3/16/2011

Outline

.

Background: computer security
¢ Web security
JavaScript isolation
— How can trusted and untrusted code be executed in the same
environment, without compromising functionality or security?
¢ Three parts
— Isolate untrusted application from hosting page
— Isolate one untrusted application from another
John Mitchell — Mediated access: reference monitor for critical resources
. q ¢ Looking ahead
Stanford Unive rS|ty — Improvements in JavaScript standards, tools
— Foundations for Web security

.

Web Security and
Untrusted JavaScript

Stanford

wh

Computer Security

e Security model
— A system of interest
. — Desired properties of the system
CO m p Ute r Secu rlty — Interface and capabilities of an attacker
¢ Security analysis
— Can system design and security mechanism it includes
guarantee desired the properties, in spite of attacker?

Network security @ Operating system security ('5.‘

4-.

=
-

Do)

'f"'l’

i
0S Attacker

-
&

Network Attacker

Alice

May control malicious

May intercept and
files and applications

alter network traffic;
cannot break crypto

Web Security

3/16/2011

Web Security

Good server
Enter password?
ot
Browser i i
)¢
User

Bad Server

How can honest users safely interact with
well-intentioned sites, while still freely

Can also operate as client
browsing the web (search, shopping, ads) ?

to other servers

Specific problem for this talk

How can honest users safely interact with
well-intentioned sites, while still freely
browsing the web (search, shopping, ads) ?

Attacker

Specific problem for this talk (-“

Good server
Enter password?
Browser Es
ST~

User

Bad Server
How can sites that incorporate untrusted
JavaScript applications protect their users?

Supply web application
written in JavaScript

System

Interface

How can sites that incorporate untrusted
JavaScript applications protect their users?

Attacker

Online Identity Theft

Web Security Challenges

Password phishing
— Forged email and fake web sites steal passwords
Password theft
— Criminals break into servers and steal password files
* Spyware
— Keyloggers steal passwords, product activation codes, etc.
* Botnets
— Networks of compromised end-user machines spread SPAM, launch
attacks, collect and share stolen information
* Magnitude
— 3 billions in direct loss per year
— Significant indirect loss
* Loss of confidence in online transactions
* Inconvenience of restoring credit rating, identity

.

Current trend

3/16/2011

Port scanning behind firewall @

* Why ask the user to do something if you can write
JavaScript to do it automatically?

gl ", Standard banking transaction
'~

Attacker-controlled
remote system

¢ Each frame of a page has an origin
— Origin = protocol://host:port
* Frame can access its own origin
— Network access, Read/write DOM, Storage (cookies)
* Frame cannot access data associated with a different origin

<script src=https://seal.verisign.com/getseal?
host_name=a.com></script>

VeriSign
=

¢ Embedded script has privileges of frame, NOT source server

@ nttp://a.com ==

&
A.com

* Can script other pages in this origin, load more scripts
¢ Other forms of importing

¢ |csS

Silverlight

* JavaScript can:
— Request images from internal IP addresses
* Example:
— Use timeout/onError to determine success/failure
— Fingerprint webapps using known image names

Server 1 1)Request web page /
m
[R -
Malicious

2) Respond with JS

1
1 Web page
1

/ Browser

3) port scan results 1

Frewall

Browser security mechanism (“

CSRF Attack:
A Code can make a
request to any origin,

> transmitted as if typed
% ' in by user

* Each frame of a page has an origin
— Origin = protocol://host:port
* Frame can access its own origin
— Network access, Read/write DOM, Storage (cookies)
* Frame cannot access data associated with a different origin

Web browser

Operating system

* Primitives * Primitives
— System calls — Document object model
— Processes — Frames
— Disk — Cookies / localStorage

* Principals: Users Principals: “Origins”
— Mandatory access control
¢ Vulnerabilities ¢ Vulnerabilities

— Buffer overflow

— Discretionary access control

— Cross-site scripting
— Root exploit — Cross-site request forgery

— Cache history attacks

Frame and iFrame ({‘:‘

* Why use frames?
— Delegate screen area to content from another source
— Browser provides isolation based on frames
— Parent may work even if frame is broken

¢ Why not use frames?
— Limit interaction between different sections of code
— Performance cost

¢ Analogy
— We use both OS isolation and PL isolation in systems
— We use both Frame isolation and PL isolation on Web

Advertisements

Ad network, publisher have incentives to show ads
— Could place ads in iframe
— Rules out more profitable floating ads, etc.

Ad network and publisher can try to screen ads
— Example: Yahoo! AdSafe

¢ Some limitations in current web

— Ads may contain links to “images” that are part of ad

* Important to remember
— This is a very effective way to reach victims: $30-50 per 1000
— User does not have to click on anything to run malicious code

nooo

] oooo

3/16/2011

Advertisements @

2 T P
howstuffwarks L=
T

2 % How Web Advertsing Works
L

My Account 1 sign s (2]

IC-()uglL’
nchosiogy || Macommandaions | ddaish e Solectshar | dkdaiLa
Eviiaaget Radia Pacadine 145 Gaaple Graum

Seacch YouTubs

Beiensiea Yol

CustomAss

Social Networking Sites

=]

Nefed SOt Updates Pictes ks ibeted e

[il

£ e

,M.Mm... —

3/16/2011

=
E " - User data

Y ———— A User-

supplied
application

e Challenge

— How can trusted and untrusted code be
executed in the same environment,
without compromising functionality or
security?

® Approach

- Programming language semantics
© Mathematical model of program execution
- Secure sublanguages and security tools
o Filtering, Rewriting, Wrapping
 Object-capability model
 Improved JavaScript standards
® Automated code analysis tool(s)

® Test cases and paradigms

User-supplied content

- Facebook JavaScript (FBJS)
© Allow user-supplied applications
- Yahoo! ADSafe
® Screen ad content before publisher
- Google Caja
® Mathematical foundations of object-
capability languages

o Isolation, defensive consistency, ..

Hosting page isolation
Protect hosting page from

untrusted applications
(executed in the same browser frame)

Facebook FBJS

Hosting page isolation (-53“

Outer page contains user
account information, other

=
| 4
important data . iies - User data
Embedded
application can try

to access this data

————— \ User-

supplied
application

Four “FBJS” Theorems (4’

Facebook applications either“iframed” or integrated on page
* We are interested in integrated applications
Integrated applications are written in FBML/FBJS
* Facebook subsets of HTML and JavaScript
* FBJSis served from Facebook, after filtering and rewriting
* Facebook libraries mediate access to the Document Object Model
Security goals
* No direct access to the Document Object Model (DOM)
* No tampering with the execution environment
* No tampering with Facebook libraries
Basic approach
* FBJS restricts “tricky” parts of JavaScript
« Blacklist variable names that are used by containing page

* Prevent access to global scope object, because variables are
properties of scope objects

e Theorem 1: Subset J(B) of ES-3 prevents access to
chosen blacklist B (assuming B NP, =)

* Theorem 2: Subset J(B) of J(B) prevents any
expression from naming the global scope object

* Theorem 3: Subset J(B), of J(B)g of prevents any
expression from naming any scope object

* Theorem 4: A specific “wrapping” technique
preserves Theorem 3 and allows previously
blacklisted functions to be safely used

JavaScript Challenges

3/16/2011

— Mutable objects with implicit self parameter:
* o={b:function(Q{return this.a}}
— Prototype-based object inheritance:
* Object._prototype.a=“fo0;
— Scope can be a first-class object:
e this.o === o;
— Can convert strings into code:
« eval(“o + 0.b(O");
— Implicit type conversions, which can be redefined.
* Object.prototype.toString = o.b;

A
@

¢ Use of this inside functions

var b =10;

var f = function(){ var b = 5;
function g(){var b = 8; return this.b;};
g();}

var result = f{); // has as value 10

» String computation of property names

var m = "toS"; var n = "tring";
Object.prototype[m + n] = function(){return undefined};

for(pino){...}, eval(..), ofs]
allow strings to be used as code and vice versa

Operational Semantics

JavaScript can be tricky (-5‘:‘

* Which declaration of g is used?

var f = function(){ var a = g();
function g() { return 1;};
function g() { return 2;};
var g = function() { return 3;}
return a;}

var result = f();

// has as value 2

e Implicit conversions

vary ="a";

var x = {toString : function(){ return y;}}
x=x+10;

js>"a10" // implicit call toString

JavaScript modularity (-i‘:‘

e Modularity: variable naming and scope
e JavaScript local variables are not “local”
— Activation records are objects
— A program can get access to these objects
* Properties (local variables) can be added, removed
— These objects have prototypes
* Properties (local variables) can be added, removed
* Traditional JavaScript (ECMA 2.6.2-3) does not
support modularity with information hiding

Basis for JavaScript Isolation @

Three semantic functions —=—, ——

statements and programs.

©

P .
,— for expressions,

Small step transitions : A semantic function transforms one
state to another if certain conditions (premise) are true.
{Premise)

sty
Atomic Transitions : Rules which do have ancther transition
in their premise

General form

©

®

Context rules : Rules to apply atomic transitions in presence
of certain specific contexts.

1. All explicit property access has form x, e.x, or el[e2]

2. The implicitly accessed property names are: 0,1,2,..,
toString, toNumber, valueOf, length, prototype,
constructor, message, arguments, Object, Array,
RegExpg

3. Dynamic code generation (converting strings to programs)
occurs only through eval, Function, and indirectly
constructor

4. A pointer to the global object can only be obtained by: this,
native method valueOf of Object.prototype, and native
methods concat, sort and reverse of Array.prototype

5. Pointers to local scope objects through with, try/catch,
“named” recursive functions var = function g(..){. g(..)

Sample Facebook vulnerability (“g:‘
LT

The page at it /i facebook com sy

— FBISel[1DX(e2)] did not correctly convert objects to strings
— Exploit: we built an FBIS application able to reach the DOM.
— Disclosure: we notified Facebook; they promptly patched FBJS.
— Potential for damage is considerable.

* Steal cookies or authentication credentials

* Impersonate user: deface or alter profile, query personal information,
spam friends, spread virally.

Improving our solutions by wrapping (5“‘

— No need to blacklist sort, concat, reverse, valueOf.
* We can wrap them as follows
$0PvalueOf=Object.prototype.valueOf;
Object.prototype.valueOf=

function({var $=$0PvalueOf.call(this);
return ($==$Global?null:$)}

« This variant is provably correct.
— Wrapping eval and Function : possible in principle

Yahoo! AdSafe Hsafe

* Goal: Restrict access to DOM, global object

Advertiser Ad Network Publisher Browser

— D | — [

Content

e This is a harder problem than SNS applications
— Advertising network must screen advertisements
— Publishing site is not under control of ad network

3/16/2011

The run time monitor IDX @

— We need some aukxiliary variables: we prefix them with $
and include them in our blacklist B
var $String=String;

var $B={pl:true;...,pn:true,eval:true,..,$:true,.}
— Rewrite e1[e2] toel[1DX(e2)], where
IDX(e) =

($=e,{toString:function({
return($=$string($),
$B[$]?"'bad" :$)
13Dl

* Blacklisting can be turned into whitelisting by inverting the check

above ($B[$]2%$:""bad™) .
— Our rewriting faithfully emulates the semantics
el[e2] -> val[e2] -> val[va2] -> I[va2] -> I[m]

Four “FBJS” Theorems (-53“

[CSF'09... ESORICS'09] *

e Theorem 1: Subset J(B) of ES-3 prevents access to
chosen blacklist B (assuming B NP, =)

* Theorem 2: Subset J(B) of J(B) prevents any
expression from naming the global scope object

* Theorem 3: Subset J(B); of J(B); of prevents any
expression from naming any scope object

¢ Theorem 4: A specific “wrapping” technique
preserves Theorem 3 and allows previously
blacklisted functions to be safely used

We can prove isolation for a language very similar to FBJS. Success!!?

@)

Isolation Between
Untrusted Applications

3/16/2011

Isolation between applications ({‘:‘ FBJS limitations (-5‘:‘

— ¢ Authority leak

Outer page with user account

information, other data — Can write/read properties of native objects

= "]
Embedded g s = | userdata * var Obj = {};
application 1 \ufJ var ObjProtToString = Obj.toString;

Embedded . .
* Communication between untrusted apps

— First application
¢ Obj.toString.channel = "message”;
— Second application

* var receive_message = Obj.toString.channel;

Defeat Sandbox

How to isolate applications? (-{‘:‘

Attack FBJS! <script>

e et ¢ Capability-based protection
var f = function(){}; _ P . . .
bind.apply = Traditional idea in operating systems
(function(old){return function(x,y)}{ — Capability is “ticket” granting access
var getWindow = y[1].setReplay;

getWindow(0).alert("Hacked!");
return old(x,y)}

1(£bind.apply) * If we had a capability-safe subset of JavaScript:
Je/script> — Give independent apps disjoint capabilities

— Process can only access through capabilities given

¢ Problem: Is there a capability-safe JavaScript?
¢ Redefine bind method used to Curry functions
¢ Interferes with code that uses f.bind.apply(e)

¢ Object-capability model [Miller, ...] Gokjgle

— Intriguing, not formally rigorous
— Examples: E (Java), JoeE (Java), Emily (Ocaml), W7 (Scheme)
« Authority safety Mediated Access
~ Safety conditions sufficient to prevent y How can trusted code provide access to
¢ Authority leak (“only connectivity begets connectivity”)

« Privilege escalation (“no authority amplification”) secu Fit\/-CFitica| resources?
— Preserved by program execution

« Eliminates basis for our previous attacks
¢ Capability safety
— Access control model sufficient to imply authority safety
¢ Theorems: Cap safety = Auth safety = Isolation
— Accepted examples satisfy our formal definitions

Mediated access ({‘:‘

3/16/2011

ECMA Script 5 Strict Mode (-5‘:‘

-
Outer page
=[P
reference monitor .
Embedded application |
access resources
through monitor \
Y ———— A User-
' supplied
application

Research Results ;.0 @

object ...

* Goals

¢ Restricted subset of JavaScript with “safer” semantics, e.g.

— Assignment to an undeclared identifier does not create a
property in the global object

— Strict mode eval code cannot instantiate variables or functions
in the variable environment of the caller to eval.
— A this value of null or undefined is not converted to the global

— Strict mode code may not include a WithStatement

— Provide language framework for code isolation
— Protect trusted strict code against untrusted unstrict code

Language standard captures many properties explored in our research

* Use JavaScript sublanguage SES;y,

— ECMA-5 Strict mode, with scope-restricted eval and
without setters/getters

¢ Prove language properties

— Local variables can be renamed safely

— Only variables of outer scope are accessible
¢ Develop automated code analysis tool

— Given trusted code isolating a resource, determine if
confinement is guaranteed

¢ Test tool on sample isolation libraries
— Found new bug in well-tested Yahoo! ADSafe code

Broader Foundations for Web Security (“

e Problem: Web platform and

application security are not =]
based on precise model naleter
® Solution: Foundational model of Pibvl b e
web macro-platform supporting SSLEvanavr —
h : =
rigorous analysis Password Store
. API S Transactons,
— Apply formal modeling Redrection Paticy
techniques and tools, e.g., . Browser o

network security = web ’

— Precise threat models: web e Initial case studies
attacker, active network
attacker, gadget attacker

— Support trustworthy design
of browser, server,
protocol, web application
mechanisms

- Origin header
- Cross-Origin Resource Sharing
- Referer Validation,
- HTMLS forms
- WebAuth
o Find attacks, verify repairs

General Foundations for
Web Security

Goals and Challenges Ahead

* Language-based isolation
— Better understanding of
object-capability model
— Apply to JavaScript and
other languages: E, Joe-E,
Emily, W7, ES3=ES5
— Better tools for working
with secure JavaScript
— Wider recognition and
deployment through
standards, browser
implementations

* Web platform security

— Formalize additional
properties of web platform
* Browser same-origin
* Cookie policies
* Headers, ...
— Prove correctness of
accepted defenses
— Improve design of central
components
— Guide design of emerging
features (e.g., native client)

Conclusions ({“:‘

* The web is an exciting area for Computer Science
¢ |solating untrusted JavaScript

— Isolate untrusted application from hosting page

— Isolate one untrusted application from another

— Confinement: mediate access to critical resources
* Many more Web security problems

— Define precise model of web application platform

— Analyze protocols, conventions, attacks, defenses
* Are http-only cookies useful? Is CSRF prevented?

Additional related work (é‘

[Yu,Chander,Islam,Serikov’07] JavaScript instrumentation for browser security.
Rewriting of JavaScript to enforce security policies based on edit-automata.

[Sands,Phung,Chudnov’09] Lightweight, self protecting JavaScript.
Aspect-oriented wrapping of DOM to enforce user-defined safety policies.

[Jensen,Mgller,Thiemann’09] Type analysis for JavaScript.
Abstract-interpretation based analysis to detect basic type errors.

[Chugh,Meister,Jhala,Lerner’09] Staged information flow for JavaScript.
Static information flow analysis plus run-time checks for integrity and confidentiality.

[Livshits, Guarnieri’09] GateKeeper: Mostly static enforcement of security and
reliability policies for JavaScript code.

Enforcing policies by filtering and rewriting based on call-graph and points-to analysis.

Web Sandbox (Scott Isaacs). Based on BrowserShield.
Rewriting and run-time monitoring with performance penalty.

3/16/2011

References (E‘:‘

e With A. Taly, S. Maffeis:

— Operational semantics of ECMA 262-3 [APLAS'08]

— Language-Based Isolation of Untrusted
JavaScript [CSF'09]

— Run-Time Enforcement of Secure JavaScript Subsets
[W2SP'09]

— Isolating JavaScript with Filters, Rewriting, and
Wrappers [ESORICS’09]

— Object Capabilities and Isolation of Untrusted Web
Applications [S&P’10]

— Automated Analysis of Security-Critical JavaScript
APIs [S&P’11] (with T. + Google group)

10

