5 Myths

Jan N. Reimers Magna E-Car Systems

What is a Myth?

- 1. A traditional or legendary story, usually concerning some being or hero or event, with or without a determinable basis of fact or a natural explanation, especially one that is concerned with deities or demigods and explains some practice, rite, or phenomenon of nature.
- 2. Stories or matter of this kind: realm of myth.
- 3. Any invented story, idea, or concept: His account of the event is pure myth.
- 4. An imaginary or fictitious thing or person.
- 5. An unproved or false collective belief that is used to justify a social institution cell technology.

The devil is in the details

- Some of these myths may be converted into correct statements with suitable qualifiers.
- In other words the truth is buried in the fine print.
- Experts tend to qualify their statements accordingly.
- Non experts then propagate the unqualified statement.
- A Myth is born.

#5: Cathode Exotherms above 200°C Determine Cell Safety

- Test:
 - Charge any cathode
 - $LiCoO_2 \rightarrow Li_{0.5}CoO_2$
 - Li(NiMnCo)O₂ \rightarrow Li(NiMnCo)O₂
 - $\text{Li}_{1.1}\text{Mn}_{1.9}\text{O}_4 \rightarrow \text{Li}_{0.4}\text{Mn}_{1.9}\text{O}_4$
 - Etc....
 - Then heat it up in electrolyte.
 - Look for heat evolved from the mixture
 - Big names:
 - Differential Scanning Calorimetry (DSC)
 - Accelerated Rate Calorimetry (ARC)

Probability And Severity

- We need to worry about two orthogonal issues:
 - 1. The probability of getting a cell into a thermal runaway condition.
 - 2. The severity of a thermal runaway event. I.e. how much heat is generated.
- We need to consider both of these issues when interpreting data.
- Most literature focuses on severity.

Some Data

Small peaks below 200°C

#4: Flammable Solvents are the cause of Li-ion safety problems.

- If only the electrolyte solvents were non-flammable there would be no safety problems.
- We need to look at all the combustibles in the cell.
 - Graphite
 - Al
 - Li
 - Binder
 - Separator
 - Solvents
- In order for combustibles to burn we need oxygen.

Conventions

- Quantitative examples will be based on a 2.5Ah 18650 Li-ion cell.
- I will assume an NMC cathode and a graphite anode.
- NMC = Li(NiMnCo)O2. Various ratios Ni:Mn:Co exist on the market.
- Cell composition:

NMC	16g
Graphite	8g
Electrolyte	5g
Separator	1g
Al	3g
Mobile Li	0.7g

How much oxygen is available?

- NMC example
 - $\text{Li}_{0.5}(\text{NiMnCo})\text{O}_2 \rightarrow \frac{1}{4} \text{Li}_2\text{O} + (\text{NiMnCo})\text{O} + \frac{3}{8} \text{O}_2$
 - Translates to 0.06 moles of O_2
- LiFePO₄ example
 - $-NoO_2$ released !

What can we burn with 0.06 mols of O_2 ?

Component	Mass (g)	KJ	Ox required (moles)	
DEC	2	45.4		0.102
EC	1	13.24		0.028
PC	1	17.82		0.039
Al	3	93.11		0.083
С	8	2624		0.667
Li	0.7	1.4		0.050
PVDF	0.4	0.09		0.013
PE	1	44		0.107

#3: A lithium dendrite can hard short a cell and send it into thermal runaway

- Before 1991 all commercial Li cells had a Li metal anode.
- Li ion cells replace the metal anode with an intercalation compound. Usually graphite.
- By design Li metal anode cells plate large amounts of Li on every cycle.
- Li-ion cells only plate Li when charged at high rates at low temperature. Relatively small amounts of Li plates in this case.

Li Dendrites

- They look like moss
- Very high surface area

J.-M. Tarascon & M. Armand NATURE, VOL 414, 15 NOVEMBER 2001

Dendrites in action

Stephen J. Harris Li Ion Battery Aging, Degradation, and Failure <u>http://lithiumbatteryresearch.com/Dendrites-and-Fracture.php</u> Chemical Physics Letters 485 (2010) 265–274

Effect on cell voltage

https://www.ornl.gov/ccsd registrations/battery/presentations/Session7-1100-Balsara.pdf

What happens when Li touches the cathode?

- As soon as Li metal touches the cathode it will intercalate
- 4eV is a huge force
- kT is 0.025eV !

When do cells fail (thermal event)?

- Typically you need to cycle 100s or 1000s of cycles beyond the first signs.
- By that time there might be 10⁶ Li shorts throughout the cell
- A local group of shorts will heat up enough to initiate a thermal event.
- Commercial Li-ion cells simply don't plate enough Li to do this.

#2 The purpose of the nail test is to make sure cell can survive a nail gun.

- Nail Penetration
 Test: UL, IEC, JEC,
 SAE J2464 etc.
- Purpose is to: simulate an internal short

Spontaneous Internal Short

- Caused by mechanical flaws in the cell
 - Included particles
 - Sharp edges, Burrs
 - Folded corners
 - Improper tab folding/bending
 - Core collapse
- No fix at the system level.
- Requires Cell design and process controls.

Spontaneous Internal Short

- Current accumulates along the electrode
- Maximum current at short site
- A/cm² gets very high
- I²R_s heating, very local
- Worst case $R_s = R_{cell}$

Thermal Runaway Reaction

Gi-Heon Kim, Kandler Smith, Ahmad Pesaran

Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model

The 5th Intl. Symposium on Large Lithium-Ion Battery Technology and Application June 9-10, 2009, Long Beach,

Nail test

- Nail will short the cell ... many times!
- Rs will vary wildly
 - From layer to layer
 - From test to test
- Every detail matters:
 - Nail size
 - Tip shape
 - Nail speed
 - Nail temperature
 - Nail surface
 - Nail E&T isolated?
- Very different from spontaneous internal short.

#1 Passing a nail test means your chemistry is robust under internal short conditions.

- Statistically meaningful sample size is required.
- Cell must short inside
- Cell designers can trick the test!

Nasty Cell Design Trick #1

- Separator not shown in figures
- Extra wrap of cathode foil on outside
- Metal-Metal short
- Defeats purpose of regulatory nail test!

Thank You