Peut-on anticiper le devenir d'une épidémie?

Simon Cauchemez Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur

Situation awareness and decision making during epidemics

- Epidemics :
 - Emerging or reemerging: SARS, pandemic influenza, Ebola, …
 - Seasonal or endemic: dengue, influenza...
- Key needs for evidence-based policy making:
 - Assess the epidemiological situation:
 - ✓ Now-casting vs forecasting.
 - Characterize the threat:
 - ✓Mechanisms of spread?
 - ✓ Transmission risk factors?
 - ✓ Impact of interventions?
 - Extrapolate / predict:
 - ✓ What should be expected?
 - ✓ What should be done?

Ebola – West Africa

Zika – the Americas

Dengue – World

Epidemic dynamics

Anticipating what may happen at different stages of the epidemic process

- At the stage of emergence
 - A novel swine influenza virus
- Once a known virus reaches a new location
 Dengue in Reunion Island
- _
- For viruses causing seasonal epidemics locally
 Influenza in France

Emerging Infectious Diseases

>330 EID events reported since 1940 across the world

[Jones et al, Nature 2008]

EIDs – What is the risk of a worldwide pandemic?

- Motivating example:
 - In 2011, emergence of a swine-origin triple reassortant influenza A(H3N2) variant (H3N2v) virus in the US with matrix gene from the H1N1pdm09 virus.
 - > 12 human cases (6 exposed to pigs, 6 human-to-human infections).
- Question:
 - Is it the start of a worldwide pandemic?

What underlying transmission dynamics?

Quantifying the transmissibility of an infectious disease

Reproduction number R - mean number of cases generated by a case.

A major self-sustaining epidemic can occur only if the reproduction number R is >1.

How to estimate *R* for zoonoses?

But chains of transmission are often imperfectly observed...

N=1

N=1

Inference from cluster size

Expected number of cases at different generations

Gen. 1	Gen. 2	Gen. 3	Gen. 4
1	R	R^2	R^3

Average cluster size= $1 + R + R^2 + R^3 + R^4 \dots$

Average cluster size=
$$\frac{1}{1-R}$$

R=1-Average cluster size

Relationship between the average cluster size and the reproduction number

Reproduction number

How to estimate *R* for zoonoses?

Problems selection bias incomplete outbreak investigations low detection rate

Probability *F* that first detected case was infected by reservoir

- From proportion, can estimate length of chain;
- From length of chain, can estimate the reproduction number.

Inferring R

Case detection rate 0.01%-1%

Overdispersion k 0.16 (SARS) 0.5 (Measles) 5 (Ebola)

R for H3N2v and for other variants

Will there be a large dengue epidemic in Réunion island in 2019?

- Contacted in March 2018 by Santé Publique France because atypically large epidemic of dengue in Réunion Island.
- Modelling support to inform Public Health response.

- Questions:
 - > What will happen during the austral winter? Will transmission persist?
 - ➤ What will happen in 2019?
- Challenges:
 - > No major dengue epidemic in the island since the 70s.
 - > But a lot of data documenting from other parts of the world.
 - Can we use these external data to train our models?

Compartmental models for epidemic processes

A set of ordinary differential equations

$$\begin{cases} \partial S / \partial t = -\beta . S . I \\ \partial I / \partial t = \beta . S . I - \gamma . I \\ \partial R / \partial t = \gamma . I \end{cases}$$

Modelling dengue epidemics in Réunion island

Transmission rate β modulated by climate variables

- Lambrechts et al (PNAS 2011):
 - laboratory entomological data for Ae. Aegypti,
 - how probability of DENV transmission varies with temperature
- Mordecai et al (Plos NTD 2017):
 - laboratory entomological data for Ae. Aegypti and Ae. Albopictus,
 - how mosquito lifecycle and probability of transmission affected by temperature for dengue, chikungunya, and zika viruses
- Perkins et al (Plos Curr. 2015):
 - epidemiological case data collected during chikungunya outbreaks in the Americas

Different scenarios reflecting existing uncertainties

Lambrecht Model describing the association between climate Mordecai and dengue transmission: Perkins Average Scenarios for climate: Cold Hot 2-3 weeks **Dengue generation interval:** Detection probability ρ – probability that a person 10-40% infected by dengue is detected by surveillance.

Detection probability ρ – why do we care?

Detection probability ρ – why do we care?

Most of the population has already been infected and is immunized.

A large proportion of the population is still susceptible to infection.

Assessment performed on 19th July 2018

Fitting the different models to latest available data with Markov chain Monte Carlo sampling.

Assessment performed on 19th July 2018

Important heterogeneity but in all scenarios:

- 1) Persistance.
- 2) Second peak larger than first one.

Estimates of the detection probability $\boldsymbol{\rho}$

- Early on, data appear to be uninformative – we considered scenarios where detection probability ρ=10-40%.
- From start of second peak, signal that the detection probability was around 10%.
- Lobbying during the epidemic to collect serological data to estimate ρ independently.

Performance of the models to predict the epidemic trajectory

10% 40%

Detection probability

- Major impact of assumption about detection probability.
- Since the end of 2018, best supported scenario was the one with a detection probability around 10-20%.

Communicating with Public Health officials and policy makers

- Very regular meetings with Public Health officials from Santé Publique France.
- 7 reports and 3 oral presentations for policy makers from the Ministry of Health and the local authorities from the island.

How were modelling results used?

- Hospital physicians:
 - > Anticipate hospitalizations for DENV.
 - > Enrollment activities in ongoing clinical trial.
- Agence Régionale de Santé (ARS), i.e. the local health agency:
 - Plan response activities and resources.
 - February and April 2019 reports used to organize the reinforcement of different civilian defense actors and to strengthen vector control measures.
- Prefecture, which coordinates all the activities to control arboviruses:
 - Make sure that appropriate resources (e.g. firefighters) would be available in Réunion at the peak of the epidemic.

Current level of immunity in the population (DENV2)

Risk of a third wave

Under assumption that 42% were immunized against DENV2

- No major 3rd wave expected if DENV2 remains the dominant serotype
- But possible if switch to DENV1.

Predicting influenza epidemics in France

Sentinelles network

- Surveillance network of ~1300 general practitioners (GPs) (2% of the total GPs)
- Data since 1984
- Weekly incidence of influenza-like illness

Forecasting challenges

Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

FluSight: Flu Forecasting

Español

Research teams compete to predict epidemics:

- Influenza
- Dengue
- Chikungunya
- Ebola

Forecasting targets

Different types of models

Mechanistic models

Calibration: Ensemble Kalman Filter, Adjusted Ensemble Kalman Filter, PMCMC, ...

Time-series models

E.g. SARIMA (Seasonal Auto-Regressive Integrated Moving Average model)

Statistical models

What is the best model? The Ensemble model

A weighted average of the predictions of the different models

20 different models used to predict influenza epidemics in France

Analysing 33 years of influenza surveillance

• 25 training seasons

- **2** 7 validation seasons
- I test season

Or Real-time predictions for coming season

Results for test season 2018/2019

Real-time use during 2019-2020 influenza season

Saison grippale 2019/2020

Prédictions du 23 octobre 2019 (mercredi de la semaine 43)

Le graphique ci-dessous montre les prédictions pour la saison grippale 2019-2020. Les données publiées à ce jour par le réseau Sentinelles sont représentées en noir. Les prédictions pour les 4 prochaines semaines sont représentées en bleu (médiane et écart inter-quartile). Les prédictions pour le pic (semaine et taille) sont représentées en orange (médiane et écart inter-quartile).

Il y a 34% de chances que le pic épidémique ait lieu en décembre et 30% en janvier.

Future improvements for influenza predictions

- Integration into decision making process and tools for Public Health planning.
- Regional versus national predictions.
- Information about circulating subtype.
- Accounting for antigenic distances between viruses.

Conclusions

- Epidemic forecasting is an expending field.
- Performance depends on nature of the transmission process and quality of available data.
- A lot more efforts required for it to be properly integrated into decision making process.

Acknowledgements

- Institut Pasteur (France): Alessio Andronico, Juliette Paireau, Q. ten Bosch, H. Salje.
- Santé Publique France: H. Noel, D. Levy Bruhl, D. Che, B. Coignard, H. de Valk, M.C. Pathy, Y. Lestrat, L. Menudier, P. Vilain.

Alessio Andronico INGÉNIEUR(E) DE RECHERCHE

Juliette Paireau POST-DOCTORANT(E)

Labex IBEID

How good are we at predicting epidemics?

Foot-and-mouth disease epidemic in the UK in 2001

- Modelling decisively guided the response of the authorities.
- Excellent data, good understanding of underlying transmission process.

Ebola epidemic in West Africa in 2014-2016

- In Sept 2014, CDC modellers predicted 1.4 million cases within 5 months if nothing changed.
- Good to mobilize the Public Health community and funders, but what about the science?

Institut Pasteur

Predictions rarely the most important insight for decision makers – Ebola [courtesy of N. Ferguson]

- 'How many Ebola cases will be imported to the UK/US?'
- 'What would the impact of border screening be?'
- 'How long should suspect cases be isolated?'
- 'How many cases will there be in 4 weeks time?'
- 'How many cases are being missed?'
- 'Why is the CFR different between the 3 countries?'
- 'What proportion of cases are being hospitalised?'
- 'How many beds will be needed to achieve control in SL?'
- 'Where are the current hot-spots?'
- 'Are women more at risk?'
- 'What are the risk factors for transmission?'
- 'What is the variation in CFR between hospitals?'

