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OverviewOverview

� Minimal Paths, Fast Marching and Front Propagation

� Anistropic Fast Marching and Perceptual Grouping

� Anistropic Fast Marching and Vessel Segmentation

� Closed Contour segmentation as a set of minimal paths in 2D

� Geodesic meshing for 3D surface segmentation

� Fast Marching on surfaces: geodesic lines and Remeshing –
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� Fast Marching on surfaces: geodesic lines and Remeshing –
Isotropic, Adaptive, Anisotropic
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Paths of minimal energyPaths of minimal energy

Looking for a path along 
which   a feature Potential which   a feature Potential 
P(x,y) is minimal 

example: a vessel
dark structure
P =gray level

Input : Start point p0=(x0,y0)
p1
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End point  p1 =(x,y)

Image

Output: Minimal Path
p0



Paths of minimal energyPaths of minimal energy

Looking for a path along 
which   a feature Potential 

p1
which   a feature Potential 
P(x,y) is minimal 

example: cardiac ventricle
contour
P =gradient based

Input : Start point p0=(x0,y0)
p0

p1
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End point  p1 =(x,y)

Image

Output: Minimal Path

p0



Minimal Paths: Eikonal EquationMinimal Paths: Eikonal Equation

Potential P>0  takes lower values near interesting features : Potential P>0  takes lower values near interesting features : 
on contours, dark structures, ...on contours, dark structures, ...

∫=
L

dssCPCE
0

))(()(

STEP 1 : search for the surface of minimal action STEP 1 : search for the surface of minimal action UU of of p0p0as the minimal energy as the minimal energy 
integrated along a path between  start point integrated along a path between  start point p0p0and any point and any point pp in the imagein the image

on contours, dark structures, ...on contours, dark structures, ...

∫
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pLCpCpLCpC
p dssCPCEpU
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;0)0(point   Start  pC =
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STEP 2: Back-propagation from the end point p1 to the start point p0: 

Simple Gradient Descent along 0 pU



Minimal Paths: Eikonal EquationMinimal Paths: Eikonal Equation

STEP STEP 1 1 : minimal action : minimal action UU of of pp00as the minimal energy integrated along a path as the minimal energy integrated along a path 
between  start point between  start point pp00and any point and any point pp in the imagein the image

;0)0(point   Start  pC =

Solution of Solution of EikonalEikonal equation: equation: 

∫
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L

pLCpCpLCpC
p dssCPCEpU

0
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Example P=Example P=11, U Euclidean distance to p, U Euclidean distance to p00



Minimal Paths: Eikonal EquationMinimal Paths: Eikonal Equation

STEP 2: Back-propagation from the end point p2 to the start point p1: 

∫=
L

dssCPCE
0

))(()(

Simple Gradient Descent along

Theorem 1: (Euler Lagrange of E) Any curve C which is a local minimum of energy
E is asolutionof

1 pU
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E is asolutionof



Minimal Paths: Eikonal EquationMinimal Paths: Eikonal Equation
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FAST MARCHING in FAST MARCHING in 22DD: : 
very efficient algorithm O(NlogN) for very efficient algorithm O(NlogN) for Eikonal EquationEikonal Equation

Numerical approximation of U(xij) as the solution to the discretized problem with Numerical approximation of U(xij) as the solution to the discretized problem with 
uupwind finite difference schemepwind finite difference scheme

Introduced by Introduced by SethianSethian / / TsistsiklisTsistsiklis

PU
~

 =∇

This 2nd order equation induces that :This 2nd order equation induces that :
action U at {i,j} depends only of the neighbors that have lower actions.action U at {i,j} depends only of the neighbors that have lower actions.

Fast marching introduces order in the selection of the grid points for solving this Fast marching introduces order in the selection of the grid points for solving this 
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Level sets of U can be seen as a Front propagation outwards. Level sets of U can be seen as a Front propagation outwards. 

Fast marching introduces order in the selection of the grid points for solving this Fast marching introduces order in the selection of the grid points for solving this 
numerical scheme.numerical scheme.

Starting from the initial point p0 with U = 0,Starting from the initial point p0 with U = 0,
the action computed at each point visited can only grow. the action computed at each point visited can only grow. 



Initialization

Fast Marching Algorithm Fast Marching Algorithm 
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J. A. Sethian
A fast marching level set method for monotonically advancing fronts. 
P.N.A.S., 93:1591-1595, 1996.

minimal actionpotential Far        Trial       Alive



22

Itération #1
● Find point xmin (Trial point with smallest value of     ).
● xmin becomes Alive.

● For each of 4 neighbors x of point xmin :
If x is not Alive,

Estimate                 with upwind scheme.

Fast Marching Algorithm Fast Marching Algorithm 

Estimate                 with upwind scheme.

x becomes Trial.
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minimal actionpotential Far        Trial       Alive

J. A. Sethian
A fast marching level set method for monotonically advancing fronts. 
P.N.A.S., 93:1591-1595, 1996.



Itération #2
● Find point xmin (Trial point with smallest value of     ).
● xmin becomes Alive.

● For each of 4 neighbors x of point xmin :
If x is not Alive,

Estimate                 with upwind scheme.

Fast Marching Algorithm Fast Marching Algorithm 

Estimate                 with upwind scheme.

x becomes Trial.
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J. A. Sethian
A fast marching level set method for monotonically advancing fronts. 
P.N.A.S., 93:1591-1595, 1996.

minimal actionpotential Far        Trial       Alive



Itération #k
● Find point xmin (Trial point with smallest value of     ).
● xmin becomes Alive.

● For each of 4 neighbors x of point xmin :
If x is not Alive,

Estimate                 with upwind scheme.

Fast Marching Algorithm Fast Marching Algorithm 

Estimate                 with upwind scheme.

x becomes Trial.
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J. A. Sethian
A fast marching level set method for monotonically advancing fronts. 
P.N.A.S., 93:1591-1595, 1996.

minimal actionpotential Far        Trial       Alive
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Minimal Path between p1 and p2Minimal Path between p1 and p2
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Minimal Path between p1 and p2Minimal Path between p1 and p2
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L. D. Cohen, R. Kimmel
Global minimum for active contour models : a minimal path approach.
International Journal of Computer Vision, 25:57-78, 1997.

potentiel



Minimal  action                               solution of Eikonal equation :

Minimal Path between pMinimal Path between p1 1 and pand p22
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L. D. Cohen, R. Kimmel
Global minimum for active contour models : a minimal path approach.
International Journal of Computer Vision, 25:57-78, 1997.

minimal action



Minimal Path between p1 and p2Minimal Path between p1 and p2
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L. D. Cohen, R. Kimmel
Global minimum for active contour models : a minimal path approach.
International Journal of Computer Vision, 25:57-78, 1997.

minimal action



minimal path

Minimal Path between p1 and p2Minimal Path between p1 and p2

Is obtained by solving ODE:

simple gradient descent on�
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L. D. Cohen, R. Kimmel
Global minimum for active contour models : a minimal path approach.
International Journal of Computer Vision, 25:57-78, 1997.

simple gradient descent on

from p2 to p1

�

minimal action



Step #1

Minimal Path between p1 and p2Minimal Path between p1 and p2

Etape #2
Descente de gradient sur       pour 
extraire le chemin minimal 
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Step #1

Minimal Path between pMinimal Path between p1 1 and pand p22

Etape #2
Descente de gradient sur       pour 
extraire le chemin minimal 
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Step #1

Minimal Path between p1 and p2Minimal Path between p1 and p2

Step #2
gradient descent on            for 
extraction of minimal path

29/01/2009 21:20 Laurent COHEN, Collège de France, 2009 32minimal action



Step #1

Minimal Path between p1 and p2Minimal Path between p1 and p2

Step #2
gradient descent on               for 
extraction of minimal path
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Step #1

Minimal Minimal PathPath betweenbetween p1 and p2p1 and p2

Step #2
gradient descent on                 for 
extraction of minimal path
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� Energy to minimize

( )∫=
L

dttPE
0
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Minimal Minimal pathspaths for 2D segmentationfor 2D segmentation

²)(.1

1
:

XI
XP

σα ∇+
→Ω∈

29/01/2009 21:20 Laurent COHEN, Collège de France, 2009 38



Minimal paths for Minimal paths for 22D segmentationD segmentation
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Minimal Minimal pathspaths for for 22D segmentationD segmentation
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Minimal PathsMinimal Paths

Simultaneous propagation of two fronts until a shock occurs.

meeting point
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Reference: 
T. Deschamps and L. D. Cohen
Minimal paths in 3D images and application to virtual endoscopy.
Proceedings ECCV’00, Dublin, Ireland, 2000.



Examples of Examples of 33D Minimal PathsD Minimal Paths
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Colon Colon 33D CTD CT Trachea 3D CTTrachea 3D CT



OverviewOverview

� Minimal Paths, Fast Marching and Front Propagation

� Anistropic Fast Marching and Perceptual Grouping

� Anistropic Fast Marching and Vessel Segmentation

� Closed Contour segmentation as a set of minimal paths in 2D

� Geodesic meshing for 3D surface segmentation

� Fast Marching on surfaces: geodesic lines and Remeshing –
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� Fast Marching on surfaces: geodesic lines and Remeshing –
Isotropic, Adaptive, Anisotropic



Riemannian Manifolds, Anisotropy and Riemannian Manifolds, Anisotropy and 
Geodesic DistancesGeodesic Distances
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Anisotropy and Anisotropy and EikonalEikonal EquationEquation
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Anisotropy and GeodesicsAnisotropy and Geodesics
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Anisotropy and GeodesicsAnisotropy and Geodesics
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Anisotropic Voronoi SegmentationAnisotropic Voronoi Segmentation
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PerceptualPerceptual GroupingGrouping usingusing Minimal Minimal PathsPaths

The potential is an incomplete ellipse and 7 points are given.
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Reference: 
L. D. Cohen
Multiple Contour Finding and Perceptual Grouping using Minimal Paths.
Journal of Mathematical Imaging and Vision, 14:225-236, 2001.



Perceptual Grouping using Minimal PathsPerceptual Grouping using Minimal Paths
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Reference: 
L. D. Cohen
Multiple Contour Finding and Perceptual Grouping using Minimal Paths.
Journal of Mathematical Imaging and Vision, 14:225-236, 2001.



PerceptualPerceptual GroupingGrouping usingusing Minimal Minimal PathsPaths
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Using the orientation with anisotropic geodesicsUsing the orientation with anisotropic geodesics

PerceptualPerceptual GroupingGrouping usingusing Minimal Minimal PathsPaths
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OverviewOverview
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� Fast Marching on surfaces: geodesic lines and Remeshing –
Isotropic, Adaptive, Anisotropic



3D Minimal 3D Minimal PathsPaths for for tubulartubular shapesshapes in 2Din 2D

22D in space , D in space , 11D for radius of vesselD for radius of vessel
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33D Minimal D Minimal PathsPaths for for tubulartubular shapesshapes in in 22DD
MotivationMotivation



Orientation dependent EnergyOrientation dependent Energy
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33D Minimal D Minimal PathPath for for tubulartubular shapesshapes in in 22DD

22D in space , D in space , 11D for radius of vesselD for radius of vessel
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Examples of Examples of 33D Minimal PathsD Minimal Paths
for tubular shapes in for tubular shapes in 22DD
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Examples of 3D Minimal PathsExamples of 3D Minimal Paths
for tubular shapes in 2Dfor tubular shapes in 2D
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ExamplesExamples of of 33D Minimal D Minimal PathsPaths
for for tubulartubular shapesshapes in in 22DD
2D in space , 1D for radius of vessel2D in space , 1D for radius of vessel
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Examples of 3D Minimal PathsExamples of 3D Minimal Paths
for tubular shapes in 2Dfor tubular shapes in 2D
22D in space , D in space , 11D for radius of vesselD for radius of vessel
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Examples of 3D Minimal PathsExamples of 3D Minimal Paths
for tubular shapes in 2Dfor tubular shapes in 2D
2D in space , 1D for radius of vessel2D in space , 1D for radius of vessel

29/01/2009 21:20 Laurent COHEN, Collège de France, 2009 83



Examples of Examples of 44D Minimal PathsD Minimal Paths
for tubular shapes in for tubular shapes in 33DD
22D in space , D in space , 11D for radius of vesselD for radius of vessel
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Examples of Examples of 44D Minimal PathsD Minimal Paths
for tubular shapes in for tubular shapes in 33DD
3D in space , 1D for radius of vessel3D in space , 1D for radius of vessel
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Examples of 4D Minimal PathsExamples of 4D Minimal Paths
for tubular shapes in 3Dfor tubular shapes in 3D
3D in space , 1D for radius of vessel3D in space , 1D for radius of vessel
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OverviewOverview

� Minimal Paths, Fast Marching and Front Propagation

� Anistropic Fast Marching and Perceptual Grouping

� Anistropic Fast Marching and Vessel Segmentation
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� Geodesic meshing for 3D surface segmentation

� Fast Marching on surfaces: geodesic lines and Remeshing –
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� Fast Marching on surfaces: geodesic lines and Remeshing –
Isotropic, Adaptive, Anisotropic



Finding a closed contour by growing Finding a closed contour by growing 
minimal paths and adding keypointsminimal paths and adding keypoints
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Finding a closed contour by growing Finding a closed contour by growing 
minimal paths and adding keypointsminimal paths and adding keypoints
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Finding a closed contour by growing Finding a closed contour by growing 
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Finding a closed contour by growing Finding a closed contour by growing 
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Finding a closed contour by growing Finding a closed contour by growing 
minimal paths and adding keypointsminimal paths and adding keypoints
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Finding a closed contour by growing Finding a closed contour by growing 
minimal paths and adding keypointsminimal paths and adding keypoints

29/01/2009 21:20 Laurent COHEN, Collège de France, 2009 94



Finding a closed contour by growing Finding a closed contour by growing 
minimal paths and adding keypointsminimal paths and adding keypoints
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Finding a closed contour by growing Finding a closed contour by growing 
minimal paths and adding keypointsminimal paths and adding keypoints
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The propagation
must be stopped as

Adding keypoints: Stopping criterionAdding keypoints: Stopping criterion

must be stopped as
soon as the domain
visited by the fronts
has the same
topology as a ring.

29/01/2009 21:20 Laurent COHEN, Collège de France, 2009 97



Finding a closed contour by growing Finding a closed contour by growing 
minimal paths and adding keypointsminimal paths and adding keypoints
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Finding a closed contour by growing Finding a closed contour by growing 
minimal paths and adding keypointsminimal paths and adding keypoints

29/01/2009 21:20 Laurent COHEN, Collège de France, 2009 103



Finding a closed contour by Finding a closed contour by 
growing minimal pathsgrowing minimal paths
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Finding a closed contour by Finding a closed contour by 
growing minimal pathsgrowing minimal paths
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Finding a contour between two pointsFinding a contour between two points
by growing minimal paths by growing minimal paths 
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Finding a contour between two pointsFinding a contour between two points
by growing minimal paths by growing minimal paths 
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Extension to 3D vessel segmentationExtension to 3D vessel segmentation

Example of results of the Example of results of the 
keypoints method in a 3D imagekeypoints method in a 3D image

of Pulmonary Arteriesof Pulmonary Arteries
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OverviewOverview

� Minimal Paths, Fast Marching and Front Propagation

� Anistropic Fast Marching and Perceptual Grouping

� Anistropic Fast Marching and Vessel Segmentation

� Closed Contour segmentation as a set of minimal paths in 2D

� Geodesic meshing for 3D surface segmentation

� Fast Marching on surfaces: geodesic lines and Remeshing –
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� Fast Marching on surfaces: geodesic lines and Remeshing –
Isotropic, Adaptive, Anisotropic



33D extension: Finding a closed surface by D extension: Finding a closed surface by 
growing minimal paths.growing minimal paths.

Result is a Geodesic MeshResult is a Geodesic Mesh
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3D extension: Finding a closed surface by 3D extension: Finding a closed surface by 
growing minimal paths.growing minimal paths.

Result is a Geodesic MeshResult is a Geodesic Mesh

� Mesh is completed to a surface using a � Mesh is completed to a surface using a 
Transport equation
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� Mesh is completed to a surface using a 
Transport equation

� Example for a 2D image.
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� Example for a 3D sphere: geodesic mesh
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� Example for a 3D sphere: geodesic mesh

� Mesh completed to a surface by Transport
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� Example for a 3D real image: geodesic mesh
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� Example for a 3D real image: geodesic mesh

� Mesh completed to a surface by Transport
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� Input:
1. 3D image.
2. Two closed curves (C1,C2) drawn 

by expert on two slices.

Fast Constrained Surface Extraction by Minimal Paths

by expert on two slices.

C C

� Goal:

• Fast algorithm to obtain a surface 
lying on the two curves and 
segmenting the object of interest.
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1C 2C



Potential (P)

Solution proposed

From a potential (P) describing the image 
features 

�We create a network of paths         linking2CS�We create a network of paths         linking
the given curves C1 and C2 and globally
minimizing

�We interpolate them in order to generate 
the segmenting surface.

Network of Minimal Paths

∫=
C

dsCPCE )()(

2

1

C
CS
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Interpolated Surface

the segmenting surface.

�If further precision is needed an active 
model can be used to refine the 
segmentation.

Refinement with Level Sets
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Construction of Ψ Ψ Ψ Ψ when ΓΓΓΓ1 and ΓΓΓΓ2 are planar (usual case for applications).
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PathPath network : network : implicitimplicit approachapproach as as zerozero levellevel set of solution of a transport set of solution of a transport equationequation

By choosing  H(Ψ) = α.Ψ,  we have to 
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By choosing  H(Ψ) = α.Ψ,  we have to 
solve this problem:
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� Etape 2: Resolution of transport equation

� Step 1: numerical Resolution of eikonal  equation by :
• Fast Marching, Group Marching, Fast Sweeping

PU =∇ Γ1

• By iterative approach

• By Fast Sweepingapproach.

• By Fast Marchingapproach.

� Etape 2: Resolution of transport equation

( ) ( )






Γ=Ψ

=Ψ+∇Ψ∇ Γ

2on      0

0.,
1

αpUp
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� Step 3: Detection of zero level set 

• by Marching Cube, Marching 
Tetrahedra…



( ) ( ) 0  ,,
1

=Ψ+∇Ψ∇Ω∈∀ Γ αpUpp

( ) 01
2

−Ψ⊂Γ

domain image on satisfies :s Hypothesi  Ψ

ExamplesExamples of of pathpath network : network : implicitimplicit approachapproach as as zerozero levellevel set of a transport set of a transport equationequation
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OverviewOverview

� Minimal Paths, Fast Marching and Front Propagation

� Anistropic Fast Marching and Perceptual Grouping

� Anistropic Fast Marching and Vessel Segmentation

� Closed Contour segmentation as a set of minimal paths in 2D

� Geodesic meshing for 3D surface segmentation

� Fast Marching on surfaces: geodesic lines and Remeshing –
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� Fast Marching on surfaces: geodesic lines and Remeshing –
Isotropic, Adaptive, Anisotropic



Front Propagation on a surface from one point.Front Propagation on a surface from one point.

Fast Marching on a surface and RemeshingFast Marching on a surface and Remeshing
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Fast Marching on a surfaceFast Marching on a surface
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Geodesic lines on a surfaceGeodesic lines on a surface
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Example of VoronoiExample of Voronoi
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Sampling with uniform distributionSampling with uniform distribution
Choose first Choose first 

point anywherepoint anywhere
update the update the 

geodesic distancegeodesic distance
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choose the choose the 

furthest pointfurthest point

The two new The two new 

furthest pointsfurthest points



Sampling with uniform distributionSampling with uniform distribution
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Sampling on a planeSampling on a plane
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Uniform RemeshingUniform Remeshing
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Non constant speed functionNon constant speed function
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High High 

SpeedSpeed

Low Low 

speed speed 

A little  A little  

later …later …



Farthest Point SamplingFarthest Point Sampling
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Farthest Point TriangulationFarthest Point Triangulation
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Adaptive RemeshingAdaptive Remeshing
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Density Given by a TextureDensity Given by a Texture
� A texture: 
� Adaptive speed :

RI]1,0[S : T 2 →→ Iϕ

( )))()((grad/1)(/1 vIvPF ϕε +== ( )
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Examples of RemeshingExamples of Remeshing
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Original Original 

meshmesh

UniformUniform CurvatureCurvature

adaptedadapted



Examples of Anisotropic MeshingExamples of Anisotropic Meshing
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Isotropic vs.  Anisotropic Isotropic vs.  Anisotropic 
MeshingMeshing
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Anisotropic MeshingAnisotropic Meshing
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Anisotropic MeshingAnisotropic Meshing
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Thank you !Thank you !
Cohen@ceremade.dauphine.fr

Publications Publications on on youryour screenscreen: : 

www.ceremade.dauphine.fr/~cohen

29/01/2009 21:20 Laurent COHEN, Collège de France, 2009 192

www.ceremade.dauphine.fr/~cohen



Publications Publications on on youryour screenscreen: : 

www.ceremade.dauphine.fr/~cohen
Global minimum for active contour models: A minimal path approach Laurent D. Cohen and R.~Kimmel. in 
International Journal of Computer Vision, August 1997.
Minimal Paths and Fast Marching Methods for Image Analysis. , Laurent~D. Cohen, In Mathematical 
Models in Computer Vision: The Handbook, Nikos Paragios and Yunmei Chen and Olivier Faugeras Editors, 
Springer 2005. 
Fast Constrained Surface Extraction by Minimal Paths. , Roberto Ardonand Laurent D. Cohen. International Fast Constrained Surface Extraction by Minimal Paths. , Roberto Ardonand Laurent D. Cohen. International 
Journal on Computer Vision, Special Issue on Variational and Level Set Methods in Computer Vision (VLSM 
2003), 69(1):127--136, August 2006. 
Geodesic Remeshing Using Front Propagation. , Gabriel Peyre and Laurent D. Cohen. International Journal 
on Computer Vision, Special Issue on Variational and Level Set Methods in Computer Vision (VLSM 2003), 
69(1):145--156, August 2006. 
A new implicit method for surface segmentation by minimal paths in {3D} images. , Roberto Ardon, Laurent 
D. Cohen and Anthony Yezzi. Applied Mathematics and Optimization, 55(2):127-144, March 2007. 
Anisotropic Geodesics for Perceptual Grouping and Domain Meshing. Sebastien Bougleux and Gabriel 
Peyr\'e and Laurent D. Cohen. Proc. tenth European Conference on Computer Vision (ECCV'08)}, Marseille, 
France, October 12-18, 2008.
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France, October 12-18, 2008.
Finding a Closed Boundary by Growing Minimal Paths from a Single Point on 2D or 3D Images. Fethallah
Benmansour and Laurent D. Cohen. Journal of Mathematical Imaging and Vision. To appear, 2009.
Geodesic Methods for Shape and Surface Processing, Gabriel Peyre and Laurent D. Cohen in Advances in 
Computational Vision and Medical Image Processing: Methods and Applications, Springer, 2009.
Tubular anisotropy for 3D vessels segmentation. Fethallah Benmansour and Laurent D. Cohen. Preprint, 
2009. 
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