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UK lifetime risk of

Cancer N Europe 20712 | getting cancer will
be 47% by 2020
» New cases: 3.45M, deaths: 1.75M (44% in 2012)

« Cases By 2020, 38% will

— Breast : 474,000 (deaths: 131,000) el o

— Colorectal: 447,000 (deaths: 215,000) cause (35% in
— Lung: 411,000 (deaths: 353,000) 2012)

Male cancers 2030

Female cancers 2030

Projections
2030

Stomach
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Colorectal
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Breast cancer incidence

A Estimated Breast Cancer Incidence Worldwide in 2008

272 400 640
Age-standardised incidence rates per 100,000 GLOBOCAN 2008,

« In developed countries, 1 in 8  In developing countries, including BRIC,
women will get breast cancer at numbers are rising rapidly, already 500,000
some point cases in 2008

e 23% of all cancers in women — « Reasons: increasing urbanisation, changes
projected to rise to 29% by 2030 in lifestyle

« Peak incidence is women over 60 * Impacting particularly on younger women

Early detection + chemo/radio/conservative surgery + risk analysis is transforming
morbidity




Mammography: Image Parameter Dependence




First technological capability:
need for quantitative analysis in mammography

Two of the UK’s most experienced breast
radiologists each examined the two
mammograms shown, to estimate the

percerg ey risk
factor COMPUTATIONAL IMAGING AND VISION

Intensity 340
RSMF 4.3cm

~ BK esfi® Mamm ted 40%
.Intensny 1728

SMF 43cm i BUt It I fichael Brady ged 2X

Image intensity relates to anatomy in a very comg tive

image analysis a hard problem.

Starting 1994, with Ralph Highnam, | have inventg 5 to this

problem:

h.:(X) — a quantitative representation of the i pixel x

the amount of non-fat (interesting) tissue at

 Volpara density — a fast, relative physics model developed by Matakina Ltd

* SMF = Standard Mammogram Form



First, a tiny bit of physics: Beer’'s Law

l Fluence | l Fluence |
attenuation 4 N,
attenuation 2, . attenuation 4, | h,
attenuation zz__| h,
Fluence [e- Fluence lg (4" #4(Mat))

Note that the exiting fluence is the same
irrespective of where, vertically, the block of
attenuation [, Is.

Mammography is fundamentally projective: though digital breast tomosynthesis is
changing that...
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Energy that reaches the imaging sensor:

A model of mammographic image formation
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Highnam & Brady’s h,,, model

The literature tells us* that you cannot distinguish stromal tissue and
tumours on the basis of their x-ray attenuations =» two kinds of tissue: fat
& “interesting”. If the compression between the plates is H cm, then at
any given pixel x, we have H =h. (x)+h_ (X)

Our job is to find hint (X) for every voxel x. We know H and the tube
parameters.

What can we find from the equation of photon fluence?:

max

E
E™(X) = (v, )AL, | NE(V,,£)G(£)D(e) exp = m exp ) d g

[ - )] T

We measure We know all this stuff Compression The bit we
this plates — we don’t know!
_ know that too

h:u(g) T hint:uint (‘9) + hfat:ufat (8)

— hint (ﬂint (8) — lLlfat (8)) + H lLlfat (g) * It may be wrong ©



Volume-based Density Measurement

Quantita_l_:,ivéi"" .

7

2cm, fibroglandular
—

4cm, fat

cm

Physics

Volume of "interesting" tissue
Volume of the breast

Volumetric Breast Density =

Patient Name Nametest 01
Patient ID 10
Patient DOB 01/01/2001
Accession # ]
Study Date 01/01/2010

Volume of Fibroglandular Tissue (cm® )
\_‘ Volume of Breast (cm®)

Volumetric Breast Density (%)




“Relative physics”

Highnam, Brady, Karssemeijer, and Yaffe

We have to know all those calibration parameters for
Highnam and Brady’s method to work. We can guess at
lots of them.. BUT

Suppose we knew a region of the breast that was entirely
fat... We could then use this as a “reference”

In( | /1
hd (X) _ N ( obs (X) fat )
Heat — Haense

We need accurate breast
inner/outer boundary
segmentation .... We use
phase congruency




Why Is Breast Density Important?

40% of women have dense breasts

Mammography is only 48% effective in dense breasts, compared to 98% in
fatty breasts
— This is why mammography gets criticised

Dense breasts are 4-6 more times to develop cancer than fatty breasts

Breast density is a more significant risk factor than having a mother and
sister with breast cancer

Cancer recurrence is four times more likely in women with dense breasts

35+ Years of research with very large number of published papers have
documented the importance and difficulty associated with classification of
breast density




Current Breast Density Classifications

BI-RADSE&: The American College of Radiology (ACR) has published a set of criteria which

radiologist's use to categorize their opinion of the absence or likelihood of disease. Within that

criteria is also a visually-assessed BI-RADS breast density category (an area-based breast density
assessment method). Those categories are:

Category 1 — The breast is almost entirely fat (<25% glandular).
Category 2 — There are scattered fibroglandular densities (approximately 25-50% glandular).

Category 3 — The breast tissue is heterogeneously dense, which could obscure detection of small

masses (approximately 51% — 75% glandular).

Category 4 — The breast tissue is extremely dense. This may lower the sensitivity of mammography
(=76% glandular).

These are commonly called the BI-RADS breast composition categories. Radiologists in the US
should record every woman's breast density using the BI-RADS scheme.



Volume-based Methods for Density Measurement

Volpara v1.5.8
Breast Density Assessment

Patient Name ewbcHRO75
Patient ID 075

Patient DOB 07/02/1941
Accession # 0001261930
Study Date 07/02/2009

Volume of Fibroglandular Tissue (cm3)
Volume of Breast (cm3)

Volumetric Breast Density (%)

Volpara Density Grade®

Sky
analogy

uvaA47588_20031022 VBD= 21

Approximately 2,000,000 mammograms processed over past 12 months



Volume-based Methods for Density Measurement

Volpara v1.5.8
Breast Density Assessment

Patient Name ewbcHRO65
Patient ID 065

Patient DOB 06/23/1944
Accession # 0001260803
Study Date 06/23/2009

Volume of Fibroglandular Tissue (cm3)
Volume of Breast (cm3)

| Volumetric Breast Densitz (%) |

Volpara Density Grade®

Sky
analogy

uvaA20514_20030107 VBD=6.7

Y

Approximately 2,000,000 mammograms processed over past 12 months volpa?a"




Volume-based Methods for Density Measurement

Volpara v1.5.8
Breast Density Assessment

Patient Name ewbcHROO3
Patient ID 003

Patient DOB 06/23/1960
Accession # 0001373639
Study Date 06/23/2010

Volume of Fibroglandular Tissue (cm3)
Volume of Breast (cm3)

uolumetric Breast Densitx !%!l

Volpara Density Grade®

analogy

uvaA23690_20030211 VBD=10.2

\
Approximately 2,000,000 mammograms processed over past 12 months volpara"



Volume-based methods for density measurement

Volpara v1.5.8
Breast Density Assessment

Patient Name ewbcHRO08
Patient ID 008

Patient DOB 06/23/1945
Accession # 0001248610
Study Date 06/23/2009

Volume of Fibroglandular Tissue (cm3)
Volume of Breast (cm3)
Volumetric Breast Density (%)
Volpara Density Grade®

uvaA23165_20030205 VBD= 30.6

\
Approximately 2,000,000 mammograms processed over past 12 months volpara’



vDG®E
Patient Name Nametest 01
Fatient 1D 10

Patient DOB 01/01/2001
Accession # 0
Study Date 01/01/2010

volpara®
density

Automated breast density™

Volume of Fibroglandular Tissue (cm?® )
\‘ Volume of Breast (cm®*)
Volumetric Breast Density (%)

1

Wipara T analytics
dm Imaging Dﬂffﬂrm\ayn{.‘Eme!rks‘ ’ ‘ ‘

Patient-specific dose and pressure

add-on to VolparaDensity
Population Report Patient Profile by Comparative Report
Mammography Unit




Woman has a
mammo

Volpara breast
density score
immediately
available

Patient stratification

Woman can decide
on supplementary
screening before
she leaves clinic.

Breast
ultrasound
%

Breast




Why do we need contrast agent?

No abnormal tissue visible




Contrast Agent Uptake Profiles

« Malignant to benign distinction is improved using concentration based analysis.

1.2} 1.2
(=
o
1t — 1}
; I MALIGNANT
z MALIGNANT —
o= —
8T C 08}
0 :
(&)
C
s BENIGN
ggﬁ - GN C o6}
4 o
— 1O O BENIGN
T 25
SAt 1 04}
C - NORMAL O ORMAL
D= O
) Leer 02t .
FAT
FAT
0 L 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

TIME (mins) TIME (mins)



Gradient Echo Signal Model

e Use Bloch equation to describe signal for a gradient echo
pulse sequence (for example)

. 1 TR/T
S=gpe =" sina

1—cosge /M

» Add effects of contrast agent (T, & T, alteration).

_TR[ L
—TE(%+ R,C; 1_¢ TR( T +R1Ctj

T2

]Sina

S(Ct): g€

%4— R]_Ct j

—TR(
1-cosce
TE, T,*,T, arefixed for any given voxel;

g, o depend on the particular machine, and are unknown
The only things we can varyare:«, TR
In practice, vary «



Measuring effect of chemotherapy

Pre- and post-chemotherapy
Percentage increase in intensity at right

Pre- and post-chemotherapy AT, at

(non-rié?(% registration and pre- and post-chemotherapy, from AT1

Armitage, Brady and Behrenbruch, Medical Image Analysis (2005)




Colorectal cancer dceMRI : motion

Original data

Dr. M. Bhushan, Profs. Schnabel, Jenkinson, Brady



Simultaneous estimation of motion
parameters and PK parameters

DCE image set

Estimate & correct
motion

v

7R
)

Estimate PK parameters
at each voxel

There are numerous ways in which this cycle can be developed

mathematically and implemented in an efficient algorithm. The simplest is

expectation-maximisation...though there are several others




Model-based Registration and Parameter Estimation
(MoRPE)

Input:  Baseline Initialize O (by curve-fits),
image + DCE- J and T (= 0), and generate
MRI scan the “predicted dataset’.

Evaluate: Cost Function =

~log(P(T.0)Y.X,.c)) <
Repeat until
convergence, Update
or for ¢ T and 0
iterations y
Minimize Cost Function wrt. PK

parameters 8 and motion parameters T.
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Output final deformation parameters
T and final PK parameters 0.

M Bhushan et al. MICCAI'11,ISMRM’'12



Motion correction of dceMRI volumes for
colorectal cancer

Original data Motion corrected



Signal intensity curves

—e— Before Registration
wl ====Ground Truth
—+— MoRPE
oS50
—a— MNCC

Time (xins) | Time (mins)

In this case, the signal change and motion were simulated. ( ----- )
The simultaneous algorithm: —4—

Two standard similarity criteria for deformable registration: —#

M Bhushan et al. MICCAI'11,ISMRM’'12



Motion correction: Differences in K,
distributions before & after therapy

NCC MoRPE
Non-responder Responder Non-responder Responder
1; 1f 1 1
5'3'3- 0.8/ E L 0.4
F= k5-Distance K5-Distance E K5-Distance K5-Distance
= -0.17 | 05 =0.19 5 % - 0.08 0.6 =032
D'l'li { LA S‘ df a4 il
&L, Before therapy Beforetherapy = Betore therapy Before therapy
' After therapy || After therapy “ After therapy | ™ After therapy |
T a1 or oF 11 T o 9E wF 1 I R B T v T a—
I{.[I AN K” T I':lir.lln lill:'i“':
No discrimination for non-responder/ Increase in perfusion for responder vs
responder case using conventional no change in non-responder case
normalised cross-correlation (NCC) using MoRPE (PK model-based
registration registration)

M Bhushan et al. MICCAI'11,ISMRM’'12



The importance of motion correction

Motion correction using our

Without Motion Correction algorithm
23k :
-‘ : -

E " * * L 3 " . . . - L] Ir::;lll_lill:l_l_
o * * - "
. * - ™ . - . . " . e " ) L] Carrection

* L]

.H:.lln-rt:w;ﬂder*:-. ..: o F‘alr'..na.l l;:.;ii;::ﬂld;r-:l b I: .l‘-ln\:-:n-rq.:~s|:\-t.:;m:|-;:~rs:h B F:.:rl;.;l I':;:.r:m;r:l !
Patients Patienis

discrimination between responders Statistically significant* discrimination
& non-responders is not possible between responders & non-
without motion correction responders

We use the Komogorov-Smirnov test, KS M Bhushan et al. MICCAI'11,ISMRM'12



What can currently cure cancer?

Professor Sir Mike Richards, NCRI 2011
Surgery , 49%

Radiotherapy, 40%

B Radiotherapy

Chemotherapy,
11%

B Chemotherapy

m Surgery

Can we define biological processes that regulate or are markers of the responsiveness of
tumours?

Can agents that target these processes be taken into the clinic to alter outcome?



Hanahan and Weinberg Hallmarks of Cancer

EGFR
inhibitors

Cyclin-dependent
kinase inhibitors

4

Sustaining Evading
Aerobic glycolysis proliferative growth Immune activating
inhibitors signaling SUppressors anti-CTLA4 mAb

Deregulating Avaiding

cellular immune
enargetics ) destruction
i i ce Wi e T ; replicative i

BH3 mimetics eeth __f:» w5 mmontallty Inhibitors

# o

Turmar-

Genome :

instability & % Ny promating

mutation

PARP Inducing Activating Selective anti-
inhibitors angiogenesis invasion & inflammatory drugs
matastasis

Inhibitors of
HGF/c-Met

Inhibitors of
VEGEF signaling




An early example

40-60% of patients with melanoma have
activating mutations of BRAF — a proto-
oncogene that makes a protein B-RAF, which is
involved in signalling in cells related to cell
growth

PLX4032 (Vemurafenib) is an inhibitor of BRAF
kinase

- Melanoma*

Growth
factor

Receptor (_;0_)25

P s I

RAS
@RAP) — [Vemuratenib)

;

@

_
'}:xgﬁ.{'_'ﬂen{;. 5

{ expression ™

> [ Proliferation, cell survival, angiogenesis|

Vemurafenib targets the RAS-
RAF1-MEK-ERK pathway

*Strictly: Chronic Mylogenous Leukaemia Nature Reviews | Drug Discovery



Image of a BRAF-mutant melanoma

Man, 38 years old with a BRAF- PET fluorodeoxyglucose (FDG) image

mutant melanoma



PET imaging shows the impact of Vemurafenib

Before and two weeks after initiating PLX4032



“This is one of the
best examples I've
ever seen of science
triumphing over
disease.” Brian
Druker

NOVARTIS NDC0078-0438-15

Gleevec®

(Imatinib mesylate)
Tablets

400 it Rx only

Each tablet contains 400 mg
of imatinib free base.

30 Tablets

0



...0r so they thought

Before treatment 15 weeks... 23 weeks...

Conclusion
....cancer is agile.. It rapidly learns to mutate to accommodate a new

This is a salutary lesson ... but it is not all such bad news....



A bit of biology....

Cancers don’t just develop as aberrant processes within a cell, rather by a
complex series of interactions with the cells in their neighbourhood, that
form the normal epithelia.

In normal tissue, these form the basement membrane

Tumour angiogenesis has many similarities to normal wound healing ...

nidogen
perlecan

WB‘I::?“E“

type IV collagen

plasma membrane gﬁ

integrin

Figure 13-5b The Biology of Cancer (2 Garland Science 2007)



N N A picture of wound
FJff“] healing....

TGF-1
PDGF

]

dermis iy ~ ( I
TGF-B1
Slooe / KGF PDGF TGF- B2
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VEGF !r"\l'_"\__ sincrcihada ,’{ damage to
[ \/"" pYag FGF-2 vasculature
neutrophil J I l
.\\ = ( exposure of )
w_FGF-2 fibroblast platelet plasma to tissue platelet
aggregation factor in degranulation
parenchyma
fat ‘
Figure 13-14 The Biclogy of Cancer (© Garland Science 2007) fnbrmogen fbrm PDGF TGF‘B
vascular
{ factors
clot r
macrophage fibroblast
recruitment recruitment

myofibroblast
] r formation I

Pathway model

matrix FGFs VEGF SDF 1/ wound
metalloproteinases CXCL12 contraction
{(MMPs) ‘
recruitment
H : f endothelial
liberation and o
activation of precurgoscells
growth factors \ angiogenesis
and cytokines
(bFGF, TGF-B1,

PDGEF, EGFs, IFN-vy) capillaries

Figure 13-10 The Biology of Cancer (© Garland Science 2007)

EPITHELIUM

epithelial cells

TGF-81, MMPs
from stroma

morph into
mesenchymal cells
(EMT)

l

move into wound
site and cover
wound

1

morph into
epithelial cells
(MET)

|

reconstruct
epithelium



Figure 13-34a The Biology of Cancer (© Garland Science 2

Another
rendition of
chaotic & leaky
neovasculature

Above, left:
normal; right
chaotic

(tumour is
black)




Imaging angiogenesis: many targets!

Extracellular

Matrix Proteins Proteinases
Vitronectin MMP2 and 9
Fibronectins TIMPs
Collagens uPA, tPA
Laminins

Fibrin
Thrombospondin

Adhesion
Molecules

Intearins
Cadherins
VCAM
Ig SF

Growth Factors

VEGF R1-3
PDGF/PDGFRs

guidance factors
FGF/FGFRs

e Angiopoietins
Neuropilin receptors Ephrins
Wnt
Signalling Notch/DLL
Molecules Semaphzggi{(;ollapsms
MAPK
R:‘Z{TS Transcription
cdc42 Fagli"fs
PKB s
COX-2 NFKE
PROX-1
FOX

Hox




Integrin targeting for angiogenesis

Integrins 'integrate’ signals from the extracellular matrix (ECM) to the intracellular
cytoskeleton in focal adhesions.

In particular, the integrin avB3 mediates the migration of endothelial cells through the
basement membrane during blood-vessel formation. It binds to peptides containing the
amino-acid sequence RGD*

A

1269 mm
B tumour-to-background ratio
g

6
4
2
0

18
il c(RGva fkg mouse

* Arginine-Glycine-Aspartic acid

18F-RGD PET-CT image of small renal
Courtesy Dr. Neel Patel, Oxford tumours



VEGF for inhibition of angiogenesis

Vascular Endothelial Growth Factors
VEGF A-D are signalling proteins

Cellular response through the tyrosine
kinase receptors (the VEGFR 1-3) on
the cell surface

Courtesy Dr. Neel Patel, Oxford

YEOEA

VEGF-E VEGF-D

VEGF-F

VEGFR2
VEGFR1 (FIk-1/KDR) ~ VEGFR3

(FIt-1) (Fit-4)

Developmental Vasculogenesis Angiogenesis  Lymphangiogenesis
Decoy receptor for VEGF



A range of related targets

Rapamycin (TSCHITSGQ)

(mn@[ [ we )

Bevacizumab]

1) l

[ (o) (o
S6K Angiogenesis

{ Protein translation @ PDGFRp
(cell growth/survival) —

J 1
{ Sorafenib J

Sunitinib
Pazupanib




Imaging Avastin bound to SPECT emitter 124]

F. 2y

&

CT fused with SPECT




Biodistribution of "In-bevacizumab

in FaDu xenograft bearing Balb/c nude mice BlOd |Str| butIOn &
Immunohistochemistry

Avastin Autoradiograph




(Liver) tumour shape pre-chemotherapy

resetview | @+

Eng Sci, Surgery, Radiology, Pathology, Clin Pharm, Mathematics, WIMM, GE Healthcare




Liver tumour shape post-chemotherapy, 9 months later

resetviem @ +

Eng Sci, Surgery, Radiology, Pathology, Clin Pharm, Mathematics, WIMM, GE Healthcare




pre-ablation, another 3 months later

Eng Sci, Surgery, Radiology, Pathology, Clin Pharm, Mathematics, WIMM, GE Healthcare



Tumour Growth Model

o Early tumour masses are often approximately spherical and
grow as spheres. Mathematical models treat this case.

* They can sprout additional spheres (this corresponds,
biologically, to clonal expansion)

* Heterogeneous tumours with multiple clonal centres may
demonstrate variations in response to therapy (i.e. resistant
clones)

» | Can we relate morphological changes, determined from
images, to underlying cancer growth processes?

recent examples from the Churchill The shape of the resected specimen

We conjecture that shape and shape changes encode the evolution, mutations, and
severity of a tumour

Olivier Noterdaeme, Dr. Matt Kelly, Mike Brady, and numerous clinicians



Tumour growth model

Clinical case from Churchill: growing metastatic colorectal (Dukes B) tumour

Spheroid fit after 9 Tumour shape after 3 9 month spheroids 9 month spheroids
months of more months centred on 12 month grown (red) and
chemotherapy shape static/shrunk (black)

The tumour growth model gives a plausible account of tumour morphology; but the key
question remains: do the successively sprouted clonal centres correspond to increasingly
severe mutations of the original tumour DNA?

More precisely, we conjecture that the genomes of samples within a spheroid will show minor
variation; but that the genomes of samples from different spheroids will have substantial
variation.

Noterdaeme, Kelly & Brady 2008



SamplelD  spheroid labelling yield [ug]

310 red 11.891

311 vellow 27.331

312 [forquoise 13.113

|:> 313 torquoise 9.001
316() magenta 24.346

317  magenta 24.91

318 blue 10.27

319 blue 9.729

DNA extraction (proteinase K
digestion & purification).

Nuffield Department of Clinical Laboratory Sciences

U

array Comparative Genomic Hybridization (aCGH),
NimbleGen, Iceland

3D model of tumour

385,000 probes of a sample 17.4mm X 13mm = 6270
base pairs analysed

LogH T/R)

This shows the amplification of each of the genes in each of
the chromosomes of the particular DNA sample — in this
P S O Y I 1 O A A MR case from the turquoise spheroid

(b) 312
Noterdaeme, Kelly & Brady 2008



LogZ2 intensity ratios as a function of chromosome position for 7 hybridisations.

Horizontal axis is chromosome number; vertical axis is log intensity ratio — higher
values show amplification of a particular chromosome = significant changes of the
DNA sequence in the genes that make up the chromosome.

312 and 313 are from the same
spheroid, and show similar
amplification of chromosomes 2, 7,
10

Log2(T/R)
Log2(T/R)

1 2 3 4 5 B8 7 8 9101121314 17 20 X 1.2 3.74 85 B 7 B 91011121314 17 -20 X

318, 319 are both from another
spheroid and show similar
amplification of chromosomes 7, 8,
10, 14, and 20

Log2(T/R)
Log2(TIR)

1 2 "3- 4 5 B 7 8 9101112134 17 20 X 1 2 34 5 B 7 B 91011121314 17 20 X

(f) 318 (g) 319

More importantly, note that the amplification pattern is different for the two
spheroids — this finding is repeated for all distinct spheroids.

We have linked developing tumour shape to increasing DNA mutations




So what?

Current clinical practice assesses tumour response to therapy using RECIST —
Response Evaluation Criteria in Solid Tumours.

Disease progression = increase by at least 20% in longest linear dimension

Disease response = decrease by at least 30% in longest linear dimension

Otherwise, disease is considered to be stable

9 month tumour shape 12 month tumour shape

According to RECIST,
stable disease

" - L According to our
model, the tumour has
—)> ot shown some response
(green) but there is

evidence of

aggressive growth in
a new spheroid
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