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Introduction

Sharp and diffuse interfaces in
solids




Atomistically sharp interfaces for

cubic to tetragonal transformation
In NIMn

Baele, van Tenderloo, Amelinckx
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Diffuse (smooth)
Interfaces In

Manolikas, van Tendeloo,
Amelinckx



Diffuse interface in perovskite (courtesy Ekhard Salje)



Energy minimization problem
for single crystal

Minimize I,(y) = /Q b(Dy(z), 0) dx

subject to suitable boundary conditions, for
example

Yoo, = U

0 = temperature,
v = Y(A,0) = free-energy density of crystal,

defined for A € M_3|_><3’ where

MZ*3 = {A € M>*3:det A > 0}.



Frame-indifference requires

Y(RA,0) = ¢Y(A,0) for all R e SO(3).

If the material has cubic symmetry then also

W(AQ,0) = (A, 0) for all Q € P°4

where P24 is the group of rotations of a cube.



Energy-well structure

K(0)—={Aec ﬂffff_}{:j that minimize (A, 0)}

austenite
Assume /

a(0)SO(3) 0 > 6
K(9) =< SOB)UUNY;SOB)U;(0:) 0 =6,
Uiz1 SO(3)U;(0) 0 < O,

a(f.) =1 \
martensite

Assuming the austenite has cubic symmetry,
and given the transformation strain U4 say, the
N variants U; are the distinct matrices QU1 Q'
where Q € P24,



Cubic to tetragonal (e.g. NigAl3e)

"

U, = diag (n2,m1,71)
Uy = diag (n1,12,11)
Us = diag (n1,01,72)




Exchange of
stability

Can assume min 4 ¢(A, ) = 0 for all 4.

1 U6 Ua(8)  Us(d,)

i< 8.



Hadamard jump condition

N

Dyfa)=A

y piecewise C

Dy (o) =8

A—B=c® N



Interfaces correspond to pairs of matrices A, B
with A— B =a ® N, where N is the interface
normal. At minimum energy A, B € K(0).

There are no rank-one connections between
matrices A, B in the same energy well. The
rank-one connections between matrices

A e SO3)U;, B € SO(3)U;,i # j correspond to
twins. In general there is no rank-one connec-
tion between A € SO(3) and B € SO(3)U;.



(Classical) austenite-martensite interface in CuAINI
(C-H Chu and R.D. James)




habit Gives formulae of the
e crystallographic
theory of martensite
(Wechsler, Lieberman,
Read)

24 habit planes for
cubic-to-tetragonal

boundary layer

ve =4 + (1~ 2)dp



Rank-one connections for A/M Interface
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Possible lattice parameters
for classical austenite-martensite

Interface.
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Commentary on nonlinear elasticity model

In general the minimum of Iy is not attained,
and the theory thus predicts the existence of
iInfinitely fine microstructures. This is good,
because very fine microstructures occur, but
bad because they are not infinitely fine. To
give a length-scale to the microstructures we
need to account for interfacial energy.



Second gradient model for diffuse
Interfaces




How does interfacial energy affect the predictions of
the elasticity model of the austenite-martensite transition?

a(0)1 U1(0) U2(0) Us(0)



Suppose that
Di(a(0)1,0) = 0,

D*y(a(0)1,0)(G, G) > ,u|G]2 for all G = G*,

some p > 0. Then y(z) = cis a

local minimizer of
/wD%

But y(x) = a(f)x + ¢ is not a local minimizer of Iy
in WHP(Q; R?) for 1 < p < oo because nucleating
an austenite-martensite interface reduces the energy.

in W0 (Q; R3).



Use simple second gradient model of interfacial energy (cf
Barsch & Krumhansl, Salje ...), for which energy minimum is
always attained.

Fix 0 < 6., write ¥(A) =1 (A,0), and define

1) = [ (w(Dy) +?D?yP) da

where |D2y‘2 = Y;,a8Y%i,a8" € > O,

It is not clear how to justify this model on the basis of
atomistic considerations (the ‘wrong sign’ problem — see,
for example, Blanc, LeBris, Lions).
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Hypotheses

No boundary conditions (i.e. boundary traction free), so
result will apply to all boundary conditions.

Assume ) € CQ(Mi’_“),

W(A) = oo for det A <O,

W(A) — oo as det A — 0+,
Y(RA) =y (A) for all R € SO(3),
1 bounded below, € > 0.

Dy(al) =0
D?y(al)(G,G) > u|G|? for all G = G7,
for some u > 0. Here a = a(0).



Theorem. y(x) = aRx

a, R € SO(3),a € R3,

is a local minimizer of I in L1($2; R3).

More precisely,

IW)-1@) >0 [

2

(\\/DyTDy — 041|2 -+ \Dzy\2> dx

for some o > 0 if ||y — aRx — al|1 is sufficiently

small.

Remark.

/Q |\/DyTDy — al|?dx

>co_ inf_ (lly—aRz—a|3+ ||Dy— R|3).

ReSO(3),aeR3

by Friesecke, James, Miuller Rigidity Theorem



ldea of proof

Reduce to problem of local minimizers for

1) = [_(@(U) +mp?e?|DU?) da,
studied by Taheri (2002), using
IDAUCA)| < p
for all A, where U(A) = VAT A.




Smoothing of twin boundaries

Seek solution to equilibrium equations for

1) = [ ,¥(Dy) +2ID%) da

such that

Dy— Aasx-N — —o0

Dy — B as x- N — 400,

where A, B= A+ a® N are twins.




Lemma. Let Dy(x) = F(x-N), where F ¢
Wl (R; M3%3) and

F(e-N) —> A,B

as - N — +o00. Then there exist a constant
vector a € R3 and a function » : R — R3 such
that

u(s) — 0,a as s —+ —o0, 00,
and for all z € R3

F(r-N)=A4u(z-N)® N.
In particular

B=A+4+a® N.



The ansatz

Dy(x) = A4+ u(xz-N) & N.
leads to the 1D integral

Fu) = [ [(A+u(s) @ N)+ /()] ds
= | [Bu()) + 2/ ()] ds.

For cubic — tetragonal or orthorhombic (and
probably in general) we have

(0) = 9(a) =0, P(u) >0 for u # 0, q,

and so by energy minimization (Alikakos &
Fusco to appear) we get a smooth solution
satisfying det Dy(x) > 0.



Remarks.

1. The solution generates a solution to the full
3D equilibrium equations. However if we use
iInstead the ansatz

Dy(x) =v(z-N)a® N

with v a scalar, then the corresponding solution
does not in general generate a solution to the
3D equations.

2. The solution is not in general unique even
within the class given by the ansatz, but more
work needs to be done in this direction.



A model allowing for both
sharp and diffuse interfaces




Sharp interface models

A natural idea is to minimize an energy such
as

I(y) = [ (Dy) do + kH?(Spy),

where k > 0 and SDy denotes the jump set of
Dy.

However this is not a sensible model, because
If we have a sharp interface and approximate y
by a smooth deformation, then the interfacial
energy disappears and the elastic energy hardly
changes. Thus a minimizer can never have a

sharp interface.



If we combine the smooth and sharp interface
models we get a model that is well posed and
in fact allows both kind of interface. In the
simplest case we minimize

1) = [ (@(Dy) + VY1) do + KH2(Spy)
In the set
A={ye WP : Dy € GSBV,ylsq, = ¥}

Here V2y denotes the weak approximate dif-
ferential of Dy.



GSBV

The space GSBV was introduced by Ambro-
sio & de Giorgi. BV is the space of maps y
of bounded variation i.e. whose distributional
derivative Dy is a bounded measure. The space
SBV consists of those y € BV such that the
measure Dy has no Cantor part. GSBV con-
sists of those y such that for every ¢ € C1(R3)
with V¢ of compact support, »(y) € SBV.



More generally we can suppose the energy is
given by

I(y) = [ w(Dy,V?y)da+

/SD 7(Dy+(aj>, Dy (x),v(x)) dH2(33>.



One-dimensional case
Minimize
1
Ie v (y) = /O (V(y) + 2[V2y[?) dz + kHO(S,)
N
Ay = {yewh(0,1):y(0) =0,y(1) = A,
y' € SBV(0,1),y >0 a.e.}

Assume (1) = (2) = 0,¢¥(p) >0 if p =1, 2.
Let

EE,K},)\ — yien};)\ Ié,li(y)
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More realistic 1D model
Minimize
Ie 4 (y) = /Ol(lb(y,)+82|vzy|2) da?-l—/s ,’y([y’]) dHO

N

Ay, = {yewh1(0,1) : y(0) =0,y(1) = X,
y € SBV(0,1),y' >0 a.e.}



We assume that ~ is continuous, even, of class
Cl on (0, ),
nondecreasing on (0,c0), and such that

tim M = oo a4 b) < 7(a) + 1.

Typically v(0) = 0 with ~ concave on (0, ).
For example

1
v(t) = kl|t]Y, or v(t) = kl|t|log(1 + m),

where o € (0,1).



Theorem. Let ¢ : (0,00) — [0,00) be C1,
lim, .+ ¥ (t) = oo, and suppose there exist 1,5
with O < r7; < ro such that

—oo < sup ¢ = inf ¢ < oo forie {1,2}.
(O,’I"Z'] [’I"i,OO)

Let \ € (7“1,7“2).

Then there exists a minimiser of the functional
I ~ Iin Ay. Moreover, if y is a minimizer then
u = ¢’ satisfies:

(i) uw € [r1,ro] a.e.

(ii) Sy is finite.



(iii) Vu is continuous and in SBV,
V' (u) — 2e°V2u = ¢

for some constant c € R, Vu(0) = Vu(l) =0
and 2¢2Vu(z) = +/([u](2)) for all z € S,
c = fol Y'(u) dx and

W(u) — e2(Vu)? — cu = d,
for some constant d € R.

Remarks

1. We cannot prove that there is at most one jump in v'.
2. The solution can be smooth or have a jump, but in
general there are no piecewise affine solutions.



Nonclassical austenite-
martensite interfaces

JB/ Konstantinos Koumatos (Oxford)/
Hanus Seiner (Prague).




Nonclassical austenite-martensite
Interfaces (B/Carstensen 97)

speculative nonhomogeneous
martensitic microstructure
with fractal refinement

- near interface
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curved nonclassical
interface



Nonclassical interface with double
laminate
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Nonclassical interface calculation

Dy(x) =F =v
F e (UX,50(3)U,
N

(unknown unless N = 2)

)"

V, = U

supp v C U,fil SO(3)U;
F=14b&®m



Values of deformation parameters allowing classical and
nonclassical austenite-martensite interfaces

M, 4

"7/ classical and nonclassical
% interfaces possible

nly nonclassical
| Interfaces possible




Interface normals
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MARTENSITE
(SINGLE VARIANT)

P11
AUSTENITE

Experimental
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AUSTENITE Optical

micrograph
(H. Seiner) of
non-classical
interface
between
austenite and
a martensitic
microstructure

The arrows
indicate the
orientations of
twinning
planes of

i Type-ll and
compound
twinning
systems

b\ i
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Twin crossing gradients



Cubic-orthorhombic energy wells

§
K(6:) = SO(3)U | ] SO(3)U;

=1
+7 - +7 - + X
ozzv ozj%v 0 a2'y vioe 0 azv 0 %
Uy = ey ary o |, Up=| 2=z¢ &% o |, Uz= O B O
2 2 2 2 o atry
o 0 g o 0 g ey o &
aty g 21z« B 0 0 B 0 0
2 2 o+ o— o+ —
Uy = O B O Us=| 0 =5+ =7 Ug=|0 5 *
=% 0 aty 0 &= airy 0 1=« a%fy
) ) ) P P p)

o = 1.06372, 3= 0.91542, v = 1.02368



Let Uy, Uy and Upg,Upgr be two distinct pairs
of martensitic variants able to form compound
twins (e.g. Us,Us and Us,Ug). Then the com-
patibility equations for the parallelogram mi-
crostructure are :

RapUp—Ug = bap®nap
RpypUp —Uy = byp @nyp
RppUpyr—Us = byp @nya
RppUp —Up = bpp ®npp

RapRppr = RaaRap.



Let O < A <1 denote the relative volume frac-
tion of the Type-II twins (the same by the par-
allelogram geometry), and set

(1 =XN)Ug+ AR4BUp
(1 — )\)UA/ + ARy pUpr

M A B
My 5

Let O < A < 1 be the relative volume frac-

tion of the compound twins. Then the overall
macroscopic deformation gradient is

M = (1 — /\)MAB —I— /\RAA’MA’B"

For compatibility with the austenite we need

Amid (M M) =1



Possible volume fractions

)\2_)\: agp __a’2(/\2_/\>
a1+ a3z(A2 —N)
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Possible nonclassical interface
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AUSTENITE

Curved interface between crossing twins and austenite resulting from the inhomogeneity
of compound twinning. (Optical microscopy,H. Seiner)



