, il suffit de montrer que les homomorphismes $j_v: R_v \to R_A$ sont nuls. Or c'est évident, puisque $j_v \circ d_v = 0$ (lemme 4) et que d_v est surjectif.

Corollaire. — Deux comodules sur C, de type fini, dont les produits tensoriels par K sont isomorphes, ont même image dans $R_{\scriptscriptstyle A}$.

§ 3. LE CAS DES GROUPES RÉDUCTIFS DÉPLOYÉS

3.1. La cogèbre associée à un schéma en groupes affine.

Soit A un anneau commutatif à élément unité, et soit G un schéma en groupes affine sur A (cf. [3], exposé 2, ou [4], exposé 1). Soit C(G) l'algèbre affine de G; c'est une A-algèbre commutative, associative, à élément unité. La loi de multiplication $G \times G \rightarrow G$ est définie par un morphisme d'algèbres

$$d: \mathbf{C}(\mathbf{G}) \to \mathbf{C}(\mathbf{G} \times \mathbf{G}) = \mathbf{C}(\mathbf{G}) \otimes \mathbf{C}(\mathbf{G}).$$

On obtient ainsi une structure de cogèbre sur C(G), compatible avec sa structure d'algèbre; autrement dit, C(G) est une bigèbre (ou « bialgèbre ») sur A (Bourbaki, Alg., chap. III, 3^e éd.).

Cette structure de cogèbre vérifie les conditions (i) et (ii) du n° 1.1; la coünité $e: C(G) \rightarrow A$ est l'homomorphisme d'algèbres de C(G) dans A correspondant à la section unité de G.

Nous supposerons dans toute la suite que G est plat sur A, i.e. que C(G) est un A-module plat; toutes les hypothèses du \S 1 sont donc vérifiées.

3.2. G-modules.

Soit E un A-module. Une structure de G-module sur E se définit des deux façons équivalentes suivantes :

a) C'est une structure de comodule sur la cogèbre C(G), i.e. c'est une application linéaire $d_E: E \rightarrow C(G) \otimes E$

vérifiant les conditions (i) et (ii) du nº 1.2.

b) Soit $\operatorname{Ann}_{/A}$ la catégorie des anneaux commutatifs A' à élément unité munis d'un homomorphisme $A \to A'$. Soit Gr la catégorie des groupes. Si l'on associe à tout $A' \in \operatorname{Ob}(\operatorname{Ann}_{/A})$ le groupe G(A') des points de G à valeurs dans A', on obtient un foncteur $G: \operatorname{Ann}_{/A} \to \operatorname{Gr}$. Si l'on associe à A' le groupe des A'-automorphismes de $A' \otimes E$, on obtient un foncteur $\operatorname{Aut}_E: \operatorname{Ann}_{/A} \to \operatorname{Gr}$. Une structure de G-module sur E peut alors se définir comme un morphisme du foncteur G dans le foncteur Aut_E (autrement dit comme une action linéaire de G(A') sur $A' \otimes E$, définie pour tout A', et variant fonctoriellement en A').

L'équivalence de a) et b) est démontrée dans [3], [4], loc. cit. Bornons-nous à rappeler comment on passe du point de vue « comodule » au point de vue « morphisme de foncteurs » :

Soit $A' \in Ob(Ann_{/A})$, et soit $g \in G(A')$; l'élément g s'identifie à un morphisme de A-algèbres $g: C(G) \to A'$. Soit $\sigma(g)$ le composé

$$E \rightarrow C(G) \otimes E \rightarrow A' \otimes E$$

le premier homomorphisme étant le coproduit $d_{\mathbb{E}}$ de E et le second étant $g\otimes 1$. Par linéarité, $\sigma(g)$ se prolonge en une application A'-linéaire $\rho(g): A'\otimes E \to A'\otimes E$. On montre que $\rho(g)$ est un automorphisme de $A'\otimes E$, et que $\rho: G(A') \to \operatorname{Aut}_{A'}(A'\otimes E)$ est un homomorphisme de groupes. Comme cet homomorphisme est évidemment fonctoriel en A', il définit bien le morphisme $G \to \operatorname{Aut}_E$ cherché.

Remarque. — Supposons que E ait une base finie à n éléments (c'est le cas le plus important pour la suite). Le foncteur Aut_E est alors représentable par un schéma en groupes isomorphe à GL_n , et une structure de G-module sur E correspond donc à un morphisme de G dans GL_n .

3.3. Groupes de Grothendieck.

Supposons maintenant que A soit un anneau de Dedekind. On peut appliquer à la cogèbre C(G) les définitions et résultats du § 2. Les groupes de Grothendieck que l'on avait notés respectivement R_A , R_v , R_K , R_P seront maintenant notés $R_A(G)$, $R_v(G)$, etc. Rappelons que l'on a convenu d'identifier $R_A(G)$ et $R_P(G)$ au moyen de l'isomorphisme α du n^o 2.3.

Remarque. — Ainsi, les groupes $R_A(G)$, $R_K(G)$, etc., ne dépendent que de la structure de cogèbre de C(G); il n'en est pas de même de leurs structures d'anneaux (provenant de l'opération de produit tensoriel de deux G-modules) : ces dernières font intervenir la structure de bigèbre de C(G).

3.4. Tores.

Soit M un groupe abélien, noté additivement, et soit T_M le A-schéma en groupes diagonalisable de groupe de caractères M (cf. [4], exposé 1, n° 4.4). Rappelons que la bigèbre $C(T_M)$ correspondante s'identifie à l'algèbre A[M] du groupe abélien M, le coproduit étant déduit de l'application diagonale $M \rightarrow M \times M$. Si $m \in M$, on note e^m l'élément correspondant de A[M], cf. Bourbaki, Groupes et Algèbres de Lie, chap. VI, § 3; les e^m , $m \in M$, forment une base de $C(T_M)$, et l'on a :

$$e^m \cdot e^n = e^{m+n}$$
, $d(e^m) = e^m \otimes e^m$, si $m, n \in M$.

On sait ([4], loc. cit., prop. 4.7.3) que les T_M -modules s'identifient aux A-modules gradués de type M. Si E est un tel module, et si $m \in M$, on note E_m la composante de degré m de E; c'est l'ensemble des $x \in E$ tels que $d_E(x) = e^m \otimes x$. On a :

$$E = \coprod_{m \in M} E_m.$$

Supposons maintenant que E soit un A-module de type fini. Notons K(A) le groupe de Grothendieck de la catégorie des A-modules de type fini, et K(A)[M] l'algèbre de M sur l'anneau K(A). Associons à E l'élément $ch(E) = \sum_{m \in M} [E_m] e^m$ de K(A)[M].

On obtient une application additive de la catégorie $Com_A(T_M)$ des T_M -modules de type fini dans le groupe K(A)[M]. D'où un homomorphisme

$$ch: R_A(T_M) \to K(A)[M].$$

Proposition 7. — L'homomorphisme ch défini ci-dessus est un isomorphisme.

Soit $m \in M$. Associons à tout A-module de type fini F le T_M -module dont toutes les composantes homogènes sont nulles à l'exception de la m-ème, qui est égale à F. Par passage aux groupes de Grothendieck, on en déduit un homomorphisme

$$f_m: K(A) \rightarrow R_A(T_M)$$
.

La famille des f_m , $m \in M$, définit un homomorphisme

$$f: K(A)[M] \to R_A(T_M),$$

et l'on vérifie immédiatement que $f \circ ch = 1$ et $ch \circ f = 1$; d'où la proposition.

Corollaire. — Si A est principal, l'isomorphisme ch identifie $R_{A}(T_{M})$ à $\mathbf{Z}[M]$.

En effet, K(A) s'identifie à **Z** au moyen de l'application « rang », cf. Bourbaki, Alg. Comm., chap. VII, § 4, nº 7.

3.5. Restriction.

Soit H un schéma en groupes affine sur A, et soit $\varphi: H \to G$ un homomorphisme; notons $\varphi^*: C(G) \to C(H)$ le morphisme de bigèbres correspondant. Soit E un G-module. Le composé des morphismes de foncteurs

$$H \stackrel{\phi}{\rightarrow} G \rightarrow Aut_E$$

définit une structure de H-module sur E, dite déduite de la précédente au moyen de φ . Le coproduit correspondant s'obtient en composant $d_E: E \to C(G) \otimes E$ et $\varphi^* \otimes I: C(G) \otimes E \to C(H) \otimes E$. Le foncteur $Com_A(G) \to Com_A(H)$ ainsi défini est exact. D'où un homomorphisme $R(\varphi): R_A(G) \to R_A(H)$.

Lorsque H est un sous-schéma en groupes de G, l'homomorphisme $R(\phi)$ s'appelle l'homomorphisme de *restriction*; on le note Res.

3.6. Groupes réductifs déployés - cas d'un corps de base.

Dans ce numéro, nous supposons que A est un corps; nous le notons k. On prend pour groupe G un groupe réductif déployé, cf. [4], exposé XXII, déf. 1.13. On choisit un sous-groupe de Cartan T de G qui soit diagonalisable (un tel sous-groupe existe puisque G est déployé); on désigne par M le groupe des caractères de T; c'est un groupe abélien libre de type fini. Enfin, on désigne par W le groupe de Weyl de G relativement à T ([4], loc. cit.); il opère sur T, donc sur M.

D'après le corollaire à la prop. 7, l'homomorphisme

$$\mathrm{ch}: R_k(T) \! \to \! \boldsymbol{Z}[M]$$

est un isomorphisme. Si on le compose avec l'homomorphisme de restriction $\operatorname{Res}: R_k(G) \to R_k(T)$ on obtient un homomorphisme

$$\operatorname{ch}_{G}: R_{k}(G) \rightarrow \mathbf{Z}[M].$$

Théorème 4. — L'homomorphisme ch_G est injectif. Son image est le sous-groupe $\mathbf{Z}[M]^W$ de $\mathbf{Z}[M]$ formé des éléments invariants par W.

Soit R le système de racines de G relativement à T; c'est une partie de M. Si M' désigne le dual de M (comme **Z**-module), et si $r \in \mathbb{R}$, on note r' l'élément correspondant de M'; c'est la « coracine » associée à r. On choisit d'autre part un sous-groupe de Borel B de G contenant T; soit

$$R = R_{+} \cup R_{-},$$
 avec $R_{-} = -R_{+}$

la décomposition correspondante de R en partie positive et partie négative.

On définit une relation d'ordre dans M en posant $m \ge n$ si m-n est combinaison linéaire, à coefficients entiers ≥ 0 , des éléments de R_+ .

Un élément $m \in M$ est dit dominant si $\langle m, r' \rangle \ge 0$ pour tout $r \in \mathbb{R}_+$. On note P l'ensemble des éléments dominants.

Lemme 5. — a) Soit $p \in P$. Il existe un G-module simple E_p et un seul (à isomorphisme près) tel que $\operatorname{ch}_G(E_p) = e^p + \sum_i e^{m_i}$

avec $m_i < p$ pour tout i.

b) Tout G-module simple est isomorphe à l'un des E_n.

C'est là un résultat bien connu, essentiellement dû à Chevalley [2]. Toutefois, Chevalley fait certaines hypothèses restrictives (k algébriquement clos, G semi-simple) dont il est nécessaire de se débarrasser. Cela ne présente pas de difficulté :

- (i) On peut écrire G comme quotient $(C \times S)/N$, où C est diagonalisable, S semi-simple simplement connexe, et N sous-groupe central de $C \times S$. Les G-modules s'identifient ainsi aux $(C \times S)$ -modules où N opère trivialement. Mais l'on voit facilement qu'un $(C \times S)$ -module simple s'écrit de manière unique comme produit tensoriel $E_1 \otimes E_2$, où E_1 est un C-module simple de rang I (correspondant à un caractère de C) et E_2 est un S-module simple. On est donc ramené à la classification des S-modules simples, c'est-à-dire au cas où G est semi-simple simplement connexe.
- (ii) Soit \overline{k} la clôture algébrique de k, et soit \overline{G} le groupe algébrique sur \overline{k} déduit de G par extension des scalaires. D'après Chevalley, $loc.\ cit.$, le lemme 5 est vrai pour \overline{G} . En particulier, pour tout $p \in P$, il existe un \overline{G} -module simple \overline{E}_p de poids dominant p (i.e. tel que $\operatorname{ch}_{\overline{G}}(\overline{E}_p)$ soit de la forme voulue). De plus, on constate que la construction de ce module donnée par Chevalley peut se faire « sur k »; autrement dit, il existe un G-module E_p tel que \overline{E}_p soit isomorphe à $E_p \otimes \overline{k}$. Il est clair que E_p est simple (et même absolument simple), d'où la première partie de a).

D'autre part, si F est un G-module simple, notons \overline{F} le \overline{G} -module obtenu par extension des scalaires de k à \overline{k} . Puisque le lemme 5 est vrai sur \overline{k} , il existe au

moins un élément $p \in P$ tel que $\operatorname{Hom}_{\overline{G}}(\overline{E}_p, \overline{F}) \neq o$. Par linéarité, il en résulte que $\operatorname{Hom}_{\overline{G}}(E_p, F) \neq o$, et, comme E_p et F sont simples, ceci entraı̂ne que F est isomorphe à E_p ; d'où les autres assertions du lemme.

Lemme 6. — Les éléments $\operatorname{ch}_G(E_p)$ pour $p \in P$, forment une base du groupe $\mathbf{Z}[M]^W$.

La démonstration est tout à fait semblable à celle de la prop. 3 de Bourbaki, Groupes et Algèbres de Lie, chap. VI, § 3, nº 4:

Si $p \in P$, notons W.p l'orbite de p par W, et posons

$$x_p = \sum_{q \in W.p} e^q.$$

On sait que toute orbite de W dans M contient un élément de P et un seul (cela provient du fait que la « chambre de Weyl » est un domaine fondamental pour W). On en conclut que les x_p , $p \in P$, forment une base de $\mathbf{Z}[M]^W$. De plus, comme les éléments $\mathrm{ch}_G(E_p)$ sont invariants par W (puisque W est induit par des automorphismes intérieurs de G), on peut écrire :

$$\operatorname{ch}_{G}(\mathbf{E}_{p}) = x_{p} + \sum_{i} x_{p_{i}},$$

où les p_i sont des éléments de P, avec $p_i < p$. Mais, si $p \in P$, l'ensemble X_p des éléments $q \in P$ tels que $q \le p$ est fini (en effet, si $(x \mid y)$ désigne un produit scalaire invariant sur $M \otimes \mathbf{R}$, on a $(q \mid q) \le (q \mid p) \le (p \mid p)$ si $q \in X_p$, ce qui montre que X_p est une partie bornée du réseau M). Il s'ensuit que l'ensemble ordonné P vérifie la condition des chaînes descendantes. En appliquant le lemme q de Bourbaki, loc. cit., on en conclut que les $ch_G(E_p)$ forment une base de $\mathbf{Z}[M]^W$, c.q.f.d.

Le théorème 4 est maintenant évident. En effet, d'après le lemme 5 et le n° 2.6, les $[E_p]$, $p \in P$, forment une base de $R_k(G)$ et, d'après le lemme 6, leurs images par ch_G forment une base de $\mathbf{Z}[M]^W$. Donc $\operatorname{ch}_G: R_k(G) \to \mathbf{Z}[M]^W$ est un isomorphisme.

Remarques. — 1) Lorsque k est de caractéristique 0, on a une formule explicite (due à H. Weyl) donnant $\operatorname{ch}_G(E_p)$ en fonction de p. On ne connaît pas, pour l'instant, de formule analogue en caractéristique ± 0 .

2) Le théorème 4 avait été signalé par Grothendieck, il y a une dizaine d'années, lors de sa première démonstration du théorème de Riemann-Roch (non publiée); il supposait k algébriquement clos. Le théorème analogue pour les groupes de Lie compacts connexes est mentionné par Atiyah-Hirzebruch ([1], n° 4.4).

3.7. Groupes réductifs déployés - cas d'un anneau principal.

Dans ce numéro, A désigne un anneau principal. On utilise les notations du nº 2.1; en particulier, K désigne le corps des fractions de A et V l'ensemble des idéaux premiers non nuls de A.

On a défini au § 2 des homomorphismes

$$i: R_{\mathtt{A}}(G) \!\to\! R_{\mathtt{K}}(G)$$
 et
$$\mathit{d}_v: R_{\mathtt{K}}(G) \!\to\! R_v(G), \qquad \mathit{v} \!\in\! \mathrm{V}.$$

Théorème 5. — Supposons que G soit réductif et déployé sur A (cf. [4], exposé XXII). Les homomorphismes d_v ($v \in V$) et i sont alors des isomorphismes.

(Noter qu'un schéma en groupes réductif est lisse, donc a fortiori plat.)

Soit T un sous-groupe de Cartan diagonalisable de G (ici encore, un tel sous-groupe existe puisque G est déployé); soit M le groupe des caractères de T, et soit W le groupe de Weyl de G relativement à T ([4], loc. cit.).

Notons G_K et T_K (resp. G_v et T_v) les groupes algébriques sur K (resp. sur k_v , $v \in V$) déduits de G et T par extension des scalaires. Le groupe G_K (resp. G_v) est un groupe réductif déployé, de sous-groupe de Cartan T_K (resp. T_v); de plus, T_K (resp. T_v) est diagonalisable, et de groupe des caractères égal à M. On a évidemment $R_K(G_K) = R_K(G)$ et $R_v(G_v) = R_v(G)$. En appliquant le théorème 4 à G_K (resp. à G_v), on obtient des isomorphismes

$$\begin{split} \operatorname{ch}_{\operatorname{G}_{\mathbb{K}}}: \operatorname{R}_{\mathbb{K}}(\operatorname{G}) \to & \mathbf{Z}[\operatorname{M}]^{\mathbb{W}} \\ \operatorname{ch}_{\operatorname{G}_{v}}: \operatorname{R}_{v}(\operatorname{G}) \to & \mathbf{Z}[\operatorname{M}]^{\mathbb{W}}. \\ \operatorname{On a}: \\ & d_{v} \circ \operatorname{ch}_{\operatorname{G}_{v}} = \operatorname{ch}_{\operatorname{G}_{\mathbb{K}}}. \end{split}$$

En effet, cela résulte de la commutativité (facile à vérifier) des diagrammes

Puisque ch_{G_v} et ch_{G_K} sont des isomorphismes, la formule (*) montre qu'il en est de même de d_v . Le fait que i soit un isomorphisme résulte alors du théorème 3 du nº 2.7, c.q.f.d.

Remarques. — 1) La cogèbre C(G) n'est pas seulement un module plat; c'est un module libre (utiliser le fait que C(G) se plonge dans l'algèbre affine de la « grosse cellule » de G, laquelle est évidemment un module libre).

- 2) Lorsque A est un anneau de Dedekind, un raisonnement analogue à celui fait ci-dessus montre que $R_A(G)$ s'identifie à $K(A)\otimes R_K(G)$, c'est-à-dire à la somme directe de $R_K(G)$ et de $R_K(G)\otimes Cl(A)$, où Cl(A) désigne le groupe des classes d'idéaux de A.
- 3) Soit P l'ensemble des éléments dominants de M (cf. n° 3.6). Pour tout $p \in P$, désignons par $E_{p,K}$ (resp. $E_{p,v}$) un G_K -module (resp. un G_v -module) simple de poids

dominant p (cf. lemme 5). On a vu que les $[E_{p,K}]$ (resp. les $[E_{p,v}]$) forment une base de $R_K(G)$ (resp. de $R_v(G)$). En utilisant la formule (*) on montre facilement que l'on a :

$$d_v([E_{p,K}]) = [E_{p,v}] + \sum_i [E_{p_i,v}]$$

avec $p_i < p$ pour tout i. La matrice de décomposition de v est donc une matrice triangulaire (par rapport à la relation d'ordre naturelle sur P) dont tous les coefficients diagonaux sont égaux à 1; cela précise le fait que d_v est un isomorphisme.

Il serait intéressant de déterminer explicitement cette matrice lorsque K est de caractéristique o et k_v de caractéristique \pm o (lorsque K et k_v ont même caractéristique, c'est la matrice unité).

4) Lorsque G est un schéma en groupes réductif quelconque (non nécessairement déployé) les homomorphismes d_v sont injectifs, mais pas en général surjectifs. J'ignore ce qui se passe pour l'homomorphisme i.

3.8. Un exemple : le groupe GL_n .

Dans ce cas, on a $M = \mathbb{Z}^n$ et le groupe W est le groupe des permutations de n lettres. On a : $\mathbb{Z}[M] = \mathbb{Z}[X_1, \dots, X_n, X_1^{-1}, \dots, X_n^{-1}].$

Désignons par $\lambda_1, \ldots, \lambda_n$ les fonctions symétriques élémentaires des X_i :

$$\lambda_m = \sum_{i_1 < i_2 < \dots < i_m} X_{i_1} X_{i_2} \dots X_{i_m}.$$

L'anneau $\mathbf{Z}[M]$ s'identifie au localisé $\mathbf{Z}[X_1,\ldots,X_n]_{\lambda_n}$ de $\mathbf{Z}[X_1,\ldots,X_n]$ par rapport à $\lambda_n=X_1\ldots X_n$. D'où :

$$R_{A}(GL_{n}) = R_{K}(GL_{n}) = \mathbf{Z}[M]^{W} = \mathbf{Z}[\lambda_{1}, \ldots, \lambda_{n}]_{\lambda_{n}}.$$

L'interprétation de $\lambda_1, \ldots, \lambda_n$ est évidente : ces éléments correspondent, via ch_G , aux puissances extérieures de la représentation fondamentale de degré n de GL_n .

BIBLIOGRAPHIE

- [1] M. Atiyah et F. Hirzebruch, Vector bundles and homogeneous spaces, *Proc. Symp. Pure Maths.*, vol. 3, Differential Geometry, A.M.S., 1961, p. 7-38.
- [2] C. Chevalley, Classification des groupes de Lie algébriques, Séminaire E.N.S., Paris, 1956-1958.
- [3] M. Demazure et P. Gabriel, Groupes algébriques linéaires, Séminaire Heidelberg-Strasbourg, 1965-1966, Publ. I.R.M.A., Strasbourg.
- [4] M. Demazure et A. Grothendieck, Schémas en groupes réductifs, Séminaire I.H.E.S., Bures-sur-Yvette, 1962-1964.
- [5] I. Giorgiutti, Groupes de Grothendieck, Ann. Fac. Sci. Univ. Toulouse, 26, 1962, p. 151-207 (Thèse, Paris, 1963).

Manuscrit reçu le 23 août 1967.