
From Byzantine Generals to Hackers

Leslie Lamport
Microsoft Research

0



Part I

Designing Computer Systems
To Fly an Airplane

0



The 1970s

Oil embargo against the U.S.

Can save fuel by making planes aerodynamically unstable.

Such planes can be flown only by computer.

If the computer stops working for 20ms, the wings fall off.

How do we make computers reliable?

1



The 1970s

Oil embargo against the U.S.

Can save fuel by making planes aerodynamically unstable.

Such planes can be flown only by computer.

If the computer stops working for 20ms, the wings fall off.

How do we make computers reliable?

1



The 1970s

Oil embargo against the U.S.

Can save fuel by making planes aerodynamically unstable.

Such planes can be flown only by computer.

If the computer stops working for 20ms, the wings fall off.

How do we make computers reliable?

1



The 1970s

Oil embargo against the U.S.

Can save fuel by making planes aerodynamically unstable.

Such planes can be flown only by computer.

If the computer stops working for 20ms, the wings fall off.

How do we make computers reliable?

1



The 1970s

Oil embargo against the U.S.

Can save fuel by making planes aerodynamically unstable.

Such planes can be flown only by computer.

If the computer stops working for 20ms, the wings fall off.

How do we make computers reliable?

1



The 1970s

Oil embargo against the U.S.

Can save fuel by making planes aerodynamically unstable.

Such planes can be flown only by computer.

If the computer stops working for 20ms, the wings fall off.

How do we make computers reliable?

1



Primary-Backup

Use two computers: a primary and a backup.

Primary Backup

If the primary fails, switch to the backup.

To handle multiple failures: have backup of backup,
backup of backup of backup, . . .

Primary Backup 1 Backup 2 · · ·

1



Primary-Backup

Use two computers: a primary and a backup.

Primary Backup

If the primary fails, switch to the backup.

To handle multiple failures: have backup of backup,
backup of backup of backup, . . .

Primary Backup 1 Backup 2 · · ·

1



Primary-Backup

Use two computers: a primary and a backup.

Primary Backup

If the primary fails, switch to the backup.

To handle multiple failures: have backup of backup,
backup of backup of backup, . . .

Primary Backup 1 Backup 2 · · ·

1



Primary-Backup

Use two computers: a primary and a backup.

Primary Backup

If the primary fails, switch to the backup.

To handle multiple failures: have backup of backup,
backup of backup of backup, . . .

Primary Backup 1 Backup 2 · · ·

1



Primary-Backup

Use two computers: a primary and a backup.

Primary Backup

If the primary fails, switch to the backup.

To handle multiple failures: have backup of backup,
backup of backup of backup, . . .

Primary Backup 1 Backup 2 · · ·

1



Primary-Backup

Use two computers: a primary and a backup.

Primary Backup

If the primary fails, switch to the backup.

To handle multiple failures: have backup of backup,
backup of backup of backup, . . .

Primary Backup 1 Backup 2 · · ·

1



The problem with primary-backup

What if the primary malfunctions but keeps running?

J
J
J
J
J]

Climb

Backup










�

Dive

Primary

Which one does the airplane listen to?

2



The problem with primary-backup

What if the primary malfunctions but keeps running?

J
J
J
J
J]

Climb

Backup










�

Dive

Primary

Which one does the airplane listen to?

2



The problem with primary-backup

What if the primary malfunctions but keeps running?

J
J
J
J
J]

Climb

Backup










�

Dive

Primary

Which one does the airplane listen to?

2



The problem with primary-backup

What if the primary malfunctions but keeps running?

J
J
J
J
J]

Climb

Backup










�

Dive

Primary

Which one does the airplane listen to?

2



The problem with primary-backup

What if the primary malfunctions but keeps running?

J
J
J
J
J]

Climb

Backup










�

Dive

Primary

Which one does the airplane listen to?

the actuators that control the flaps, landing gear, etc.

2



Simple solution: the backup turns off a bad primary.

What if a bad backup turns off a good primary?

A system with two computers cannot tolerate the failure
of one of them.

3



Simple solution: the backup turns off a bad primary.

What if a bad backup turns off a good primary?

A system with two computers cannot tolerate the failure
of one of them.

3



Simple solution: the backup turns off a bad primary.

What if a bad backup turns off a good primary?

A system with two computers cannot tolerate the failure
of one of them.

3



Typical engineering solution:

Assume that such failures are highly improbable.

Good enough for a bank’s computer, but not for an airplane’s.

FAA’s requirement:

Probability of catastrophic failure less than 10−10 per hour.

That’s one failure every 10 million years.

You can’t ensure that by engineering judgement, or by ordinary
testing.

4



Typical engineering solution:

Assume that such failures are highly improbable.

Good enough for a bank’s computer, but not for an airplane’s.

FAA’s requirement:

Probability of catastrophic failure less than 10−10 per hour.

That’s one failure every 10 million years.

You can’t ensure that by engineering judgement, or by ordinary
testing.

4



Typical engineering solution:

Assume that such failures are highly improbable.

Good enough for a bank’s computer, but not for an airplane’s.

FAA’s requirement:

Probability of catastrophic failure less than 10−10 per hour.

That’s one failure every 10 million years.

You can’t ensure that by engineering judgement, or by ordinary
testing.

4



Typical engineering solution:

Assume that such failures are highly improbable.

Good enough for a bank’s computer, but not for an airplane’s.

FAA’s requirement:

Probability of catastrophic failure less than 10−10 per hour.

That’s one failure every 10 million years.

You can’t ensure that by engineering judgement, or by ordinary
testing.

4



Typical engineering solution:

Assume that such failures are highly improbable.

Good enough for a bank’s computer, but not for an airplane’s.

FAA’s requirement:

Probability of catastrophic failure less than 10−10 per hour.

That’s one failure every 10 million years.

You can’t ensure that by engineering judgement, or by ordinary
testing.

4



Typical engineering solution:

Assume that such failures are highly improbable.

Good enough for a bank’s computer, but not for an airplane’s.

FAA’s requirement:

Probability of catastrophic failure less than 10−10 per hour.

That’s one failure every 10 million years.

You can’t ensure that by engineering judgement, or by ordinary
testing.

4



Triple Modular Redundancy

To handle one failure, use three computers.

The plane listens to a majority.

6

Climb

B

Q
Q
Q

Q
Q

Q
QQk

Climb

C

�
�
�
�
�
�
��3

Dive

A

Majority voting done by actuators.

Control surface moved by three motors, any two of which can
overpower the third.

5



Triple Modular Redundancy

To handle one failure, use three computers.

The plane listens to a majority.

6

Climb

B

Q
Q
Q

Q
Q

Q
QQk

Climb

C

�
�
�
�
�
�
��3

Dive

A

Majority voting done by actuators.

Control surface moved by three motors, any two of which can
overpower the third.

5



Triple Modular Redundancy

To handle one failure, use three computers.

The plane listens to a majority.

6

Climb

B

Q
Q
Q

Q
Q

Q
QQk

Climb

C

�
�
�
�
�
�
��3

Dive

A

Majority voting done by actuators.

Control surface moved by three motors, any two of which can
overpower the third.

5



Triple Modular Redundancy

To handle one failure, use three computers.

The plane listens to a majority.

6

Climb

B

Q
Q
Q

Q
Q

Q
QQk

Climb

C

�
�
�
�
�
�
��3

Dive

A

Majority voting done by actuators.

Control surface moved by three motors, any two of which can
overpower the third.

5



Triple Modular Redundancy

To handle one failure, use three computers.

The plane listens to a majority.

6

Climb

B

Q
Q
Q

Q
Q

Q
QQk

Climb

C

�
�
�
�
�
�
��3

Dive

A

Majority voting done by actuators.

Control surface moved by three motors, any two of which can
overpower the third.

5



One problem

Good computers reading a sensor can get different values.

This can lead to very different decisions.

5



One problem

Good computers reading a sensor can get different values.

BA

@
@
@I

�
�
��

This can lead to very different decisions.

5



One problem

Good computers reading a sensor can get different values.

BA

@
@
@I

�
�
��

10219 10220

This can lead to very different decisions.

5



One problem

Good computers reading a sensor can get different values.

BA

@
@
@I

�
�
��

10219 10220

This can lead to very different decisions.

5



One problem

Good computers reading a sensor can get different values.

BA

@
@
@I

�
�
��

10219 10220

6
Climb

6
Dive

This can lead to very different decisions.

5



Leading to disaster.

6

Dive

B

Q
Q

Q
Q

Q
Q
QQk

Climb

C

�
�
�
�
�
�
��3

?

A

? 10219 10220
H

HH
H

HH
HY 6

�
��

�
��
�*

6



The Solution

Each computer tells the others what inputs it read.

7



The Solution

Each computer tells the others what inputs it read.

7



The Solution

Each computer tells the others what inputs it read.

CB

A

7



The Solution

Each computer tells the others what inputs it read.

CB

A

10217

J
J
J
J]

10217








�

7



The Solution

Each computer tells the others what inputs it read.

CB

A

10217

J
J
J
J]

10219
J
J
J
Ĵ

10219 -

10217








�

7



The Solution

Each computer tells the others what inputs it read.

CB

A

10217

J
J
J
J]

10219
J
J
J
Ĵ

10219 -

10220
�

10217








�

10220







�

7



The Solution

Each computer tells the others what inputs it read.

CB

A

10217

J
J
J
J]

10219
J
J
J
Ĵ

10219 -

10220
�

10217








�

10220







�

All computers get the same inputs: {10217, 10219, 10220},
so they all make the same decision.

7



The Solution

Each computer tells the others what inputs it read.

CB

A

777

J
J
J
J]

10219
J
J
J
Ĵ

10219 -

10220
�

777








�

10220







�

All computers get the same inputs: {777, 10219, 10220},
so the good ones all make the same decision.

7



Triple modular redundancy was the state of the art in the early 1970s.

In the 1970s, NASA funded SRI to build a computer system for
flying airplanes.

Someone at SRI (probably John Wensley) realized that TMR doesn’t
work.

7



Triple modular redundancy was the state of the art in the early 1970s.

In the 1970s, NASA funded SRI to build a computer system for
flying airplanes.

Someone at SRI (probably John Wensley) realized that TMR doesn’t
work.

7



Triple modular redundancy was the state of the art in the early 1970s.

In the 1970s, NASA funded SRI to build a computer system for
flying airplanes.

Someone at SRI (probably John Wensley) realized that TMR doesn’t
work.

7



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

777








�

10220







�

9



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

777








�

10220







�

All computers get the same inputs: {777, 10219, 10220},
so the good ones all make the same decision.

9



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

777








�

10220







�

9



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

10777








�

10220







�

9



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

10777








�

10220







�

B gets {777, 10219, 10220}, decides Dive

C gets {10777, 10219, 10220}, decides Climb

9



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

10777








�

10220







�

Is this highly improbable? Yes.

Is the probability less than 10−10 per hour? How can we tell?

9



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

10777








�

10220







�

Is this highly improbable? Yes.

Is the probability less than 10−10 per hour? How can we tell?

9



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

10777








�

10220







�

Is this highly improbable? Yes.

Is the probability less than 10−10 per hour? How can we tell?

9



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

10777








�

10220







�

Is this highly improbable? Yes.

Is the probability less than 10−10 per hour? How can we tell?

9



The problem with TMR

A

777

J
J
J
J]

10219
J
J
J
Ĵ

CB
10219 -

10220
�

10777








�

10220







�

It’s not hard to come up with plausible failure scenarios that produce
this situation.

9



The fundamental problem

A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, then all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

10



The fundamental problem

A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, then all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

10



The fundamental problem

A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, then all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

10



The fundamental problem

A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, then all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

10



The fundamental problem

A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, then all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

2 follows from 1 if P is nonfaulty.

10



The Byzantine generals problem

A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, then all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

10



The Byzantine generals problem

A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, then all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

Problem described with generals, some of whom may be traitors.

10



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

P

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

P

0

J
J
J
J]

0








�

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

P

0

J
J
J
J]

P sent 1
�

0








�

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

P

0

J
J
J
J]

P sent 1
�

0








�

By condition 1, must get 0.

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

By condition 1, must get 0.

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

P

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

P

0

J
J
J
J]

1








�

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

P

0

J
J
J
J]

P sent 1
�

1








�

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

P

0

J
J
J
J]

P sent 1
�

1








�

Computer can’t distinguish the two scenarios

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

P

0

J
J
J
J]

P sent 1
�

1








�

Computer can’t distinguish the two scenarios ,
so it must get the same value in both.

11



A computer P must broadcast a value v to all computers such that:

1. If P is nonfaulty, all nonfaulty computers get v .

2. All nonfaulty computers get the same value.

gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

Computer can’t distinguish the two scenarios ,
so it must get the same value in both.

11



gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

13



gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

P

13



gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

P

1

J
J
J
J]

P sent 0-

1








�

13



gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

gets 1

P

1

J
J
J
J]

P sent 0-

1








�

By condition 1, must get 1.

13



gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

gets 1

P

1

J
J
J
J]

P sent 0-

1








�

P

0

J
J
J
J]

P sent 0-

1








�

13



gets 0

P

0

J
J
J
J]

P sent 1
�

0








�

gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

gets 1

P

1

J
J
J
J]

P sent 0-

1








�

gets 1

P

0

J
J
J
J]

P sent 0-

1








�

13



gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

gets 1

P

0

J
J
J
J]

P sent 0-

1








�

13



These are two views
of the same scenario.

gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

gets 1

P

0

J
J
J
J]

P sent 0-

1








�

13



These are two views
of the same scenario.

gets 1gets 0

P

0

J
J
J
J]

P sent 0-

P sent 1
�

1








�

gets 0

P

0

J
J
J
J]

P sent 1
�

1








�

gets 1

P

0

J
J
J
J]

P sent 0-

1








�

13



Condition 2 is violated.

gets 1gets 0

P

0

J
J
J
J]

P sent 0-

P sent 1
�

1








�

13



A rigorous version of this argument proves:

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates one failure requires at least 4 computers.

gets 1gets 0

P

0

J
J
J
J]

P sent 0-

P sent 1
�

1








�

13



A 4-computer solution

P

P sends its value to the other computers.

The other computers relay the value to one another.

13



A 4-computer solution

P

6

��
�
��

��*

HH
H
HH

HHY

P sends its value to the other computers.

The other computers relay the value to one another.

13



A 4-computer solution

P

-
�

-
�

) j

P sends its value to the other computers.

The other computers relay the value to one another.

13



A 4-computer solution

P

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value:

13



A 4-computer solution

P

6

��
�
��

��*

HH
H
HH

HHY

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value:

It gets one directly from P .

13



A 4-computer solution

P

6

��
�
��

��*

HH
H
HH

HHY

- -
�

j

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value:

It gets one directly from P .

It gets one from another nonfaulty computer.

13



A 4-computer solution

P

If P is faulty, then every other computer receives the same set of
values.

14



A 4-computer solution

P

6

��
�
��

��*

HH
H
HH

HHY

If P is faulty, then every other computer receives the same set of
values.

14



A 4-computer solution

P

6

��
�
��

��*

HH
H
HH

HHY

-
�

-
�

) j

If P is faulty, then every other computer receives the same set of
values.

14



A 4-computer solution

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value.

If P is faulty, then every other computer receives the same set of
values.

The Algorithm (Shostak)

P uses its own value.

For each other computer:

If it receives 2 copies of a value, it takes that value.

Otherwise, it takes 42.

P must be faulty, so all others will choose 42.

16



A 4-computer solution

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value.

If P is faulty, then every other computer receives the same set of
values.

The Algorithm (Shostak)

P uses its own value.

For each other computer:

If it receives 2 copies of a value, it takes that value.

Otherwise, it takes 42.

P must be faulty, so all others will choose 42.

16



A 4-computer solution

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value.

If P is faulty, then every other computer receives the same set of
values.

The Algorithm (Shostak)

P uses its own value.

For each other computer:

If it receives 2 copies of a value, it takes that value.

Otherwise, it takes 42.

P must be faulty, so all others will choose 42.

16



A 4-computer solution

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value.

If P is faulty, then every other computer receives the same set of
values.

The Algorithm (Shostak)

P uses its own value.

For each other computer:

If it receives 2 copies of a value, it takes that value.

Otherwise, it takes 42.

P must be faulty, so all others will choose 42.

16



A 4-computer solution

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value.

If P is faulty, then every other computer receives the same set of
values.

The Algorithm (Shostak)

P uses its own value.

For each other computer:

If it receives 2 copies of a value, it takes that value.

Otherwise, it takes 42.

P must be faulty, so all others will choose 42.

16



A 4-computer solution

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value.

If P is faulty, then every other computer receives the same set of
values.

The Algorithm (Shostak)

P uses its own value.

For each other computer:

If it receives 2 copies of a value, it takes that value.

If P is nonfaulty, it sent the value.
If P is faulty, all others received those two values.

Otherwise, it takes 42.

P must be faulty, so all others will choose 42.

16



A 4-computer solution

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value.

If P is faulty, then every other computer receives the same set of
values.

The Algorithm (Shostak)

P uses its own value.

For each other computer:

If it receives 2 copies of a value, it takes that value.

Otherwise, it takes 42.

P must be faulty, so all others will choose 42.

16



A 4-computer solution

If P is nonfaulty, then each other computer receives
at least 2 copies of P ’s value.

If P is faulty, then every other computer receives the same set of
values.

The Algorithm (Shostak)

P uses its own value.

For each other computer:

If it receives 2 copies of a value, it takes that value.

Otherwise, it takes 42.

P must be faulty, so all others will choose 42.

16



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Proof: We assume an algorithmA that tolerates f failures with
at most 3f computers and obtain a contradiction by construct-
ing a solution with 3 computers that tolerates 1 failure.

Let the 3 actual computers simulate an execution ofA by letting
each of them simulate at most f of the computers of A.

The one faulty actual computer simulates at most f faulty com-
puters of A.

This produces a solution that tolerates 1 failure with three com-
puters, which is impossible.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Proof: We assume an algorithmA that tolerates f failures with
at most 3f computers and obtain a contradiction by construct-
ing a solution with 3 computers that tolerates 1 failure.

Let the 3 actual computers simulate an execution ofA by letting
each of them simulate at most f of the computers of A.

The one faulty actual computer simulates at most f faulty com-
puters of A.

This produces a solution that tolerates 1 failure with three com-
puters, which is impossible.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Proof: We assume an algorithmA that tolerates f failures with
at most 3f computers and obtain a contradiction by construct-
ing a solution with 3 computers that tolerates 1 failure.

Let the 3 actual computers simulate an execution ofA by letting
each of them simulate at most f of the computers of A.

The one faulty actual computer simulates at most f faulty com-
puters of A.

This produces a solution that tolerates 1 failure with three com-
puters, which is impossible.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Proof: We assume an algorithmA that tolerates f failures with
at most 3f computers and obtain a contradiction by construct-
ing a solution with 3 computers that tolerates 1 failure.

Let the 3 actual computers simulate an execution ofA by letting
each of them simulate at most f of the computers of A.

The one faulty actual computer simulates at most f faulty com-
puters of A.

This produces a solution that tolerates 1 failure with three com-
puters, which is impossible.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Proof: We assume an algorithmA that tolerates f failures with
at most 3f computers and obtain a contradiction by construct-
ing a solution with 3 computers that tolerates 1 failure.

Let the 3 actual computers simulate an execution ofA by letting
each of them simulate at most f of the computers of A.

The one faulty actual computer simulates at most f faulty com-
puters of A.

This produces a solution that tolerates 1 failure with three com-
puters, which is impossible.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

Round 1: P sends its value to the other computers.

Round 2: The other computers relay the value received from P .

Round 3: The other computers relay the values received in Round 2.

Round 4: The other computers relay the values received in Round 3.
...

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

Round 1: P sends its value to the other computers.

Round 2: The other computers relay the value received from P .

Round 3: The other computers relay the values received in Round 2.

Round 4: The other computers relay the values received in Round 3.
...

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

Round 1: P sends its value to the other computers.

Round 2: The other computers relay the value received from P .

Round 3: The other computers relay the values received in Round 2.

Round 4: The other computers relay the values received in Round 3.
...

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

Round 1: P sends its value to the other computers.

Round 2: The other computers relay the value received from P .

Round 3: The other computers relay the values received in Round 2.

Round 4: The other computers relay the values received in Round 3.
...

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



The General Case

Theorem (Shostak) A solution to the Byzantine generals problem
that tolerates f failures requires at least 3f + 1 computers.

Theorem (Fischer and Lynch) Any solution that tolerates f failures
requires at least f + 1 rounds.

There is a solution (due to Pease) that tolerates f failures with 3f + 1
computers and takes f + 1 rounds.

18



A solution to the Byzantine generals problem that tolerates f failures
requires at least 3f + 1 computers.

This is true if the solution has to work in all possible cases.

But a solution is allowed to fail with probability less than

10−10

number of executions per hour

Can we get a solution with fewer computers that works with very high
probability?

18



A solution to the Byzantine generals problem that tolerates f failures
requires at least 3f + 1 computers.

This is true if the solution has to work in all possible cases.

But a solution is allowed to fail with probability less than

10−10

number of executions per hour

Can we get a solution with fewer computers that works with very high
probability?

18



A solution to the Byzantine generals problem that tolerates f failures
requires at least 3f + 1 computers.

This is true if the solution has to work in all possible cases.

But a solution is allowed to fail with probability less than

10−10

number of executions per hour

Can we get a solution with fewer computers that works with very high
probability?

18



A solution to the Byzantine generals problem that tolerates f failures
requires at least 3f + 1 computers.

This is true if the solution has to work in all possible cases.

But a solution is allowed to fail with probability less than

10−10

number of executions per hour

Can we get a solution with fewer computers that works with very high
probability?

18



The problem: B can’t distinguish these two cases.

CB

P

0

J
J
J
J]

P sent 1
�

0








�

CB

P

0

J
J
J
J]

P sent 1
�

1








�

The solution: prevent C from pretending P sent a value it didn’t.

19



The problem: B can’t distinguish these two cases.

CB

P

0

J
J
J
J]

P sent 1
�
��

@
@@

�

0








�

CB

P

0

J
J
J
J]

P sent 1
�

1








�

The solution: prevent C from pretending P sent a value it didn’t.

19



Digital Signatures

Proposed by Diffie and Hellman in mid-1970s.

Few people had heard of them. (I was one because Diffie is a friend
of mine.)

P can digitally sign its value; no other computer can forge its
signature (with non-negligible probability).

Using digital signatures, a Byzantine generals solution tolerating f

failures needs only 2f + 1 computers (but still needs f + 1 rounds).

First practical implementation against malicious forgery by Rivest,
Shamir, and Adleman (1978).

Easy to implement against forgery by failure.

20



Digital Signatures

Proposed by Diffie and Hellman in mid-1970s.

Few people had heard of them. (I was one because Diffie is a friend
of mine.)

P can digitally sign its value; no other computer can forge its
signature (with non-negligible probability).

Using digital signatures, a Byzantine generals solution tolerating f

failures needs only 2f + 1 computers (but still needs f + 1 rounds).

First practical implementation against malicious forgery by Rivest,
Shamir, and Adleman (1978).

Easy to implement against forgery by failure.

20



Digital Signatures

Proposed by Diffie and Hellman in mid-1970s.

Few people had heard of them. (I was one because Diffie is a friend
of mine.)

P can digitally sign its value; no other computer can forge its
signature (with non-negligible probability).

Using digital signatures, a Byzantine generals solution tolerating f

failures needs only 2f + 1 computers (but still needs f + 1 rounds).

First practical implementation against malicious forgery by Rivest,
Shamir, and Adleman (1978).

Easy to implement against forgery by failure.

20



Digital Signatures

Proposed by Diffie and Hellman in mid-1970s.

Few people had heard of them. (I was one because Diffie is a friend
of mine.)

P can digitally sign its value; no other computer can forge its
signature (with non-negligible probability).

Using digital signatures, a Byzantine generals solution tolerating f

failures needs only 2f + 1 computers (but still needs f + 1 rounds).

First practical implementation against malicious forgery by Rivest,
Shamir, and Adleman (1978).

Easy to implement against forgery by failure.

20



Digital Signatures

Proposed by Diffie and Hellman in mid-1970s.

Few people had heard of them. (I was one because Diffie is a friend
of mine.)

P can digitally sign its value; no other computer can forge its
signature (with non-negligible probability).

Using digital signatures, a Byzantine generals solution tolerating f

failures needs only 2f + 1 computers (but still needs f + 1 rounds).

First practical implementation against malicious forgery by Rivest,
Shamir, and Adleman (1978).

Easy to implement against forgery by failure.

20



Digital Signatures

Proposed by Diffie and Hellman in mid-1970s.

Few people had heard of them. (I was one because Diffie is a friend
of mine.)

P can digitally sign its value; no other computer can forge its
signature (with non-negligible probability).

Using digital signatures, a Byzantine generals solution tolerating f

failures needs only 2f + 1 computers (but still needs f + 1 rounds).

First practical implementation against malicious forgery by Rivest,
Shamir, and Adleman (1978).

Easy to implement against forgery by failure.

20



Digital Signatures

Proposed by Diffie and Hellman in mid-1970s.

Few people had heard of them. (I was one because Diffie is a friend
of mine.)

P can digitally sign its value; no other computer can forge its
signature (with non-negligible probability).

Using digital signatures, a Byzantine generals solution tolerating f

failures needs only 2f + 1 computers (but still needs f + 1 rounds).

First practical implementation against malicious forgery by Rivest,
Shamir, and Adleman (1978).

Easy to implement against forgery by failure.

20



Digital Signatures

Proposed by Diffie and Hellman in mid-1970s.

Few people had heard of them. (I was one because Diffie is a friend
of mine.)

P can digitally sign its value; no other computer can forge its
signature (with non-negligible probability).

Using digital signatures, a Byzantine generals solution tolerating f

failures needs only 2f + 1 computers (but still needs f + 1 rounds).

First practical implementation against malicious forgery by Rivest,
Shamir, and Adleman (1978).

Easy to implement against forgery by failure.

20



What Do Airplane Manufacturers Use?

I don’t know, but here’s what I have heard.

Boeing: By email from a former Boeing engineer.

“S--t! We have to use four.”

Airbus: On a visit to a software group.

Primary-backup.

Primary-backup can work, if each computer is carefully designed as a
fault-tolerant multiprocess system.

But engineers often think they can solve an unsolvable problem by
reducing it to another unsolvable problem.

22



What Do Airplane Manufacturers Use?

I don’t know, but here’s what I have heard.

Boeing: By email from a former Boeing engineer.

“S--t! We have to use four.”

Airbus: On a visit to a software group.

Primary-backup.

Primary-backup can work, if each computer is carefully designed as a
fault-tolerant multiprocess system.

But engineers often think they can solve an unsolvable problem by
reducing it to another unsolvable problem.

22



What Do Airplane Manufacturers Use?

I don’t know, but here’s what I have heard.

Boeing: By email from a former Boeing engineer.

“S--t! We have to use four.”

Airbus: On a visit to a software group.

Primary-backup.

Primary-backup can work, if each computer is carefully designed as a
fault-tolerant multiprocess system.

But engineers often think they can solve an unsolvable problem by
reducing it to another unsolvable problem.

22



What Do Airplane Manufacturers Use?

I don’t know, but here’s what I have heard.

Boeing: By email from a former Boeing engineer.

“S--t! We have to use four.”

Airbus: On a visit to a software group.

Primary-backup.

Primary-backup can work, if each computer is carefully designed as a
fault-tolerant multiprocess system.

But engineers often think they can solve an unsolvable problem by
reducing it to another unsolvable problem.

22



What Do Airplane Manufacturers Use?

I don’t know, but here’s what I have heard.

Boeing: By email from a former Boeing engineer.

“S--t! We have to use four.”

Airbus: On a visit to a software group.

Primary-backup.

Primary-backup can work, if each computer is carefully designed as a
fault-tolerant multiprocess system.

But engineers often think they can solve an unsolvable problem by
reducing it to another unsolvable problem.

22



What Do Airplane Manufacturers Use?

I don’t know, but here’s what I have heard.

Boeing: By email from a former Boeing engineer.

“S--t! We have to use four.”

Airbus: On a visit to a software group.

Primary-backup.

Primary-backup can work, if each computer is carefully designed as a
fault-tolerant multiprocess system.

But engineers often think they can solve an unsolvable problem by
reducing it to another unsolvable problem.

22



What Do Airplane Manufacturers Use?

I don’t know, but here’s what I have heard.

Boeing: By email from a former Boeing engineer.

“S--t! We have to use four.”

Airbus: On a visit to a software group.

Primary-backup.

Primary-backup can work, if each computer is carefully designed as a
fault-tolerant multiprocess system.

But engineers often think they can solve an unsolvable problem by
reducing it to another unsolvable problem.

22



Part II

Designing Computer Systems
To Run a Business

c. 1990

22



Why running a business is like flying an airplane

Need multiple computers to tolerate failures.

The computers must agree what to do next.

Marketing says: Raise price of widgets.

Customer says: Sell me a widget.

All computers must agree which to do first.

The basic problem: The computers must choose which one of a set
of proposed commands to perform next.

Essentially the same problem as agreeing on the sensor inputs for
flying an airplane.

Given a solution to this problem, building a reliable system to run a
business is a straightforward engineering task.

23



Why running a business is like flying an airplane

Need multiple computers to tolerate failures.

The computers must agree what to do next.

Marketing says: Raise price of widgets.

Customer says: Sell me a widget.

All computers must agree which to do first.

The basic problem: The computers must choose which one of a set
of proposed commands to perform next.

Essentially the same problem as agreeing on the sensor inputs for
flying an airplane.

Given a solution to this problem, building a reliable system to run a
business is a straightforward engineering task.

23



Why running a business is like flying an airplane

Need multiple computers to tolerate failures.

The computers must agree what to do next.

Marketing says: Raise price of widgets.

Customer says: Sell me a widget.

All computers must agree which to do first.

The basic problem: The computers must choose which one of a set
of proposed commands to perform next.

Essentially the same problem as agreeing on the sensor inputs for
flying an airplane.

Given a solution to this problem, building a reliable system to run a
business is a straightforward engineering task.

23



Why running a business is like flying an airplane

Need multiple computers to tolerate failures.

The computers must agree what to do next.

Marketing says: Raise price of widgets.

Customer says: Sell me a widget.

All computers must agree which to do first.

The basic problem: The computers must choose which one of a set
of proposed commands to perform next.

Essentially the same problem as agreeing on the sensor inputs for
flying an airplane.

Given a solution to this problem, building a reliable system to run a
business is a straightforward engineering task.

23



Why running a business is like flying an airplane

Need multiple computers to tolerate failures.

The computers must agree what to do next.

Marketing says: Raise price of widgets.

Customer says: Sell me a widget.

All computers must agree which to do first.

The basic problem: The computers must choose which one of a set
of proposed commands to perform next.

Essentially the same problem as agreeing on the sensor inputs for
flying an airplane.

Given a solution to this problem, building a reliable system to run a
business is a straightforward engineering task.

23



Why running a business is like flying an airplane

Need multiple computers to tolerate failures.

The computers must agree what to do next.

Marketing says: Raise price of widgets.

Customer says: Sell me a widget.

All computers must agree which to do first.

The basic problem: The computers must choose which one of a set
of proposed commands to perform next.

Essentially the same problem as agreeing on the sensor inputs for
flying an airplane.

Given a solution to this problem, building a reliable system to run a
business is a straightforward engineering task.

23



Why running a business is like flying an airplane

Need multiple computers to tolerate failures.

The computers must agree what to do next.

Marketing says: Raise price of widgets.

Customer says: Sell me a widget.

All computers must agree which to do first.

The basic problem: The computers must choose which one of a set
of proposed commands to perform next.

Essentially the same problem as agreeing on the sensor inputs for
flying an airplane.

Given a solution to this problem, building a reliable system to run a
business is a straightforward engineering task.

23



Why running a business is like flying an airplane

Need multiple computers to tolerate failures.

The computers must agree what to do next.

Marketing says: Raise price of widgets.

Customer says: Sell me a widget.

All computers must agree which to do first.

The basic problem: The computers must choose which one of a set
of proposed commands to perform next.

Essentially the same problem as agreeing on the sensor inputs for
flying an airplane.

Given a solution to this problem, building a reliable system to run a
business is a straightforward engineering task.

23



Why running a business is like flying an airplane

Need multiple computers to tolerate failures.

The computers must agree what to do next.

Marketing says: Raise price of widgets.

Customer says: Sell me a widget.

All computers must agree which to do first.

The basic problem: The computers must choose which one of a set
of proposed commands to perform next.

Essentially the same problem as agreeing on the sensor inputs for
flying an airplane.

Given a solution to this problem, building a reliable system to run a
business is a straightforward engineering task.

23



Why designing a system to run a business is easier

Need not be nearly as reliable.

One failure every few hundred years is acceptable.

Can assume that computers fail only by stopping.

Need not handle malicious computers.

Can tolerate occasional delays of a few seconds (or a few minutes
for some businesses).

The business will not crash if the system stops for 20ms.

24



Why designing a system to run a business is easier

Need not be nearly as reliable.

One failure every few hundred years is acceptable.

Can assume that computers fail only by stopping.

Need not handle malicious computers.

Can tolerate occasional delays of a few seconds (or a few minutes
for some businesses).

The business will not crash if the system stops for 20ms.

24



Why designing a system to run a business is easier

Need not be nearly as reliable.

One failure every few hundred years is acceptable.

Can assume that computers fail only by stopping.

Need not handle malicious computers.

Can tolerate occasional delays of a few seconds (or a few minutes
for some businesses).

The business will not crash if the system stops for 20ms.

24



Why designing a system to run a business is easier

Need not be nearly as reliable.

One failure every few hundred years is acceptable.

Can assume that computers fail only by stopping.

Need not handle malicious computers.

Can tolerate occasional delays of a few seconds (or a few minutes
for some businesses).

The business will not crash if the system stops for 20ms.

24



Why designing a system to run a business is easier

Need not be nearly as reliable.

One failure every few hundred years is acceptable.

Can assume that computers fail only by stopping.

Need not handle malicious computers.

Can tolerate occasional delays of a few seconds (or a few minutes
for some businesses).

The business will not crash if the system stops for 20ms.

24



Why designing a system to run a business is easier

Need not be nearly as reliable.

One failure every few hundred years is acceptable.

Can assume that computers fail only by stopping.

Need not handle malicious computers.

Can tolerate occasional delays of a few seconds (or a few minutes
for some businesses).

The business will not crash if the system stops for 20ms.

24



Why designing a system to run a business is easier

Need not be nearly as reliable.

One failure every few hundred years is acceptable.

Can assume that computers fail only by stopping.

Need not handle malicious computers.

Can tolerate occasional delays of a few seconds (or a few minutes
for some businesses).

The business will not crash if the system stops for 20ms.

24



Why designing a system to run a business is harder

In an airplane, computers can communicate synchronously.

In a business, computers communicate asynchronously.

FLP Theorem (Fischer, Lynch, and Paterson) No algorithm can
ensure agreement among computers in an asynchronous system if a
single computer can fail by stopping.

25



Why designing a system to run a business is harder

In an airplane, computers can communicate synchronously.

In a business, computers communicate asynchronously.

FLP Theorem (Fischer, Lynch, and Paterson) No algorithm can
ensure agreement among computers in an asynchronous system if a
single computer can fail by stopping.

25



Why designing a system to run a business is harder

In an airplane, computers can communicate synchronously.

Messages are delivered in a (short) bounded time.

Messages are lost or late only if a computer fails.

In a business, computers communicate asynchronously.

FLP Theorem (Fischer, Lynch, and Paterson) No algorithm can
ensure agreement among computers in an asynchronous system if a
single computer can fail by stopping.

25



Why designing a system to run a business is harder

In an airplane, computers can communicate synchronously.

Messages are delivered in a (short) bounded time.

Messages are lost or late only if a computer fails.

In a business, computers communicate asynchronously.

FLP Theorem (Fischer, Lynch, and Paterson) No algorithm can
ensure agreement among computers in an asynchronous system if a
single computer can fail by stopping.

25



Why designing a system to run a business is harder

In an airplane, computers can communicate synchronously.

In a business, computers communicate asynchronously.

FLP Theorem (Fischer, Lynch, and Paterson) No algorithm can
ensure agreement among computers in an asynchronous system if a
single computer can fail by stopping.

25



Why designing a system to run a business is harder

In an airplane, computers can communicate synchronously.

In a business, computers communicate asynchronously.

Messages are delivered by complex software-controlled
networks.

Messages can be lost or take arbitrarily long to arrive.

FLP Theorem (Fischer, Lynch, and Paterson) No algorithm can
ensure agreement among computers in an asynchronous system if a
single computer can fail by stopping.

25



Why designing a system to run a business is harder

In an airplane, computers can communicate synchronously.

In a business, computers communicate asynchronously.

Messages are delivered by complex software-controlled
networks.

Messages can be lost or take arbitrarily long to arrive.

FLP Theorem (Fischer, Lynch, and Paterson) No algorithm can
ensure agreement among computers in an asynchronous system if a
single computer can fail by stopping.

25



Why designing a system to run a business is harder

In an airplane, computers can communicate synchronously.

In a business, computers communicate asynchronously.

FLP Theorem (Fischer, Lynch, and Paterson) No algorithm can
ensure agreement among computers in an asynchronous system if a
single computer can fail by stopping.

25



Overcoming FLP

Ensure that computers never disagree.

Ensure that the computers agree if they get lucky.

Ensure that they get lucky, except for occasional short periods.

The system then never makes a mistake, and it keeps working except
for occasional short periods of bad luck.

26



Overcoming FLP

Ensure that computers never disagree.

Ensure that the computers agree if they get lucky.

Ensure that they get lucky, except for occasional short periods.

The system then never makes a mistake, and it keeps working except
for occasional short periods of bad luck.

26



Overcoming FLP

Ensure that computers never disagree.

Ensure that the computers agree if they get lucky.

Ensure that they get lucky, except for occasional short periods.

The system then never makes a mistake, and it keeps working except
for occasional short periods of bad luck.

26



Overcoming FLP

Ensure that computers never disagree.

Ensure that the computers agree if they get lucky.

Ensure that they get lucky, except for occasional short periods.

The system then never makes a mistake, and it keeps working except
for occasional short periods of bad luck.

26



The Paxos Algorithm

A widely-used algorithm for reaching agreement in asynchronous
computer systems.

It assumes a method by which the computers select a good
(non-failed) leader.

This reduces the unsolvable problem of reaching agreement to the
unsolvable problem of reaching agreement on who the leader is.

But the leader is not needed to prevent disagreement.

Computers never disagree even if there is no leader or several
leaders.

A unique, good leader is required only to reach a decision.

27



The Paxos Algorithm

A widely-used algorithm for reaching agreement in asynchronous
computer systems.

It assumes a method by which the computers select a good
(non-failed) leader.

This reduces the unsolvable problem of reaching agreement to the
unsolvable problem of reaching agreement on who the leader is.

But the leader is not needed to prevent disagreement.

Computers never disagree even if there is no leader or several
leaders.

A unique, good leader is required only to reach a decision.

27



The Paxos Algorithm

A widely-used algorithm for reaching agreement in asynchronous
computer systems.

It assumes a method by which the computers select a good
(non-failed) leader.

This reduces the unsolvable problem of reaching agreement to the
unsolvable problem of reaching agreement on who the leader is.

But the leader is not needed to prevent disagreement.

Computers never disagree even if there is no leader or several
leaders.

A unique, good leader is required only to reach a decision.

27



The Paxos Algorithm

A widely-used algorithm for reaching agreement in asynchronous
computer systems.

It assumes a method by which the computers select a good
(non-failed) leader.

This reduces the unsolvable problem of reaching agreement to the
unsolvable problem of reaching agreement on who the leader is.

But the leader is not needed to prevent disagreement.

Computers never disagree even if there is no leader or several
leaders.

A unique, good leader is required only to reach a decision.

27



The Paxos Algorithm

A widely-used algorithm for reaching agreement in asynchronous
computer systems.

It assumes a method by which the computers select a good
(non-failed) leader.

This reduces the unsolvable problem of reaching agreement to the
unsolvable problem of reaching agreement on who the leader is.

But the leader is not needed to prevent disagreement.

Computers never disagree even if there is no leader or several
leaders.

A unique, good leader is required only to reach a decision.

27



The Paxos Algorithm

A widely-used algorithm for reaching agreement in asynchronous
computer systems.

It assumes a method by which the computers select a good
(non-failed) leader.

This reduces the unsolvable problem of reaching agreement to the
unsolvable problem of reaching agreement on who the leader is.

But the leader is not needed to prevent disagreement.

Computers never disagree even if there is no leader or several
leaders.

A unique, good leader is required only to reach a decision.

27



In Paxos, getting lucky means having a unique, good leader.

In a well-engineered system, it’s easy to design a leader-selection
algorithm that is lucky except during occasional short periods.

Paxos uses 2f + 1 computers and can choose a command if at most
f of them fail.

27



In Paxos, getting lucky means having a unique, good leader.

In a well-engineered system, it’s easy to design a leader-selection
algorithm that is lucky except during occasional short periods.

Paxos uses 2f + 1 computers and can choose a command if at most
f of them fail.

27



In Paxos, getting lucky means having a unique, good leader.

In a well-engineered system, it’s easy to design a leader-selection
algorithm that is lucky except during occasional short periods.

Paxos uses 2f + 1 computers and can choose a command if at most
f of them fail.

27



The Algorithm

The leader-selection algorithm tries to keep a unique, good
leader—selecting a new leader if the current leader fails.

When a computer L believes that it has just become the leader, it
starts a ballot to try to get a command chosen.

The command is chosen if a majority of the computers vote for it in
the ballot.

Here’s what happens if we’re lucky and L is the unique leader.

28



The Algorithm

The leader-selection algorithm tries to keep a unique, good
leader—selecting a new leader if the current leader fails.

When a computer L believes that it has just become the leader, it
starts a ballot to try to get a command chosen.

The command is chosen if a majority of the computers vote for it in
the ballot.

Here’s what happens if we’re lucky and L is the unique leader.

28



The Algorithm

The leader-selection algorithm tries to keep a unique, good
leader—selecting a new leader if the current leader fails.

When a computer L believes that it has just become the leader, it
starts a ballot to try to get a command chosen.

The command is chosen if a majority of the computers vote for it in
the ballot.

Here’s what happens if we’re lucky and L is the unique leader.

28



The Algorithm

The leader-selection algorithm tries to keep a unique, good
leader—selecting a new leader if the current leader fails.

When a computer L believes that it has just become the leader, it
starts a ballot to try to get a command chosen.

The command is chosen if a majority of the computers vote for it in
the ballot.

Here’s what happens if we’re lucky and L is the unique leader.

28



The Algorithm

The leader-selection algorithm tries to keep a unique, good
leader—selecting a new leader if the current leader fails.

When a computer L believes that it has just become the leader, it
starts a ballot to try to get a command chosen.

The command is chosen if a majority of the computers vote for it in
the ballot.

Here’s what happens if we’re lucky and L is the unique leader.

28



L sends a start ballot message to the other computers.

The other computers reply with information about any votes
they’ve cast in other ballots.

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

It votes for c and sends the message vote for c to the other
computers.

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

When L learns that at least f other computers have voted for c, then it
knows that c has been chosen and informs the other computers.

29



L sends a start ballot message to the other computers.

The other computers reply with information about any votes
they’ve cast in other ballots.

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

It votes for c and sends the message vote for c to the other
computers.

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

When L learns that at least f other computers have voted for c, then it
knows that c has been chosen and informs the other computers.

29



L sends a start ballot message to the other computers.

The other computers reply with information about any votes
they’ve cast in other ballots.

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

It votes for c and sends the message vote for c to the other
computers.

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

When L learns that at least f other computers have voted for c, then it
knows that c has been chosen and informs the other computers.

29



L sends a start ballot message to the other computers.

The other computers reply with information about any votes
they’ve cast in other ballots.

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

It votes for c and sends the message vote for c to the other
computers.

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

When L learns that at least f other computers have voted for c, then it
knows that c has been chosen and informs the other computers.

29



L sends a start ballot message to the other computers.

The other computers reply with information about any votes
they’ve cast in other ballots.

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

It votes for c and sends the message vote for c to the other
computers.

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

When L learns that at least f other computers have voted for c, then it
knows that c has been chosen and informs the other computers.

29



L sends a start ballot message to the other computers.

The other computers reply with information about any votes
they’ve cast in other ballots.

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

It votes for c and sends the message vote for c to the other
computers.

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

When L learns that at least f other computers have voted for c, then it
knows that c has been chosen and informs the other computers.

29



L sends a start ballot message to the other computers.

The other computers reply with information about any votes
they’ve cast in other ballots.

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

It votes for c and sends the message vote for c to the other
computers.

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

When L learns that at least f other computers have voted for c, then it
knows that c has been chosen and informs the other computers.

29



This is what happens if the system is lucky.

If it’s unlucky, some other process M will have started a competing
ballot, and the other computers will start responding to M and
ignoring L.

If L still thinks that it is the leader, then it will start another ballot.

The algorithm guarantees that if two different ballots choose
commands, then they both choose the same command.

Eventually, the system will get lucky, and the leader-selection
algorithm will choose a single good leader.

If at most f computers have failed, that leader will start a ballot that
completes and chooses a command.

31



This is what happens if the system is lucky.

If it’s unlucky, some other process M will have started a competing
ballot, and the other computers will start responding to M and
ignoring L.

If L still thinks that it is the leader, then it will start another ballot.

The algorithm guarantees that if two different ballots choose
commands, then they both choose the same command.

Eventually, the system will get lucky, and the leader-selection
algorithm will choose a single good leader.

If at most f computers have failed, that leader will start a ballot that
completes and chooses a command.

31



This is what happens if the system is lucky.

If it’s unlucky, some other process M will have started a competing
ballot, and the other computers will start responding to M and
ignoring L.

If L still thinks that it is the leader, then it will start another ballot.

The algorithm guarantees that if two different ballots choose
commands, then they both choose the same command.

Eventually, the system will get lucky, and the leader-selection
algorithm will choose a single good leader.

If at most f computers have failed, that leader will start a ballot that
completes and chooses a command.

31



This is what happens if the system is lucky.

If it’s unlucky, some other process M will have started a competing
ballot, and the other computers will start responding to M and
ignoring L.

If L still thinks that it is the leader, then it will start another ballot.

The algorithm guarantees that if two different ballots choose
commands, then they both choose the same command.

Eventually, the system will get lucky, and the leader-selection
algorithm will choose a single good leader.

If at most f computers have failed, that leader will start a ballot that
completes and chooses a command.

31



This is what happens if the system is lucky.

If it’s unlucky, some other process M will have started a competing
ballot, and the other computers will start responding to M and
ignoring L.

If L still thinks that it is the leader, then it will start another ballot.

The algorithm guarantees that if two different ballots choose
commands, then they both choose the same command.

Eventually, the system will get lucky, and the leader-selection
algorithm will choose a single good leader.

If at most f computers have failed, that leader will start a ballot that
completes and chooses a command.

31



This is what happens if the system is lucky.

If it’s unlucky, some other process M will have started a competing
ballot, and the other computers will start responding to M and
ignoring L.

If L still thinks that it is the leader, then it will start another ballot.

The algorithm guarantees that if two different ballots choose
commands, then they both choose the same command.

Eventually, the system will get lucky, and the leader-selection
algorithm will choose a single good leader.

If at most f computers have failed, that leader will start a ballot that
completes and chooses a command.

31



Paxos will not fly an airplane, but it is in the clouds.

The data center doing your cloud computing is probably using Paxos.

It’s certainly using Paxos if it’s run by Microsoft or Google.

31



Paxos will not fly an airplane, but it is in the clouds.

The data center doing your cloud computing is probably using Paxos.

It’s certainly using Paxos if it’s run by Microsoft or Google.

31



Paxos will not fly an airplane, but it is in the clouds.

The data center doing your cloud computing is probably using Paxos.

It’s certainly using Paxos if it’s run by Microsoft or Google.

31



Paxos will not fly an airplane, but it is in the clouds.

The data center doing your cloud computing is probably using Paxos.

It’s certainly using Paxos if it’s run by Microsoft or Google.

31



Part III

Designing Computer Systems
To Run a Byzantine Business

the 2000s

31



The Problem

Run a business with computers that may have Byzantine (malicious)
failures.

Why? For now, because it’s fun.

The same basic problem: The computers must choose which one of
a set of proposed commands to perform next.

32



The Problem

Run a business with computers that may have Byzantine (malicious)
failures.

Why? For now, because it’s fun.

The same basic problem: The computers must choose which one of
a set of proposed commands to perform next.

32



The Problem

Run a business with computers that may have Byzantine (malicious)
failures.

Why? For now, because it’s fun.

The same basic problem: The computers must choose which one of
a set of proposed commands to perform next.

32



The Problem

Run a business with computers that may have Byzantine (malicious)
failures.

Why? For now, because it’s fun.

The same basic problem: The computers must choose which one of
a set of proposed commands to perform next.

32



The Problem

Run a business with computers that may have Byzantine (malicious)
failures.

Why? For now, because it’s fun.

The same basic problem: The computers must choose which one of
a set of proposed commands to perform next.

32



The Solution

Byzantine Paxos (Castro and Liskov) [they called it something else].

A new algorithm inspired by Paxos.

Uses 3f + 1 computers to tolerate the malicious failure of
up to f of them.

This is optimal. (Bracha and Toueg)

32



The Solution

Byzantine Paxos (Castro and Liskov) [they called it something else].

A new algorithm inspired by Paxos.

Uses 3f + 1 computers to tolerate the malicious failure of
up to f of them.

This is optimal. (Bracha and Toueg)

32



The Solution

Byzantine Paxos (Castro and Liskov) [they called it something else].

A new algorithm inspired by Paxos.

Uses 3f + 1 computers to tolerate the malicious failure of
up to f of them.

This is optimal. (Bracha and Toueg)

32



The Solution

Byzantine Paxos (Castro and Liskov) [they called it something else].

A new algorithm inspired by Paxos.

Uses 3f + 1 computers to tolerate the malicious failure of
up to f of them.

This is optimal. (Bracha and Toueg)

32



The Solution

Byzantine Paxos (Castro and Liskov) [they called it something else].

A new algorithm inspired by Paxos.

Uses 3f + 1 computers to tolerate the malicious failure of
up to f of them.

This is optimal. (Bracha and Toueg)

32



Another Approach: Byzantizing Paxos

Can derive a class of algorithms that tolerate malicious
failures—including the Castrol-Liskov algorithm.

The idea: Have 2f + 1 good computers execute Paxos, while f

malicious computers try to foil them.

A good computer doesn’t know which of the other computers are
malicious.

32



Another Approach: Byzantizing Paxos

Can derive a class of algorithms that tolerate malicious
failures—including the Castrol-Liskov algorithm.

The idea: Have 2f + 1 good computers execute Paxos, while f

malicious computers try to foil them.

A good computer doesn’t know which of the other computers are
malicious.

32



Another Approach: Byzantizing Paxos

Can derive a class of algorithms that tolerate malicious
failures—including the Castrol-Liskov algorithm.

The idea: Have 2f + 1 good computers execute Paxos, while f

malicious computers try to foil them.

A good computer doesn’t know which of the other computers are
malicious.

32



Another Approach: Byzantizing Paxos

Can derive a class of algorithms that tolerate malicious
failures—including the Castrol-Liskov algorithm.

The idea: Have 2f + 1 good computers execute Paxos, while f

malicious computers try to foil them.

A good computer doesn’t know which of the other computers are
malicious.

32



Another Approach: Byzantizing Paxos

Can derive a class of algorithms that tolerate malicious
failures—including the Castrol-Liskov algorithm.

The idea: Have 2f + 1 good computers execute Paxos, while f

malicious computers try to foil them.

A good computer doesn’t know which of the other computers are
malicious.

32



The Key Idea

Paxos works by sending messages.

We require that each message M be accompanied by a proof that the
Paxos algorithm being executed by the good computers allows M to
be sent.

In most cases, M can be sent only if the sender has received some
set S of messages.

The fact that the messages in S were sent constitutes a proof that
Paxos allows sending M .

Have computers digitally sign the messages they send.
(Improperly signed messages are ignored.)

Copies of the messages in S then prove those messages were sent,
so they prove that Paxos allows sending M .

33



The Key Idea

Paxos works by sending messages.

We require that each message M be accompanied by a proof that the
Paxos algorithm being executed by the good computers allows M to
be sent.

In most cases, M can be sent only if the sender has received some
set S of messages.

The fact that the messages in S were sent constitutes a proof that
Paxos allows sending M .

Have computers digitally sign the messages they send.
(Improperly signed messages are ignored.)

Copies of the messages in S then prove those messages were sent,
so they prove that Paxos allows sending M .

33



The Key Idea

Paxos works by sending messages.

We require that each message M be accompanied by a proof that the
Paxos algorithm being executed by the good computers allows M to
be sent.

In most cases, M can be sent only if the sender has received some
set S of messages.

The fact that the messages in S were sent constitutes a proof that
Paxos allows sending M .

Have computers digitally sign the messages they send.
(Improperly signed messages are ignored.)

Copies of the messages in S then prove those messages were sent,
so they prove that Paxos allows sending M .

33



The Key Idea

Paxos works by sending messages.

We require that each message M be accompanied by a proof that the
Paxos algorithm being executed by the good computers allows M to
be sent.

In most cases, M can be sent only if the sender has received some
set S of messages.

The fact that the messages in S were sent constitutes a proof that
Paxos allows sending M .

Have computers digitally sign the messages they send.
(Improperly signed messages are ignored.)

Copies of the messages in S then prove those messages were sent,
so they prove that Paxos allows sending M .

33



The Key Idea

Paxos works by sending messages.

We require that each message M be accompanied by a proof that the
Paxos algorithm being executed by the good computers allows M to
be sent.

In most cases, M can be sent only if the sender has received some
set S of messages.

The fact that the messages in S were sent constitutes a proof that
Paxos allows sending M .

Have computers digitally sign the messages they send.
(Improperly signed messages are ignored.)

Copies of the messages in S then prove those messages were sent,
so they prove that Paxos allows sending M .

33



The Key Idea

Paxos works by sending messages.

We require that each message M be accompanied by a proof that the
Paxos algorithm being executed by the good computers allows M to
be sent.

In most cases, M can be sent only if the sender has received some
set S of messages.

The fact that the messages in S were sent constitutes a proof that
Paxos allows sending M .

Have computers digitally sign the messages they send.
(Improperly signed messages are ignored.)

Copies of the messages in S then prove those messages were sent,
so they prove that Paxos allows sending M .

33



The Key Idea

Paxos works by sending messages.

We require that each message M be accompanied by a proof that the
Paxos algorithm being executed by the good computers allows M to
be sent.

In most cases, M can be sent only if the sender has received some
set S of messages.

The fact that the messages in S were sent constitutes a proof that
Paxos allows sending M .

Have computers digitally sign the messages they send.
(Improperly signed messages are ignored.)

Copies of the messages in S then prove those messages were sent,
so they prove that Paxos allows sending M .

33



The Key Idea

Paxos works by sending messages.

We require that each message M be accompanied by a proof that the
Paxos algorithm being executed by the good computers allows M to
be sent.

In most cases, M can be sent only if the sender has received some
set S of messages.

The fact that the messages in S were sent constitutes a proof that
Paxos allows sending M .

Have computers digitally sign the messages they send.
(Improperly signed messages are ignored.)

Copies of the messages in S then prove those messages were sent,
so they prove that Paxos allows sending M .

33



Paxos With Proofs

36



Paxos With Proofs

L sends a start ballot message to the other computers.

36



Paxos With Proofs

L sends a start ballot message to the other computers.

Allowed at any time, no proof needed.

36



Paxos With Proofs

The other computers reply with information about any votes
they’ve cast in other ballots.

36



Paxos With Proofs

The other computers reply with information about any votes
they’ve cast in other ballots.

They send proofs that each of their votes was allowed by
a leader’s vote for message.

36



Paxos With Proofs

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

36



Paxos With Proofs

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

L has to receive messages with proofs from 2f other computers,
so it has them from at least f good ones.

The messages from any f of those other computers must, by
themselves, prove that L is allowed to choose c.

36



Paxos With Proofs

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

L has to receive messages with proofs from 2f other computers,
so it has them from at least f good ones.

The messages from any f of those other computers must, by
themselves, prove that L is allowed to choose c.

36



Paxos With Proofs

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

L has to receive messages with proofs from 2f other computers,
so it has them from at least f good ones.

The messages from any f of those other computers must, by
themselves, prove that L is allowed to choose c.

L votes for c and sends the message vote for c to the other
computers.

36



Paxos With Proofs

When L has heard from at least f other computers, either
(a) it learns that a particular command c might already have
been chosen, or else (b) it lets c be any proposed command.

L has to receive messages with proofs from 2f other computers,
so it has them from at least f good ones.

The messages from any f of those other computers must, by
themselves, prove that L is allowed to choose c.

L votes for c and sends the message vote for c to the other
computers.

L sends a proof for this message consisting of all the messages and
their proofs it received from those 2f other computers.

36



Paxos With Proofs

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it.

38



Paxos With Proofs

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

What if a malicious L tells different computers to vote for different
commands c?

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it. 38



Paxos With Proofs

Each other computer that receives the vote for c message votes
for c and sends L a message saying that it has.

What if a malicious L tells different computers to vote for different
commands c?

Paxos does not allow different computers to vote for different
commands in the same ballot.

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it.

38



Paxos With Proofs

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it.

38



Paxos With Proofs

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Convenient to pretend computers send themselves messages.

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it.

38



Paxos With Proofs

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it.

38



Paxos With Proofs

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

A good computer will send only one ok to vote for c message in any
ballot

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it.

38



Paxos With Proofs

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

A good computer will send only one ok to vote for c message in any
ballot; with 2f + 1 good computers, it’s impossible for two good
computers to vote for different commands.

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it.

38



Paxos With Proofs

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it.

38



Paxos With Proofs

L and each other computer that receives the vote for c

message (with proof) sends an ok to vote for c message
to all computers (including itself).

Every computer that receives ok to vote for c messages from 2f + 1
computers votes for v and sends a message to all computers saying
it has.

Every computer that learns 2f + 1 computers voted for c knows that c
was chosen.

Because f + 1 are good computers executing Paxos, and a command
is chosen in Paxos if f + 1 computers vote for it.

38



The Fine Print

This doesn’t quite work.

To make it work, we need to Byzantize a variant of the Paxos algorithm that
differs slightly from the standard algorithm that I showed you.

38



Handling Malicious Leaders

Adding proofs and the ok to vote for c messages prevents
good computers from disagreeing on what command is chosen,
despite f malicious computers—including leaders.

Malicious computers can keep a value from being chosen.

A malicious leader can do nothing.

A malicious computer can pretend it’s the leader and
keep starting new ballots, preventing the real leader’s
ballots from succeeding.

Castro-Liskov solution:

– Select leader by rotating through computers in a fixed order.

– Use timeouts to switch to next leader if command not chosen.

39



Handling Malicious Leaders

Adding proofs and the ok to vote for c messages prevents
good computers from disagreeing on what command is chosen,
despite f malicious computers—including leaders.

Malicious computers can keep a value from being chosen.

A malicious leader can do nothing.

A malicious computer can pretend it’s the leader and
keep starting new ballots, preventing the real leader’s
ballots from succeeding.

Castro-Liskov solution:

– Select leader by rotating through computers in a fixed order.

– Use timeouts to switch to next leader if command not chosen.

39



Handling Malicious Leaders

Adding proofs and the ok to vote for c messages prevents
good computers from disagreeing on what command is chosen,
despite f malicious computers—including leaders.

Malicious computers can keep a value from being chosen.

A malicious leader can do nothing.

A malicious computer can pretend it’s the leader and
keep starting new ballots, preventing the real leader’s
ballots from succeeding.

Castro-Liskov solution:

– Select leader by rotating through computers in a fixed order.

– Use timeouts to switch to next leader if command not chosen.

39



Handling Malicious Leaders

Adding proofs and the ok to vote for c messages prevents
good computers from disagreeing on what command is chosen,
despite f malicious computers—including leaders.

Malicious computers can keep a value from being chosen.

A malicious leader can do nothing.

A malicious computer can pretend it’s the leader and
keep starting new ballots, preventing the real leader’s
ballots from succeeding.

Castro-Liskov solution:

– Select leader by rotating through computers in a fixed order.

– Use timeouts to switch to next leader if command not chosen.

39



Handling Malicious Leaders

Adding proofs and the ok to vote for c messages prevents
good computers from disagreeing on what command is chosen,
despite f malicious computers—including leaders.

Malicious computers can keep a value from being chosen.

A malicious leader can do nothing.

A malicious computer can pretend it’s the leader and
keep starting new ballots, preventing the real leader’s
ballots from succeeding.

Castro-Liskov solution:

– Select leader by rotating through computers in a fixed order.

– Use timeouts to switch to next leader if command not chosen.

39



Handling Malicious Leaders

Adding proofs and the ok to vote for c messages prevents
good computers from disagreeing on what command is chosen,
despite f malicious computers—including leaders.

Malicious computers can keep a value from being chosen.

A malicious leader can do nothing.

A malicious computer can pretend it’s the leader and
keep starting new ballots, preventing the real leader’s
ballots from succeeding.

Castro-Liskov solution:

– Select leader by rotating through computers in a fixed order.

– Use timeouts to switch to next leader if command not chosen.

39



Handling Malicious Leaders

Adding proofs and the ok to vote for c messages prevents
good computers from disagreeing on what command is chosen,
despite f malicious computers—including leaders.

Malicious computers can keep a value from being chosen.

A malicious leader can do nothing.

A malicious computer can pretend it’s the leader and
keep starting new ballots, preventing the real leader’s
ballots from succeeding.

Castro-Liskov solution:

– Select leader by rotating through computers in a fixed order.

– Use timeouts to switch to next leader if command not chosen.

39



Handling Malicious Leaders

Adding proofs and the ok to vote for c messages prevents
good computers from disagreeing on what command is chosen,
despite f malicious computers—including leaders.

Malicious computers can keep a value from being chosen.

A malicious leader can do nothing.

A malicious computer can pretend it’s the leader and
keep starting new ballots, preventing the real leader’s
ballots from succeeding.

Castro-Liskov solution:

– Select leader by rotating through computers in a fixed order.

– Use timeouts to switch to next leader if command not chosen.

39



Handling Malicious Leaders

Adding proofs and the ok to vote for c messages prevents
good computers from disagreeing on what command is chosen,
despite f malicious computers—including leaders.

Malicious computers can keep a value from being chosen.

A malicious leader can do nothing.

A malicious computer can pretend it’s the leader and
keep starting new ballots, preventing the real leader’s
ballots from succeeding.

Castro-Liskov solution:

– Select leader by rotating through computers in a fixed order.

– Use timeouts to switch to next leader if command not chosen.

39



Another Approach

Synchronous algorithms to fly an airplane don’t need a leader.

They can’t run a business because they fail if messages are lost or
delivered too late.

To run a business, only need to choose a command when lucky.

Let “being lucky” mean messages are not lost or delivered late.

40



Another Approach

Synchronous algorithms to fly an airplane don’t need a leader.

They can’t run a business because they fail if messages are lost or
delivered too late.

To run a business, only need to choose a command when lucky.

Let “being lucky” mean messages are not lost or delivered late.

40



Another Approach

Synchronous algorithms to fly an airplane don’t need a leader.

They can’t run a business because they fail if messages are lost or
delivered too late.

To run a business, only need to choose a command when lucky.

Let “being lucky” mean messages are not lost or delivered late.

40



Another Approach

Synchronous algorithms to fly an airplane don’t need a leader.

They can’t run a business because they fail if messages are lost or
delivered too late.

To run a business, only need to choose a command when lucky.

Let “being lucky” mean messages are not lost or delivered late.

40



Another Approach

Synchronous algorithms to fly an airplane don’t need a leader.

They can’t run a business because they fail if messages are lost or
delivered too late.

To run a business, only need to choose a command when lucky.

Let “being lucky” mean messages are not lost or delivered late.

40



Use a synchronous algorithm to implement a single virtual leader.

When system is lucky, the algorithm works, the virtual leader is good,
and Byzantine Paxos chooses a command.

When system is unlucky, the virtual leader may do nothing or be
malicious, but this cannot cause disagreement.

Eventually, the system will be lucky, the virtual leader will be good,
and a command will be chosen.

41



Use a synchronous algorithm to implement a single virtual leader.

When system is lucky, the algorithm works, the virtual leader is good,
and Byzantine Paxos chooses a command.

When system is unlucky, the virtual leader may do nothing or be
malicious, but this cannot cause disagreement.

Eventually, the system will be lucky, the virtual leader will be good,
and a command will be chosen.

41



Use a synchronous algorithm to implement a single virtual leader.

When system is lucky, the algorithm works, the virtual leader is good,
and Byzantine Paxos chooses a command.

When system is unlucky, the virtual leader may do nothing or be
malicious, but this cannot cause disagreement.

Eventually, the system will be lucky, the virtual leader will be good,
and a command will be chosen.

41



Use a synchronous algorithm to implement a single virtual leader.

When system is lucky, the algorithm works, the virtual leader is good,
and Byzantine Paxos chooses a command.

When system is unlucky, the virtual leader may do nothing or be
malicious, but this cannot cause disagreement.

Eventually, the system will be lucky, the virtual leader will be good,
and a command will be chosen.

41



Use a synchronous algorithm to implement a single virtual leader.

When system is lucky, the algorithm works, the virtual leader is good,
and Byzantine Paxos chooses a command.

When system is unlucky, the virtual leader may do nothing or be
malicious, but this cannot cause disagreement.

Byzantine Paxos tolerates a malicious leader.

Eventually, the system will be lucky, the virtual leader will be good,
and a command will be chosen.

41



Use a synchronous algorithm to implement a single virtual leader.

When system is lucky, the algorithm works, the virtual leader is good,
and Byzantine Paxos chooses a command.

When system is unlucky, the virtual leader may do nothing or be
malicious, but this cannot cause disagreement.

Eventually, the system will be lucky, the virtual leader will be good,
and a command will be chosen.

41



Eliminating Digital Signatures

Digital signatures are used to send a proof.

They require too much computation for running some businesses.

I know two other methods of sending a proof.

I can describe them at the end if you’re interested.

41



Eliminating Digital Signatures

Digital signatures are used to send a proof.

They require too much computation for running some businesses.

I know two other methods of sending a proof.

I can describe them at the end if you’re interested.

41



Eliminating Digital Signatures

Digital signatures are used to send a proof.

They require too much computation for running some businesses.

I know two other methods of sending a proof.

I can describe them at the end if you’re interested.

41



Eliminating Digital Signatures

Digital signatures are used to send a proof.

They require too much computation for running some businesses.

I know two other methods of sending a proof.

I can describe them at the end if you’re interested.

41



What Good is Byzantine Paxos?

Protect against hackers taking over some machines in a data center?

Proposed by Castro and Liskov.

How do you prevent a hacker from taking over all the machines?

Need to use different operating systems on different computers.

A system run by different organizations that don’t trust each other?

A Napster-like service run on users’ computers?

How do you avoid choosing too many malicious users’ computers?

Is random choice from a large number of mostly non-malicious
users good enough?

43



What Good is Byzantine Paxos?

Protect against hackers taking over some machines in a data center?

Proposed by Castro and Liskov.

How do you prevent a hacker from taking over all the machines?

Need to use different operating systems on different computers.

A system run by different organizations that don’t trust each other?

A Napster-like service run on users’ computers?

How do you avoid choosing too many malicious users’ computers?

Is random choice from a large number of mostly non-malicious
users good enough?

43



What Good is Byzantine Paxos?

Protect against hackers taking over some machines in a data center?

Proposed by Castro and Liskov.

How do you prevent a hacker from taking over all the machines?

Need to use different operating systems on different computers.

A system run by different organizations that don’t trust each other?

A Napster-like service run on users’ computers?

How do you avoid choosing too many malicious users’ computers?

Is random choice from a large number of mostly non-malicious
users good enough?

43



What Good is Byzantine Paxos?

Protect against hackers taking over some machines in a data center?

Proposed by Castro and Liskov.

How do you prevent a hacker from taking over all the machines?

Need to use different operating systems on different computers.

A system run by different organizations that don’t trust each other?

A Napster-like service run on users’ computers?

How do you avoid choosing too many malicious users’ computers?

Is random choice from a large number of mostly non-malicious
users good enough?

43



What Good is Byzantine Paxos?

Protect against hackers taking over some machines in a data center?

Proposed by Castro and Liskov.

How do you prevent a hacker from taking over all the machines?

Need to use different operating systems on different computers.

A system run by different organizations that don’t trust each other?

A Napster-like service run on users’ computers?

How do you avoid choosing too many malicious users’ computers?

Is random choice from a large number of mostly non-malicious
users good enough?

43



What Good is Byzantine Paxos?

Protect against hackers taking over some machines in a data center?

Proposed by Castro and Liskov.

How do you prevent a hacker from taking over all the machines?

Need to use different operating systems on different computers.

A system run by different organizations that don’t trust each other?

A Napster-like service run on users’ computers?

How do you avoid choosing too many malicious users’ computers?

Is random choice from a large number of mostly non-malicious
users good enough?

43



What Good is Byzantine Paxos?

Protect against hackers taking over some machines in a data center?

Proposed by Castro and Liskov.

How do you prevent a hacker from taking over all the machines?

Need to use different operating systems on different computers.

A system run by different organizations that don’t trust each other?

A Napster-like service run on users’ computers?

How do you avoid choosing too many malicious users’ computers?

Is random choice from a large number of mostly non-malicious
users good enough?

43



What Good is Byzantine Paxos?

Protect against hackers taking over some machines in a data center?

Proposed by Castro and Liskov.

How do you prevent a hacker from taking over all the machines?

Need to use different operating systems on different computers.

A system run by different organizations that don’t trust each other?

A Napster-like service run on users’ computers?

How do you avoid choosing too many malicious users’ computers?

Is random choice from a large number of mostly non-malicious
users good enough?

43



What Good is Byzantine Paxos?

Protect against hackers taking over some machines in a data center?

Proposed by Castro and Liskov.

How do you prevent a hacker from taking over all the machines?

Need to use different operating systems on different computers.

A system run by different organizations that don’t trust each other?

A Napster-like service run on users’ computers?

How do you avoid choosing too many malicious users’ computers?

Is random choice from a large number of mostly non-malicious
users good enough?

43



I don’t know if anyone will ever run a Byzantine business.

Algorithms to do it may lead to new techniques for tolerating faults
and foiling hackers.

43



I don’t know if anyone will ever run a Byzantine business.

Algorithms to do it may lead to new techniques for tolerating faults
and foiling hackers.

43



I don’t know if anyone will ever run a Byzantine business.

Algorithms to do it may lead to new techniques for tolerating faults
and foiling hackers.

43



Thank you.

43



Addendum

Two Methods of
Eliminating Digital Signatures

44



Method 1 (Castro and Liskov)

How digital signatures are used.

Message M is signed by A.

B knows C will know M sent by A.

44



Method 1 (Castro and Liskov)

CB

A

How digital signatures are used.

Message M is signed by A.

B knows C will know M sent by A.

44



Method 1 (Castro and Liskov)

CB

A

M

J
J
J
J]

How digital signatures are used.

Message M is signed by A.

B knows C will know M sent by A.

44



Method 1 (Castro and Liskov)

CB

A

M

J
J
J
J]

M -

How digital signatures are used.

Message M is signed by A.

B knows C will know M sent by A.

44



Method 1 (Castro and Liskov)

Without digital signatures.

Message M unsigned.

B knows C will know M sent by A.

Assumes a computer knows the
immediate sender of a message.

45



Method 1 (Castro and Liskov)

CB

A

Without digital signatures.

Message M unsigned.

B knows C will know M sent by A.

Assumes a computer knows the
immediate sender of a message.

45



Method 1 (Castro and Liskov)

CB

A

M

J
J
J
J]

M








�

Without digital signatures.

Message M unsigned.

B knows C will know M sent by A.

Assumes a computer knows the
immediate sender of a message.

45



Method 1 (Castro and Liskov)

CB

A

M

J
J
J
J]

A sent M
�

M








�

Without digital signatures.

Message M unsigned.

B knows C will know M sent by A.

Assumes a computer knows the
immediate sender of a message.

45



Method 1 (Castro and Liskov)

CB

A

M

J
J
J
J]

M -

A sent M
�

M








�

Without digital signatures.

Message M unsigned.

B knows C will know M sent by A.

Assumes a computer knows the
immediate sender of a message.

45



Method 1 (Castro and Liskov)

CB

A

M

J
J
J
J]

M -

A sent M
�

M








�

Without digital signatures.

Message M unsigned.

B knows C will know M sent by A.

Assumes a computer knows the
immediate sender of a message.

45



Method 2 Vectors of Message Authenticators

A message authenticator MAB proves to B that A sent M .

Meaningless to any other computer.

Requires much less computation than a digital signature.

Let MA be the vector of authenticators 〈MAB , MAC , . . . 〉, one for
every other computer.

MA is not as good as a digitally signed message M .

It proves to B that A sent M , but B doesn’t know if it proves that to C

because A could be malicious and the MAC entry in the vector could
be garbage.

46



Method 2 Vectors of Message Authenticators

A message authenticator MAB proves to B that A sent M .

Meaningless to any other computer.

Requires much less computation than a digital signature.

Let MA be the vector of authenticators 〈MAB , MAC , . . . 〉, one for
every other computer.

MA is not as good as a digitally signed message M .

It proves to B that A sent M , but B doesn’t know if it proves that to C

because A could be malicious and the MAC entry in the vector could
be garbage.

46



Method 2 Vectors of Message Authenticators

A message authenticator MAB proves to B that A sent M .

Meaningless to any other computer.

Requires much less computation than a digital signature.

Let MA be the vector of authenticators 〈MAB , MAC , . . . 〉, one for
every other computer.

MA is not as good as a digitally signed message M .

It proves to B that A sent M , but B doesn’t know if it proves that to C

because A could be malicious and the MAC entry in the vector could
be garbage.

46



Method 2 Vectors of Message Authenticators

A message authenticator MAB proves to B that A sent M .

Meaningless to any other computer.

Requires much less computation than a digital signature.

Let MA be the vector of authenticators 〈MAB , MAC , . . . 〉, one for
every other computer.

MA is not as good as a digitally signed message M .

It proves to B that A sent M , but B doesn’t know if it proves that to C

because A could be malicious and the MAC entry in the vector could
be garbage.

46



Method 2 Vectors of Message Authenticators

A message authenticator MAB proves to B that A sent M .

Meaningless to any other computer.

Requires much less computation than a digital signature.

Let MA be the vector of authenticators 〈MAB , MAC , . . . 〉, one for
every other computer.

MA is not as good as a digitally signed message M .

It proves to B that A sent M , but B doesn’t know if it proves that to C

because A could be malicious and the MAC entry in the vector could
be garbage.

46



Method 2 Vectors of Message Authenticators

A message authenticator MAB proves to B that A sent M .

Meaningless to any other computer.

Requires much less computation than a digital signature.

Let MA be the vector of authenticators 〈MAB , MAC , . . . 〉, one for
every other computer.

MA is not as good as a digitally signed message M .

It proves to B that A sent M , but B doesn’t know if it proves that to C

because A could be malicious and the MAC entry in the vector could
be garbage.

46



Method 2 Vectors of Message Authenticators

A message authenticator MAB proves to B that A sent M .

Meaningless to any other computer.

Requires much less computation than a digital signature.

Let MA be the vector of authenticators 〈MAB , MAC , . . . 〉, one for
every other computer.

MA is not as good as a digitally signed message M .

It proves to B that A sent M , but B doesn’t know if it proves that to C

because A could be malicious and the MAC entry in the vector could
be garbage.

46



Method 2 Vectors of Message Authenticators

A message authenticator MAB proves to B that A sent M .

Meaningless to any other computer.

Requires much less computation than a digital signature.

Let MA be the vector of authenticators 〈MAB , MAC , . . . 〉, one for
every other computer.

MA is not as good as a digitally signed message M .

It proves to B that A sent M , but B doesn’t know if it proves that to C

because A could be malicious and the MAC entry in the vector could
be garbage.

46



But vectors of authenticators are good enough.

B knows C will know M sent by A

Because at most f of the Qi are malicious, so C will receive properly
authenticated messages from f + 1 computers saying A sent M , and
C knows that at least one of those computers must be good.

48



Q1 · · · Q2f+1

A

B C

Q
Q
QQk

�
�
��3

M M

(A sent M )Q1
�
�
��3

Q
Q
QQk (A sent M )Q2f+1

-
(A sent M )Q1 , . . . , (A sent M )Q2f+1

B knows C will know M sent by A

Because at most f of the Qi are malicious, so C will receive properly
authenticated messages from f + 1 computers saying A sent M , and
C knows that at least one of those computers must be good.

48



Q1 · · · Q2f+1

A

B C

Q
Q
QQk

�
�
��3

M M

(A sent M )Q1
�
�
��3

Q
Q
QQk (A sent M )Q2f+1

-
(A sent M )Q1 , . . . , (A sent M )Q2f+1

B knows C will know M sent by A

Because at most f of the Qi are malicious, so C will receive properly
authenticated messages from f + 1 computers saying A sent M , and
C knows that at least one of those computers must be good.

48



Q1 · · · Q2f+1

A

B C

Q
Q
QQk

�
�
��3

M M

(A sent M )Q1
�
�
��3

Q
Q
QQk (A sent M )Q2f+1

-
(A sent M )Q1 , . . . , (A sent M )Q2f+1

B knows C will know M sent by A

Because at most f of the Qi are malicious, so C will receive properly
authenticated messages from f + 1 computers saying A sent M , and
C knows that at least one of those computers must be good.

48



Q1 · · · Q2f+1

A

B C

Q
Q
QQk

�
�
��3

M M

(A sent M )Q1
�
�
��3

Q
Q
QQk (A sent M )Q2f+1

-
(A sent M )Q1 , . . . , (A sent M )Q2f+1

B knows C will know M sent by A

Because at most f of the Qi are malicious, so C will receive properly
authenticated messages from f + 1 computers saying A sent M , and
C knows that at least one of those computers must be good.

48



Q1 · · · Q2f+1

A

B C

Q
Q
QQk

�
�
��3

M M

(A sent M )Q1
�
�
��3

Q
Q
QQk (A sent M )Q2f+1

-
(A sent M )Q1 , . . . , (A sent M )Q2f+1

B knows C will know M sent by A

Because at most f of the Qi are malicious, so C will receive properly
authenticated messages from f + 1 computers saying A sent M , and
C knows that at least one of those computers must be good.

48



Q1 · · · Q2f+1

A

B C

Q
Q
QQk

�
�
��3

M M

(A sent M )Q1
�
�
��3

Q
Q
QQk (A sent M )Q2f+1

-
(A sent M )Q1 , . . . , (A sent M )Q2f+1

B knows C will know M sent by A

Because at most f of the Qi are malicious, so C will receive properly
authenticated messages from f + 1 computers saying A sent M , and
C knows that at least one of those computers must be good.

48



Q1 · · · Q2f+1

A

B C

Q
Q
QQk

�
�
��3

M M

(A sent M )Q1
�
�
��3

Q
Q
QQk (A sent M )Q2f+1

-
(A sent M )Q1 , . . . , (A sent M )Q2f+1

B knows C will know M sent by A

Because at most f of the Qi are malicious, so C will receive properly
authenticated messages from f + 1 computers saying A sent M , and
C knows that at least one of those computers must be good.

48



Q1 · · · Q2f+1

A

B C

Q
Q
QQk

�
�
��3

M M

(A sent M )Q1
�
�
��3

Q
Q
QQk (A sent M )Q2f+1

-
(A sent M )Q1 , . . . , (A sent M )Q2f+1

B knows C will know M sent by A

Because at most f of the Qi are malicious, so C will receive properly
authenticated messages from f + 1 computers saying A sent M , and
C knows that at least one of those computers must be good.

48


