

L'âme des enzymes: le mystère de la biocatalyse

Marc Fontecave

Laboratoire de Chimie et Biologie des Métaux, Université Joseph Fourier, CNRS, CEA/DSV/iRTSV CEA-Grenoble 17 rue des martyrs 38054 Grenoble cedex 9, France mfontecave@cea.fr; Phone: (0033)438789103 ; Fax: (0033)438789124

Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05

Triose phosphate isomerase

Protéines

-Densité de remplissage: 0.7-0.8 pénétration des substrats ?? Interaction substrats/acides aminés ??

-<u>Milieu interne hydrophobe</u>: $\mathcal{E}_r = 4-10$ Attention!! (Warshel)

- -<u>Respiration 1</u>: « quenching » de fluorescence de W par O_2
- <u>Respiration 2</u>: mouvements protéiques (échelles de temps)
 - -Vibration de liaisons: subfemtoseconde (10⁻¹⁴-10⁻¹³ s)
 - -Fluctuations locales (déplacements d'atomes de 0.1 nm): picoseconde(10⁻¹² s)
 - -Torsion de methyles (Leu, Val, Ile, Ala): picoseconde à nanoseconde
 - -Rotation de chaines latérales en surface: picoseconde à nanoseconde
 - -Mouvements de boucles: nanoseconde à microseconde
 - -Flexibilité de domaines autonomes: milliseconde
 - -Rotation de chaines latérales internes: milliseconde à seconde
 - -Transitions allostériques: milliseconde à seconde
 - -Isomérisation cis/trans proline: seconde

 CATALYSE
 CATALYSE
 Complémentarité sites réactifs/substrats
 Départ des produits -Transferts d'électrons

Protéine et site actif

Là où la réaction catalytique a lieu
 Domaine très restreint de la protéine

<u>Enveloppe protéique</u>: Stabilité, régulation, allostérie, fixation de cofacteurs, interaction avec d'autres biomolécules

Catalyse enzymatique: des accélérations fantastiques !!

Décarboxylation de l'Uroporphyrinogen

R. Wolfenden, PNAS 2008, 105, 17328

Quelle est l'origine de cette accélération ? (mystère)

Accélération de 10¹⁷ = 25 kcal.mol⁻¹

-Emil Fischer (1894)

Le concept « clé-serrure » (ne dit rien sur l'accélération)

-JBS Haldane (1930)

Le concept de « déstabilisation de l'état fondamental »: l'enzyme contraint le substrat, le « poussant » à se transformer

-Linus Pauling (1948)

Le concept de « stabilisation de l'état de transition »

« I think that enzymes are molecules that are complementary in structure to the activated complexes of the reactions that they catalyze, that is, to the molecular configuration that is intermediate beween the reacting substances and the products of reaction for these catalyzed processes. The attraction of the enzyme for the activated complex would thus lead to a decrease in the energy of activation of the reaction and to an increase in the rate of reaction » Nature (1948)<u>161</u> 707

-première structure cristallographique d'une enzyme (lysosyme) et son substrat Nature (1965) <u>206</u> 757

Théorie de l'état de transition

Effet de solvant

Reaction rates for an S_{μ}^2 reaction in various solvents of differing dielectric response and polarity, including the gas phase reaction (13)

		$\text{Cl}^- + \text{CH}_3\text{Br} \rightarrow \text{ClCH}_3 + \text{Br}^-$		
-	Solvent	Relative rate		
		$cm^3 molecule^{-1} s^{-1}$		
	Gas phase	1		
]	MeCO	10^{-10}		
]	DMF ^a	10-11		
	CH ³ OH	10-16		
	H_2O	10^{-16}		

Exemple: cytidine deaminase

$$N = \frac{k_{cat}}{K_{m}} (E)_{o}(S) = \frac{k_{o}}{K_{m}} e^{-\frac{\Delta H^{\dagger}}{RT}} e^{\frac{\Delta S^{\dagger}}{R}} (E)_{o}(S)$$

Effets entropiques:

$$S + R \longrightarrow [S-R]^{*} \longrightarrow P$$
$$S + R + E \longrightarrow E(S-R) \longrightarrow [E(S-R)]^{*} \longrightarrow P$$

→ 4 - 6 kcal.mol⁻¹

Effets enthalpiques:

FIG. 3. Illustrating the catalytic origin of enzyme catalysis. In water (A) we have to pay for orienting the solvent, and this reduces the solvation free energy. In enzymes (B) we already have preorientation dipoles so we do not have to pay so much for the increase in dipole-dipole repulsion $(\Delta G_{\mu\nu})$.

Triose phosphate isomérase

Lysosyme

Retour à UroD

Abaissement de la barrière d'activation par addition du substrat/stabilisation du produit ?

Découverte en 1958 (Barker) Structure en 1961 (Hodgkin)

E_{Co-C}=30 kcal.mol⁻¹; k=3,8 10⁻⁹ s⁻¹; t_{1/2}= 6 ans

Enzymes (isomérases): k= 100-500 s⁻¹; t_{1/2}= 1 ms

Protéines et transport des électrons: Quelques exemples

Electron transport cofactors

Photosystème II hv Stroma Lhcb1+2+3 Lhcb4 Lheb5 2POH. to cyt b.f Mem. Lumen)Tn 0 R $O_2 + 4H^+$ 2H₂C (CP43

- Collecte l'énergie du soleil (« Chl », « Car »)
- Convertit en paires électron-trou (P680⁺,Pheo⁻)
- Capture les trous avec un catalyseur (Mn)
 - $4 \bigoplus + 2H_2O \longrightarrow O_2 + 4H^+$
- Capture les électrons avec une quinone

$$4 \bigcirc + 2Q + 4H^+ \longrightarrow 2 QH_2$$

Protéines et transport des électrons

Mitochondrial Electron Transport Chain

 $O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2O$

7 hydrophilic subunits, 9 FeS clusters (Science 2006)

Ribonucléotide réductase

The redox centers of ribonucleotide reductase from *Escherichia Coli*. M. Fontecave, P. Nordlund, H. Eklund, P. Reichard *Advances in Enzymology*, 1992, <u>65</u>, 147-183.

Ribonucléotide réductase et régulation de la biosynthèse des désoxyribonucléotides M. Fontecave, V. Nivière, E. Mulliez *Annales de l'Institut Pasteur*, 1992, <u>3</u>, 159-165.

Transfert des électrons: principes

nuclear configuration

Transfert des électrons: méthodes

Complexes protéine-protéine

Marquage rédox de métalloprotéines
 Ex: cytochromes, protéines à Cu,.

Systèmes naturels (modifiés) Photosystèmes (non oxygéniques) bactériens

Table 1. Reorganization Energy of Different Classes of Enzymes and Proteins

protein/enzyme	λ/mV	ref
cytochrome c	700	326
Ru(LL) ₂ (im)(His33)-cytochrome c	740	67, 327
(LL = polypyridine ligands)		
blue copper proteins		
Ru(bpy) ₂ (im)(His83)-azurin	700	328, 329
Ru(trpy)(LL)(His59)-plastocyanin	640 - 700	330
HiPIPs		
Ru(LL) ₂ (im)(HisX)-HiPIP	600 - 800	331
bacterial reaction center	700	99
cytochrome c/ cytochrome b5	700	332

 $\implies \lambda = 0.7 \text{ eV} (16 \text{ kcal.mol}^{-1})$

Transfert des électrons: effet de la distance

$$k_{\rm ET} = \sqrt{\frac{4\pi^3}{h^2 \lambda k_{\rm B} T}} H_{\rm AD}^2 \exp\left[\frac{-(\lambda + \Delta G^{\circ})^2}{4\lambda R T}\right]$$

 $H_{\rm AD} = H_{\rm AD}^{\circ} e^{-\beta(r_{\rm DA} - r_{\rm o})}$

 H_{AD} = couplage des états électroniques du donneur et de l'accepteur

 β = contribution du milieu dans la propagation des fonctions d'onde

Vide: β = 3,4 Å⁻¹ 10 Å parcouru en 100 ms

Transfert des électrons: modèles

>Modèle « tunneling pathways »: pas de valeur uniforme de β ; il existe des chemins préférentiels (liaisons covalentes,liaisons H, contacts à travers l'espace,...)

>Modèle « uniform barrier »: il y a une valeur uniforme de β ; La protéine est un milieu conducteur particulier et homogène

D-A covalent: 0.7

Verre organique (THF): 1.2

a: protéines (photosystème, Ru-cytc, Ru-Mb) b: systèmes liés de façon covalente

Au-delà de 2 nm ?: cofacteurs intermédiaires « multistep tunneling »

Tryptophan-Accelerated Electron Flow Through Proteins Crystal Shih, *et al. Science* **320**, 1760 (2008); DOI: 10.1126/science.1158241

Couplage transfert d'électron/transfert de proton Régulation/switch

Cys-sh

$$Cys-sh$$
 $Cys-s^{-}$
 $E = 1.3 V$ e^{-} H^{+} $Cys-s^{\circ}$
 $E = 0.77 V$
 $Cys-sh$