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Motivation

Understanding swimming at microscopic scale

— For the design of micro-robots (medical applications)

@ Swimming micro-robot : ESPCI (2005)
@ Micromotor - Monash University (Australia 2008)
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Swimming problems

Definition: Ability to move on or under water with appropriate
movements leading to periodic shape changes (strokes) and
without external forces
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Swimming problems

Definition: Ability to move on or under water with appropriate
movements leading to periodic shape changes (strokes) and
without external forces

1st Problem: For a given deformable shape, is it possible to find
an internal force law which produces a periodic shape change
(a stroke) and a net displacement ?

2nd Problem: If it is possible to swim, how to swim the most
efficiently possible ?
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Navier-Stokes equations

p (% + (u-V)u) —vAu+Vp =T,
divu=0

become at low Re = 2% Stokes equations

—vAu+ Vp =f,
divu=0
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The scallop theorem

Obstruction:[Purcell]

At low Reynolds number, a reciprocal motion induces no net
displacement

(Movie: G. Blanchard, S. Calisti, S. Calvet, P. Fourment, C.

GluzaI R. LeblancI M. Quillas—Saavedrai
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Evidence of scallop theorem

(Movie: G. . Taylor)
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Example of swimming robot (Purcell)
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(1912 - 1997)
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Example of swimming robot (Purcell)
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Modelization

@ The state of the system is given by shape and position

@ Shapes ¢ are parameterized by a finite number of variables
é‘: (517'” 7§N)

@ Typically the position p = (¢, R) where ¢ € R%, R € SO(3)

F. Alouges



Modelization

@ The state of the system is given by shape and position
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The swimmer changes its shape = £(t) and pushes the
fluid...
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Modelization

@ The state of the system is given by shape and position

@ Shapes ¢ are parameterized by a finite number of variables
é‘: (517'” 7§N)

@ Typically the position p = (¢, R) where ¢ € R%, R € SO(3)
The swimmer changes its shape = £(t) and pushes the

fluid... which reacts (following Stokes equations) and moves
(and turns) the swimmer.
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Modelization

@ The state of the system is given by shape and position

@ Shapes ¢ are parameterized by a finite number of variables
é‘: (517'” 7§N)

@ Typically the position p = (¢, R) where ¢ € R%, R € SO(3)

The swimmer changes its shape = £(t) and pushes the
fluid... which reacts (following Stokes equations) and moves
(and turns) the swimmer.

@ How to compute c(t) and R(t) knowing &(t)?

@ Is it possible to find £(t) periodic such that ¢ and/or R is
not?
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Easiest example: Najafi et Golestanian (2001)

&1 &2

@ By changing & and &5, the spheres impose forces fi, o, f3
to the fluid f; + £ + f3 = 0 (self-propulsion)

@ 3 variables &1, &5, ¢ and only two control parameters
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The car parking problem

@ 2 controls (forward/backward motion + turn wheels to the
left/right )

@ Car position and orientation

@ 3 variables to control and only 2 controls...
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Linearity of Stokes equations

Self-propulsion
The total force applied to the fluid by the swimmer vanishes.
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Linearity of Stokes equations

Self-propulsion
The total force applied to the fluid by the swimmer vanishes.

Here, v = (¢ — &1, ¢, C+ &).
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Linearity of Stokes equations

Self-propulsion
The total force applied to the fluid by the swimmer vanishes.

Here, v = (¢ — &1, ¢, C+ &).
The total force is given by

Fo = A(E()e(t) + BE(D)E () + CE())éa(t) = 0
from which ¢ = V;(£)&; + Va(€)éa.
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Linearity of Stokes equations

Self-propulsion
The total force applied to the fluid by the swimmer vanishes.

Here, v = (¢ — &1, ¢, C+ &).
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Linearity of Stokes equations

Self-propulsion
The total force applied to the fluid by the swimmer vanishes.

Here, v = (¢ — &1, ¢, C+ &).
The total force is given by

Fe = AE)E) + BED)E (D) + CE())ea(t) = 0
from which ¢ = V;(£)&; + Va(€)éa.

gl & | =é 0 +& 1 =& F1(§)+&F2(8)
c Vi () Va(€)

@ Ateach point X = (&1, &2, €), the trajectory is tangent to the
plane generated by (F1(¢), F2(€))

@ The coordinates of X in this basis are (¢4, &)
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Holonomic and nonholonomic constraints

e

c = W(&, &)
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Holonomic constraint

e

c = W(&,6) ¢ = Vi(&)& + Va(6)éo
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Non holonomic constraints

Sy
ij ;Z
7 Tl
P == s
c = W(&, &) ¢ = Vi(9& + Va(9)&
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Non holonomic constraints

Sy
ij ;Z
7 Tl
P == s
c = W(&, &) ¢ = Vi(9& + Va(9)&

equivalentif V=V Wi.e. curl:V =0
or Lie(Fy, Fp) # RS
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The scallop theorem

The scallop has only one degree of freedom ¢

£ = alt)
¢ = V()

and ¢ = [* V(y)dy = W(¢)

If £ is periodic, so is c...
The constraint is always holonomic.
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A control theorem

Najafi and Golestanian’s 3-sphere system is globally
controllable

From any state (¢;, ¢;), one can reach any other state (¢, ¢f)
with a suitable law force (f;(t)); such that >, f;(t) = 0 (or
equivalently with suitable functions «;(t)).

F. Alouges



Other controllable systems:

3 controls, 3 first order Lie brackets

X1

4 controls, 6 first order Lie brackets
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Optimal swimming

|
Lighthill : Eff‘1(§) = C/ / f- v do dt for shape paths with
0 Joq(t)

fixed extremities (¢/, ¢') and (¢7, ¢f)
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Optimal swimming

|

Lighthill : Eff‘1(§) = C/ / f- v do dt for shape paths with
o a0t

fixed extremities (¢/, ¢') and (¢7, ¢f)

On 09, forces and velocities are linearly expressed in terms of

&
Eff (&) = C / Zg,, 1)&i(1)g(1) at

ij=1
G = (gj)) defines a metric on the tangent plane at (&, ¢)
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Optimal swimming

At (¢, ¢) the tangent space is only bidimensional (instead of
3-dimensional) on which there is a metric
— sub-Riemannian geometry

c
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X (Xg:¥0:Co) Space of shapes
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Optimal swimming

At (¢, ¢) the tangent space is only bidimensional (instead of
3-dimensional) on which there is a metric
— sub-Riemannian geometry

c

o
. y
1

X (X5:¥p:Cq) Space of shapes

Optimal strokes are optimal geodesics in a
sub-Riemannian space

sub-Riemannian geodesics solve a 2nd order ODE which
coefficients depend on ¢ = (&4, -+ ,¢én), through Stokes
equation
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Numerical computation of geodesic strokes

Numerical solution of Stokes problem
@ Finite elements (axisymmetric, FREEFEM)
@ BEM (axisymmetric and union of spheres)
@ C++, written using deal.IT library

Optimal strokes

@ shooting method

@ global minimization using Trilinos software
Movies done with POVRAY, BLENDER
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Comparison Between Square and Optimal Strokes
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Plane Swimmers

‘
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Space Swimmers - Translation

o & = E DA
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Future directions

@ Swimming in a bounded domain
@ Stochastic forcing
@ Advanced graphical tools (Blender)
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Plane Swimmer
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Link between both proble

PRL 103, 078101 (2009) PHYSICAL REVIEW LETTERS 14 ATIGUST 3008

Accumulation of Microswimmers near a Surface Mediated by Collision
and Rotational Brownian Motion

Guanglai Li and Jay X. Tang*
Physics Department, Brown University, Providence, Rhode Island 02912, USA
(Received 23 December 2008; published 12 August 2009)

In this Letter we propose a kinematic model to explain how collisions with a surface and rotational
Brownian motion give rise to accumulation of microswimmers near a surface. In this model, an elongated
microswimmer invariably travels parallel to the surface after hitting it from an oblique angle. It then
swims away from the surface, facilitated by rotational Brownian motion. Simulations based on this model
reproduce the density distributions measured for the small bacteria E. coli and Caulobacter crescentus, as
well as for the much larger bull spermatozoa swimming between two walls.

DOI: 10.1103/PhysRevLett.103.078101 PACS numbers: 47.63.Gd, 05.40.Jc, 87.17.Jj



