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Some remarks on the history of the subject

Optical Activity is the ability of a material to rotate the plane of
polarisation of a beam of light passing through it.

Original experimental studies by F. Arago (1811), J.-B. Biot (1812),
A. Fresnel (1822).

A. L. Cauchy (1842 – first mathematical work on the laws of circular
polarisation).

Explanation given by L. Pasteur (1848)1: introduction of Geometry into
Chemistry (origin of the branch nowadays called Stereochemistry).2

1A notable historical coincidence: at the same time that Pasteur brought left
and right into Chemistry, K. Marx and F. Engels “officially” introduced them
into Politics (publication of the Communist Manifesto)!

2The Nobel Prize Lecture by V.Prelog (1975 Nobel Prize winner in
Chemistry (together with Sir J. W. Cornforth)) is very interesting on the rôle of
chirality in Chemistry.
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Some remarks on the history of the subject

Handedness is a characteristic of natural and manufactured objects (e.g.,
DNA, certain bacteria, shells, winding plants, spiral galaxies / cork-screws,
doors, cookers, computer mice, keyboards, guitars, a variety of
construction tools / Möbius strips, irregular tetrahedra).

The mirror image of a right-handed object is otherwise the same as the
original, but it is left-handed (the original object cannot be superposed
upon its mirror image).

A handed object is called chiral3.

3From the Greek word χει% meaning hand. This term was introduced by
Lord Kelvin in 1888 (first time in print in his famous 1904 Baltimore Lectures).
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Some remarks on the history of the subject

It was the relation between the chiral (micro)structure and the
(macroscopic) optical rotation that was discovered by Pasteur: he
noticed that that two substances which where chemically identical (in
the classification scheme of that time), but which had molecules being
mirror images of each other, exhibited different physical properties4.

I. Kant5 was the first eminent scholar to point out the philosophical
significance of mirror operation: “Hence the difference between similar
and equal things, which are yet not congruent (for instance, two
symmetric helices), cannot be made intelligible by any concept, but
only by the relation to the right and the left hands which immediately
refers to intuition”.

4E.g., one enantiomer of thalidomide may be used to cure morning sickness
in pregnant women, but its mirror image induces fetal malformation - a big
problem in the U.K. in the late 1950s.)

5In his celebrated book “Prolegomena To Any Future Metaphysics” (1783).
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Some remarks on the history of the subject

In the last part of the 19th century, after Maxwell’s unification of optics
with electricity and magnetism, it became possible to establish the
connection between optical activity and the electromagnetic parameters of
materials.

In 1914, Karl F. Lindman was the first to demonstrate the effect of a chiral
medium on electromagnetic waves (his work in this field was about 40
years ahead of that of other scientists); he devised a macroscopic model
for the phenomenon of “optical” activity that used microwaves instead of
light and wire spirals instead of chiral molecules. His related work was
published in 1920 and 1922.
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Some remarks on the history of the subject

The revival in the interest of complex media in Electromagnetics emerged
in the mid 1980s, motivated and assisted by vast technological progress,
especially at microwave frequencies.

Already in the beginning of the 21st century, the related publications
within the Applied Physics and Electrical Engineering communities were
calculated in more than 3000 papers.

Related books:

A. Lakhtakia, V. K. Varadan, V. V. Varadan, 1989.

A. Lakhtakia, 1994.

I. Lindell, A. H. Sihvola, S. A. Tretyakov, A. J. Viitanen, 1994.

A. Serdyukov, I. Semchenko, S. Tretyakov, A. Sihvola, 2001.

S. Zouhdi, A. H. Sihvola, A. P. Vinogradov (eds.), 2009.

G. Kristensson (in progress).
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Some remarks on the history of the subject

Mathematical Work – 1: Frequency domain problems
(time-harmonic fields)

(As far as I know) the first publication is by Petri Ola (1994).

Simultaneous/independent work from the mid 1990s by the groups at

CMAP, École Polytechnique (Palaiseau): Jean-Claude Nédélec, Habib
Ammari, and their collaborators.
the Department of Mathematics of the National and Kapodistrian
University of Athens: Christos Athanasiadis, S, and later on
collaborators in various places.

From the late 1990s, in addition to the above, many researchers enter
the field; indicatively (in alphabetical, non-chronological, order) some
names: A. Boutet de Monvel, G. Costakis, P. Courilleau, T. Gerlach,
S. Heumann, T. Horsin, H. Kiili, V. Kravchenko, S. Li, P. A. Martin,
S. R. McDowall, M. Mitrea, R. Potthast, D. Shepelsky, S. Vänskä, ...
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Some remarks on the history of the subject

Mathematical Work – 2: Time domain problems

From the early 2000s attention is focussed on the time domain, as well.
Problems on the solvability, the homogenisation, and the controllability of
IBVPs for the Maxwell equations, supplemented with nonlocal in time, linear
constitutive relations (describing the so-called bianisotropic media), are
studied.
Again a representative (yet incomplete) list of researchers:
C. E. Athanasiadis, G. Barbatis, A. Bossavit, P. Ciarlet jr., P. Courilleau, G.
Griso, S. Halkos, T. Horsin, A. Ioannidis, A. Karlsson, G. Kristensson, G.
Legendre, K. Liaskos, B. Miara, S. Nicaise, G. F. Roach, D. Sjöberg, S., N.
Wellander, A. N. Yannacopoulos, ...

The biggest part of this work deals with deterministic bianisotropic media.
But problems regarding stochastic bianisotropic media are also studied.

A new book will be published in spring 2012, by Princeton U. P.:
G. F. Roach, I. G. Stratis, A. N. Yannacopoulos: Mathematical

Analysis of Deterministic and Stochastic Problems in

Complex Media Electromagnetics
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Deterministic problems: Modelling

The Maxwell system

Electromagnetic phenomena are specified by 4 (vector) quantities: the electric
field E , the magnetic field H, the electric flux density D and the magnetic flux
density B. The inter-dependence between these quantities is given by the
celebrated Maxwell system,

curlH(t, x) = ∂tD(t, x) + J(t, x),

curlE (t, x) = −∂tB(t, x),
(1)

where J is the electric current density. All fields are considered for x ∈ O ⊂ R3

and t ∈ R, O being a domain with appropriately smooth boundary. These
equations are the so called Ampère’s law and Faraday’s law, respectively. In
addition to the above, we have the two laws of Gauss

divD(t, x) = ρ(t, x),

divB(t, x) = 0,
(2)

where ρ is the density of the (externally impressed) electric charge.
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Deterministic problems: Modelling

Initial and Boundary conditions

The initial conditions are considered to be of the form

E (0, x) = E0(x) , H(0, x) = H0(x) , x ∈ O . (3)

We consider the “perfect conductor” boundary condition

n(x)× E (t, x) = 0 , x ∈ ∂O , t ∈ I , (4)

where I is a time interval, and n(x) denotes the outward normal on ∂O.
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Deterministic problems: Modelling

From (1) and (2) we wish to determine the quadruplet (B,D,E ,H),
assuming that the vector J and the scalar ρ are known.
Need to calculate 12 scalar functions from a system of 8 scalar equations.
So, constitutive relations must be introduced

D = D(E ,H) , B = B(E ,H) . (5)

It can be seen that we may consider as “the Maxwell system” the set of
equations (1) (curlH = ∂tD + J and curlE = −∂tB), plus the constitutive
relations (5), plus the equation of continuity

∂tρ+ divJ = 0. (6)
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Deterministic problems: Modelling

The six vector notation

To express the system in more compact form, we use the six-vector
notation:

. the electromagnetic flux density d := (D,B)tr ,

. the electromagnetic field u := (u1, u2)tr := (E ,H)tr ,

. the current j := (−J, 0)tr ,

. the initial state u0 := (E0,H0)tr ,

where the superscript tr denotes transposition.

A linear operator acting on u is written as a 2× 2 (block) matrix with
linear operators as its entries.

An important case is the Maxwell operator

M :=

(
0 curl
−curl 0

)
. (7)
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Deterministic problems: Modelling

The Maxwell system as an IVP

The constitutive relations are now modelled by an operator L and are
understood as the functional equation

d = Lu.

The properties of this operator reflect the physical properties of the
medium in question.
So the Maxwell system can be written as an IVP for an abstract evolution
equation

(Lu)′(t) = Mu(t) + j(t) , for t > 0 ,

u(0) = u0 .
(8)

The prime stands for the time derivative.
The equation in the IVP (28) is an inhomogeneous neutral functional
differential equation.
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Deterministic problems: Modelling

Postulates

To state the postulates that govern the evolution of the e/m field in a
complex medium we follow a system-theoretic approach (Ioannidis (PhD;
2006) / Ioannidis, Kristensson, S), in the sense that we consider the e/m
field u as the cause, and the e/m flux density d as the effect.

Postulates (plausible physical hypotheses)

. Determinism: For every cause there exists exactly one effect.

. Linearity: The effect is produced linearly by its cause.

. Causality: The effect cannot precede its cause.

. Locality in space: A cause at any particular spatial point produces an
effect only at this point and not elsewhere.

. Time–translation invariance: If the cause is advanced (or delayed) by
some time interval, the same time-shift occurs for the effect.

Compliance with these postulates dictates the form of the operator L.
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Deterministic problems: Modelling

Mathematical interpretation in terms of L

. Determinism: L exists and is a single-valued nontrivial operator.

. Linearity: L is a linear operator.

. Causality: If u(t, x) = 0 for t ≤ τ , then (Lu)(t, x) = 0, for t ≤ τ .

. Locality in space: L is a local operator with respect to the spatial
variables, i.e., L(u(·, x))(·, x) = s(·, x) where s is a local functional,
allowing spatial derivatives of the electromagnetic fields, but not integrals
with respect to the spatial variables.
Locality with respect to temporal variables is not assumed, on the
contrary memory effects are allowed.

. Time–translation invariance: For all κ ≥ 0, L commutes with the right
κ-shift operator τκ. Therefore, the time instant at which the observation
starts does not play any significant rôle; the “present” can be chosen
arbitrarily.

We do not assume continuity: it follows by linearity and time–translation
invariance.
Note that continuity is not ascertained in the case where the left shift
replaces the right shift.
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Deterministic problems: Modelling

The constitutive relations for bianisotropic media

The general form of L, consistent with the above physical postulates,
turns to be a continuous operator having the convolution form

d(t, x) = (Lu)(t, x) = Aor(x)u(t, x) +

∫ t

0
Gd(t − s, x)u(s, x) ds (9)

Aor(x) :=

(
ε(x) ξ(x)
ζ(x) µ(x)

)
, Gd(t, x) :=

(
εd(t, x) ξd(t, x)
ζd(t, x) µd(t, x)

)
. (10)

Each Aor(·), Gd(t, ·) defines a multiplication operator in the state space.
The above constitutive equation is abbreviated as

d = Aoru + Gd ? u. (11)

The local in space part Aor (optical response operator) of L models the
instantaneous response of the medium. The nonlocal in space part Gd? of
L models the dispersion phenomena; Gd is called the susceptibility kernel.
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Deterministic problems: Modelling

Media Classification

A material is called

. Isotropic: if ε, µ, εd , µd are scalar multiples of I3×3 and
ξ = ζ = ξd = ζd = 0.

. Anisotropic: if the members of at least one of the pairs ε, εd or µ, µd
are not scalar multiples of I3×3 and ξ = ζ = ξd = ζd = 0.

. Biisotropic: if all the blocks of the matrices Aor, Gd are scalar
multiples of I3×3.

. Bianisotropic: in all other cases.
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Deterministic problems: Modelling

Assumptions

Assumption (Aor)

The optical response matrix Aor has

essentially bounded entries

and is

almost everywhere symmetric,
i.e., Aor(x) = Aor(x)tr , for almost all x ∈ O,
almost everywhere uniformly coercive,
i.e., there exists a constant C, such that |y · Aor(x) y| ≥ C |y|2, for almost
all x ∈ O and all (0 6=) y ∈ R6.

Assumption (Gd at t = 0)

The dispersion matrix Gd(0, x) is

almost everywhere non-negative definite,
i.e., Gd(0, x) y · y ≥ 0, for almost all x ∈ O and all (0 6=) y ∈ R6.
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Deterministic problems: Modelling

The time-harmonic case

Taking the Fourier transform6, we obtain

d̃ = Aorũ + G̃dũ , (12)

and letting

Ãor := Aor + G̃d =

(
ε+ ε̃d ξ + ξ̃d
ζ + ζ̃d µ+ µ̃d

)
=:

(
εF ξF
ζF µF

)
, (13)

we get the frequency domain constitutive relations

d̃ = Ãorũ . (14)

6Let s be a proxy for the vector fields d, u, j , and $ be the angular
frequency. Then s(t, x) = 1

2π

∫ +∞
−∞ e−i$t s̃($, x) d$.
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Deterministic problems: Modelling

Assumptions

Assumption (Ãor)

Let c, C be positive constants. For any fixed frequency $, the matrix
Ãor = Ãor(x ;$) satisfies the following properties

(i) Ãor ∈ L∞(O,C6×6) .

(ii) ztr · (Im Ãor) z ≥ c ||z||2 , for all z ∈ C6.

(iii) |z1 · Ãor z2| ≤ C ||z1|| ||z2|| , for all z1, z2 ∈ C6.

We now elaborate further on the classification of biisotropic media in the
frequency domain. Let

ξF = κ+ iχ , ζF = κ− iχ . (15)

The chirality parameter χ measures the degree of handedness of the
material; a change in the sign of χ corresponds to the consideration of the
mirror image of the material. The other parameter κ describes the
magnetoelectric effect; materials with κ 6= 0 are nonreciprocal.
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Deterministic problems: Modelling

Media classification

In the time-harmonic case a medium is called:

. Isotropic, if κ = 0 and χ = 0, i.e., when ξF = ζF = 0.

. Nonreciprocal Nonchiral, or Tellegen, if κ 6= 0 and χ = 0, i.e.,
when ξF = ζF.

. Reciprocal Chiral, or Pasteur, if κ = 0 and χ 6= 0, i.e., when
ξF = − ζF.

. Nonreciprocal Chiral or General Biisotropic, if κ 6= 0 and χ 6= 0,
i.e., when ξF 6= ζF,− ζF.

Reciprocal chiral media will be simply referred to as chiral media.
In the case of chiral media the constitutive relations for time-harmonic
fields are usually written as

D̃ = εTẼ + βTH̃, B̃ = µTH̃ − βTẼ , (16)

(where εT := εF, µT := µF, βT := ξF = −ζF).

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 22 / 95



Deterministic problems: Modelling

The DBF constitutive relations

The Drude-Born-Fedorov (DBF) constitutive relations were introduced in
1959 by F. I. Fedorov as a modification of constitutive relations used in
1900 by P. K. L. Drude and in 1915 by M. Born. These read

D̃ = εDBF(Ẽ + βDBF curlẼ ), B̃ = µDBF(H̃ + βDBF curlH̃). (17)

The medium is characterised by three7 (in general, complex) parameters,
the electric permittivity εDBF, the magnetic permeability µDBF, and the
chirality measure βDBF.

7For source-free regions the constitutive parameters εT, µT and βT of (16)
are connected to the constitutive parameters εDBF, µDBF and βDBF of (17) via

εT =
εDBF

1−$2εDBFµDBFβ2
DBF

, µT =
µDBF

1−$2εDBFµDBFβ2
DBF

,

βT = i$εDBFµDBF
βDBF

1−$2εDBFµDBFβ2
DBF

.
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Time-harmonic Problems – The Interior Problem

Time-harmonic problems

The study of time-harmonic problems for the Maxwell equations
supplemented with the DBF constitutive relations is a well-developed area.
The solvability of interior and exterior BVPs is established by variational
techniques, and their discretised versions are studied as well.
The interior problem reads

curl E = βγ2E + i$µ
(γ
k

)2
H,

curl H = βγ2H − i$ε
(γ
k

)2
E ,

in O, (18)

where $ > 0 is the angular frequency and

k2 := $2εµ , γ2 := k2(1− β2k2)−1. (19)

These equations are complemented with the boundary condition

n × E = f , on ∂O, (20)

where f ∈ H−1/2(div, ∂O) is a prescribed electric field on ∂O.
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Time-harmonic Problems – The Interior Problem

Assumptions

A typical assumption on the data is

Assumption

(i) O is a bounded domain and ∂O is of class C 1,1.

(ii) The coefficients ε, µ and β are real valued and positive C 2(O)
functions.

(iii) The function µ−1(1−$2εµβ2) is positive in O.

The solvability of the interior problem ((18), (20)) is established by
Ammari and Nédélec, while the study of the discretised version is by S and
Yannacopoulos.
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Time-harmonic Problems – The Interior Problem

The Exterior Problem – Radiation Conditions

As for the exterior problem, it consists of the equations

curl Ee = βeγ
2
eEe + i$µe

(
γe
ke

)2
H,

curl He = βeγ
2
eHe − i$εe

(
γe
ke

)2
E ,

in Oe , (21)

with boundary condition

n × Ee = fe , on ∂Oe

and with one of the two Silver-Müller radiation conditions

lim
|x |→∞

|x | (√µHe × x̂ −
√
εEe) = 0 , (22)

or

lim
|x |→∞

|x | (
√
εEe × x̂ +

√
µHe) = 0 , (23)

uniformly over all directions x̂ .
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Time-harmonic Problems – The Interior Problem

It is known (Ammari and Nédélec) that the “standard” (achiral)
Silver-Müller radiation conditions (written above) are adequate to
cover the chiral case, too.

Another important property is a “continuity result” in terms of the
chirality measure β. It is known (Ammari and Nédélec) that if β is
assumed to be a non-negative constant, then the limit of the solution
of the chiral problem as β → 0 coincides with the solution of the
corresponding achiral (β = 0) problem.
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Time-harmonic Problems – The Interior Problem

Scattering problems – BIEs

Another very well developed area of research regarding chiral media in the
time-harmonic regime deals with scattering problems.
Consider that an electromagnetic wave propagating in a chiral (or achiral)
homogeneous environment is incident upon a chiral (or achiral) obstacle.
Depending on the materials with which the surrounding space and the
obstacle are filled, and on the boundary condition(s) on the obstacle’s
surface, a variety of scattering problems (exterior BVPs, transmission
problems) is treated. For example,

Using classical potentials, BIEs are employed to study the solvability,
the determination of uniquely solvable equations, and the
“low-chirality” approximation:
Ammari, Nédélec / Athanasiadis, S / Athanasiadis, Costakis, S /
Athanasiadis, Martin, S / Mitrea / Ola.
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Time-harmonic Problems – The Interior Problem

Typical scattering results (e.g., the reciprocity principle, the optical
theorem, the general scattering theorem) are extended to the chiral
case for plane and spherical incident waves:
Athanasiadis, Martin, S / Athanasiadis, Giotopoulos / Athanasiadis,
Tsitsas.

A Low-Frequency theory is developed:
Ammari, Laouadi, Nédélec / Athanasiadis, Costakis, S.

Herglotz functions and pairs are introduced and studied:
Athanasiadis, Kardasi.

Infinite Fréchet differentiability of the mapping from the boundary of
the scatterer onto the far-field patterns is established, along with a
characterisation of the Fréchet derivative as a solution to an
appropriate boundary value problem:
Potthast, S.
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Time-harmonic Problems – The Interior Problem

Periodic structures, gratings:
Ammari, Bao / Zhang, Ma.

Quaternionic methods:
Kravchenko.

Inverse scattering problems:
Athanasiadis, S / Boutet de Monvel, Shepelsky / Gao, Ma, Zhang /
Gerlach / Heumann / Li / Mc Dowall / Rikte, Sauviac, Kristensson,
Mariotte.
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Time-harmonic Problems – The Interior Problem

The Bohren decomposition – Beltrami fields

In view of the DBF constitutive relations, the Maxwell equations can be
written as (

curl E
curl H

)
=
γ2

k2

(
βk2 i$µ
−i$ε βk2

)(
E
H

)
. (24)

Diagonalising the matrix in (24), we obtain(
curl (i η−1E + H)
curl (E + i ηH)

)
=

(
k

1−kβ 0

0 − k
1+kβ

)(
i η−1 E + H

E + i ηH

)
, (25)

where η = µ1/2ε−1/2 is the intrinsic impedance of the medium.
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Time-harmonic Problems – The Interior Problem

The Bohren decomposition – Beltrami fields

Introducing the fields

QL := i η−1 E + H , QR := E + i ηH ,

we note that (25) is written as

curlQL = γL QL,

curlQR = −γR QR,
(26)

where
γL := k(1− kβ)−1 , γR := k(1 + kβ)−1 .

Note that γ2 = γLγR. QL and QR satisfy the vector Helmholtz equation

∆Qλ + γ2
λQλ = 0, λ = L,R ,

and γL, γR are the wave numbers of the Beltrami fields QL, QR, respectively.
If E ,H are divergence free, the same holds for QL, QR, as well.
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Time-harmonic Problems – The Interior Problem

The Bohren decomposition – Beltrami fields

Thus we obtain the Bohren decomposition of E , H into QL, QR

E = QL − i ηQR,

H = QR − i η−1 QL.
(27)

From (26), and if the two complex-valued wave numbers γL and γR have
positive real parts, we note that while QL is a left-handed Beltrami field,
QR is a right-handed one.

This decomposition is very useful in the study of chiral media, since
representation formulae for the fields in chiral media - that constitute the
first basic step in developing BIE methods - can easily be deduced from
the corresponding ones of metaharmonic fields.
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Time-domain problems

Time-domain problems: Well-posedness

Several alternative approaches to the solvability of the IVP for the Maxwell
system

(Lu)′(t) = Mu(t) + j(t) , for t > 0 ,

u(0) = u0 ,
(28)

supplemented with the constitutive relations for dissipative bianisotropic
media

(Lu)(t, x) = Aor(x)u(t, x) +

∫ t

0
Gd(t − s, x)u(s, x) ds , (29)

can be considered, e.g., semigroups, evolution families, the Faedo–Galerkin
method.
We adopt the former, based on the semigroup generated by the Maxwell
operator. Then the convolution terms are treated as perturbations of this
semigroup.
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Time-domain problems

The choice of the semigroup approach is plausible since

the semigroup (group actually) generated by the Maxwell operator is
very well studied,

the kernels in the convolution terms are known to be physically small,
therefore, it is plausible to consider them as perturbations.

These approaches have been used in different variations by Bossavit, Griso
and Miara / Ciarlet jr. and Legendre / Ioannidis, Kristensson and S /
Liaskos, S and Yannacopoulos.

For the integrodifferential equation (28) a variety of different types of
solutions can be defined, regarding spatial - or temporal - regularity.
We totally skip their technical descriptions here.

So a well-posedness result can be stated
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Time-domain problems

Well-posedness

Theorem

Under suitable regularity assumptions on the data, (28) is weakly / mildly
/ strongly / classically well-posed.

The underlying space is H0(curl,O)× H(curl,O), where

H(curl,O) := {u ∈ (L2(O))3 : curl u ∈ (L2(O))3}.
For bounded O, H0(curl,O) is the space
{u ∈ H(curl,O) : n × u|∂O = 0}.

The first component of the underlying space incorporates the perfect
conductor boundary condition for the electric field.
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Time-domain problems

Other constitutive relations in the time-domain

Instead of using the (general) non-local in time constitutive relations

d = Aoru + Gd ? u ,

employed so far, a variety of problems on the class of complex media
described by adopting the DBF-like (local in time) constitutive relations in
the time-domain

d = A0u + β C u ,

where

A0 :=

(
ε 0
0 µ

)
, C :=

(
ε curl 0

0 µ curl

)
,

has been studied by a number of authors, e.g., Ciarlet jr., Legendre /
Ciarlet jr., Legendre, Nicaise / Courilleau, Horsin / Courilleau, Horsin, S /
Liaskos, S, Yannacopoulos.
In these studies there are subtleties involved regarding the spectrum of the
operator curl.
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Time-domain problems

Controllability Problems

The governing equation

(Aoru + Gd ? u)′ = Mu + j , (30)

can be simplified if we assume that Gd(t, x) is weakly differentiable with
respect to the temporal variable. Then we may differentiate the
convolution integral, and by multiplying to the right by A−1

or we get

u′ = MAu + GA ? u + JA, (31)

where
GA := −A−1

or G′d , MA := A−1
or M , JA := A−1

or j ,

and we have assumed that Gd(0, x) = 0.
The boundary conditions, as well as the divergence free character of the
electromagnetic field, can be included in the definition of the operator M
in appropriately selected function spaces.
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Time-domain problems

We now assume that we have access to an internal control v , that acts on
the system. The action of the control v on the state of the system is
modelled, via the so-called control to state operator B, by the evolution
equation

u′ = MAu + JA + GA ? u + Bv . (32)

The problem of controllability can now be stated as follows:

Given T > 0, an initial condition u(0) = U0 and a final

condition u(T ) = UT, can we find a control procedure v∗(·)
such that the solution of the system (32) with v(·) = v∗(·)
satisfies u(0) = U0 and u(T ) = UT?
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Time-domain problems

By a perturbative (fixed-point scheme) approach based on J.-L. Lions’
Hilbert Uniqueness Method the internal controllability of (32) has been
studied (S and Yannacopoulos).

The study of boundary controllability problems and optimal control
problems is in progress.

In the case of time-harmonic fields, the approximate controllability problem
has been studied (Horsin and S).
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Homogenisation (deterministic media)

Homogenisation

Within the electromagnetic (applied physics/electrical engineering)
community, homogenisation of composites has a huge literature, the major
part of which is devoted to dielectrics.
In this community, the related literature on bianisotropic composites is
much smaller. Among the recent developments are the work on Maxwell
Garnett and Bruggeman formalisms for different classes of bianisotropic
inclusions and the work on the Strong Property Fluctuation Theory for
bianisotropic composites.
There are many important applications, e.g., in biomedical engineering and
optics (optical waveguides, high-dielectric thin-film capacitors, captive
video disc units, novel antennas and design of complementary split-ring
resonators).
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Homogenisation (deterministic media)

For isotropic media there is important rigorous mathematical work by
many authors: see, in particular, the contribution by Artola and Cessenat /
Bensoussan, J.-L. Lions and Papanicolaou / Jikov, Kozlov and Oleinik /
Markowich and Poupaud / Sanchez-Hubert / Sanchez-Palencia / Visintin
/ Wellander.

For dissipative bianisotropic media the problem was originally studied by
Barbatis and S (2003) and further developed by S and Yannacopoulos.

Related work by Bossavit, Griso and Miara (2005) / Sjöberg (2005) /
J.S. Jiang, C.K. Lin and C.H. Liu (2008) / L.Cao, Y. Zhang, Allegretto
and Y. Lin (2010).
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Homogenisation (deterministic media)

Let O be a domain in R3, filled by a complex electromagnetic medium
modelled by constitutive relations of the general form

d = Aoru + Gd ? u. (33)

The material is spatially inhomogeneous i.e., Aor = Aor(x), Gd = Gd(x).
The evolution of the field u = (u1, u2)tr in O is governed by the Maxwell
equations,

(Aoru + Gd ? u)′ = Mu + j , (34)

complemented with the initial condition

u = 0, x ∈ O, t = 0, (35)

and the perfect conductor boundary condition,

n × u1 = 0, t > 0, x ∈ ∂O , (36)

where n is the outward unit normal on ∂O.
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Homogenisation (deterministic media)

Assumption

The medium exhibits small scale periodicity, i.e.,

Aor = Aεor(x) = Aper
or

(x

ε

)
,

Gd = Gεd(x) = Gper
d

(x

ε

)
,

(37)

where Aper
or (·), Gper

d (·) are periodic matrix-valued functions on the
parallelepided Y = [0, `1]× [0, `2]× [0, `3] ⊂ R3 and 0 < ε� 1.

The set Y may be considered as the fundamental cell of the medium; the
whole medium structure can be generated by repeating the structure in Y
using translations.
To ease notation, we drop the superscript “per” from Aper

or and Gper
d and use

Aεor(x) = Aor

(
x
ε

)
and Gεd(x) = Gd

(
x
ε

)
instead.
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Homogenisation (deterministic media)

We also need the following definition:
If a : Y → R is a periodic function then the periodic averaging operator is

〈a〉 :=
1

|Y |

∫
Y

a(y) dy ,

where |Y | = `1 `2 `3 is the Lebesgue measure of Y.
In order to be able to model the small scale periodic microstructure, we
must let ε vary over a range of arbitrarily small values. Since Aper

or (x) is
periodic with period Y , it follows that Aper

or

(
x
ε

)
is periodic with period εY .

We are therefore led to a sequence of boundary value problems,

(Aεoru
ε + Gεd ? uε)′ = Muε + j (38)

with initial condition uε = 0, and the perfect conductor boundary condition

n × uε1 = 0, on O. (39)
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Homogenisation (deterministic media)

The solution of the above sequence of boundary value problems exists for
all ε > 0 by the following result. This generates a sequence of functions
uε = uε(x , t).

Theorem (Existence and uniform bounds)

Assume that j is locally Hölder continuous, and further that
j ∈ L1([0,T ],X). Then the Maxwell system (38)–(39) has a unique
solution uε = (uε1, u

ε
2)tr = (E ε,Hε)tr in C ([0,T ],X) satisfying the uniform

bounds ||uε(t)||X < C, ε > 0, where X := (L2(O))3 × (L2(O))3.

The claim follows either by semigroup theory, or by the Faedo-Galerkin
approach.

The question of interest to homogenisation theory is what happens in the
limit of very small scale microstructures.
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Homogenisation (deterministic media)

There are alternative ways that can be used to treat the homogenisation
problem. Two principal ones are based on

The reduction to a properly selected elliptic homogenisation problem,

A rigourisation of the double scale expansion method, the so-called
periodic unfolding method.
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Homogenisation (deterministic media)

Reduction to Elliptic Homogenisation – A two-scale
Expansion

Taking the Laplace transform of (38) (with respect to t) and dropping the
explicit dependence on the Laplace variable p we obtain

curlĤε = p(εεL Ê ε + ξεL Ĥε) + Ĵ,

−curlÊ ε = p(µεL Ĥε + ζεL Ê ε).
(40)

where εεL, ξ
ε
L, µ

ε
L, ζ

ε
L are given by(

εεL ξεL
ζεL µεL

)
:=

(
εε + ε̂εd ξ + ξ̂εd
ζε + ζ̂εd µε + µ̂εd

)
=: AεL(y , p) , (41)

where ŝ denotes the Laplace transform of s.
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Homogenisation (deterministic media)

Assume that the electromagnetic field has an expansion in power series in ε

Ê ε(x) = Ê (0)(x) + ε Ê (1)(x) + ε2 Ê (2)(x) + · · · ,
Ĥε(x) = Ĥ(0)(x) + ε Ĥ(1)(x) + ε2 Ĥ(2)(x) + · · · ,

where
Ê (j)(x) = Ê (j)

(
x ,

x

ε

)
, Ĥ(j)(x) = Ĥ(j)

(
x ,

x

ε

)
,

that may be considered as functions of the variables x and y = x
ε

(considered as independent variables).

Substituting these expressions in (40) and working with orders O(ε−1),
O(ε0) we can formally see that the homogenised system has coefficients
obtained by averaging the original coefficients and then multiplying the
outcome by solutions of the deduced cell equations.

This formal two-scale expansion motivates the following rigorous result.

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 49 / 95



Homogenisation (deterministic media)

Theorem

Assume that the family of matrices A(y , p) satisfies

(Re A(y , p))u · u ≥ c‖u‖2, y ∈ Y , p ∈ C+, u ∈ R6. (42)

for A = AL,A
−1
L (defined in (41)).

The solution uε = (E ε,Hε)tr of (Aεoru
ε + Gεd ? uε)′ = Muε + j with zero initial

conditions and the perfect conductor boundary condition satisfies

uε
∗
⇀ u∗, in L∞([0,T ],X),

where u∗ = (E ∗,H∗)tr is the unique solution of the homogeneous Maxwell
system

(d∗)′ = Mu∗ + j , in (0,T ]×O, (43)

with zero initial conditions and the perfect conductor boundary condition, and
subject to the constitutive relations

d∗ = Ah
oru
∗ + Gh

d ? u∗ (44)

such that Ah
or + Ĝh

d = Ah
L, where

Ah
L =

(
εhL ξhL
ζhL µhL

)
,
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Homogenisation (deterministic media)

Theorem (continued)

εhL := 〈εL + εL gradyR1 + ζL gradyR2〉,
ζhL := 〈ζL + εL gradyV1 + ζL gradyV2〉,
ξhL := 〈ξL + ξL gradyR1 + µL gradyR2〉,
µhL := 〈µL + ξL gradyV1 + µL gradyV2〉,

(45)

gradyS` =

 ∂y1s
(1)
` ∂y2s

(1)
` ∂y3s

(1)
`

∂y1s
(2)
` ∂y2s

(2)
` ∂y3s

(2)
`

∂y1s
(3)
` ∂y2s

(3)
` ∂y3s

(3)
`

 , ` = 1, 2,

S and s being proxies for R,V and r , v, respectively, and r (j) = (r
(j)
1 , r

(j)
2 )tr ,

v (j) = (v
(j)
1 , v

(j)
2 )tr , j = 1, 2, 3, being the solutions of the elliptic systemsa

LL,per

(
r

(j)
1

r
(j)
2

)
=

(
divy (εL)j ,]
divy (ξL)j ,]

)
, LL,per

(
v

(j)
1

v
(j)
2

)
=

(
divy (ζL)j ,]
divy (µL)j ,]

)
, (46)

LL,per := divy (Atr
L (y , p) grady ).

aNotation: for a 3× 3 matrix m, mj,] denotes its j-th row.
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Homogenisation (deterministic media)

The periodic unfolding method and two scale convergence

In 1990, Arbogast, Douglas and Hornung defined a “dilation” operator to
study homogenisation for a periodic medium with double porosity.
In 2002, Cioranescu, Damlamian and Griso expanded this idea and
presented a general and simple approach for classical or multiscale periodic
homogenisation, under the name periodic unfolding method.
This method is essentially based on two ingredients: the unfolding
operator (which is similar to the dilation operator and whose effect is to
“zoom”the microscopic structure in a periodic manner), and the separation
of the characteristic scales by decomposing every function φ ∈W 1,p(O)
into two parts; this scale-splitting can be either achieved by using the local
average, or by a procedure inspired by the Finite Element Method.
The periodic unfolding method simplifies many of the two-scale
convergence proofs.
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Homogenisation (deterministic media)

Homogenisation of the Maxwell system for bianisotropic
media: the periodic unfolding method

Let Y = [0, `1]× [0, `2]× [0, `3] be the reference periodic cell. Define

[x ]Y :=
3∑

i=1

ki`i , x ∈ R3

to be the unique integer combination of periods such that

{x}Y := x − [x ]Y ∈ Y .

Hence
x = ε

([x

ε

]
Y

+
{x

ε

}
Y

)
a.e. ∀x ∈ R3.

Further, define Ôε as the largest union of translated and rescaled ε (k + Y )
cells which are included in O.
Finally, let Λε = O \ Ôε be the subset of O containing the translated and
rescaled cells that intersect ∂O.
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Homogenisation (deterministic media)

The periodic unfolding operator T ε : L2(O)→ L2(O × Y ) is defined by

T ε(u)(x , y) =

{
u
(
ε
[
x
ε

]
Y

+ εy
)

for x ∈ Ôε, y ∈ Y

0 for x ∈ Λε, y ∈ Y .

If u = aε(x) = aper

(
x
ε

)
where aper is a periodic function of period Y then

T ε(aε)(x , y) = aper(y). This shows that the action of the operator T ε is to
“magnify” the periodic microstructure.
Clearly, for functions of the special type considered above

T ε(a)(x , y)→ aper(y), a.e. in O × Y .

This result extends trivially for matrix valued functions of this special type.
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Homogenisation (deterministic media)

Furthermore, the following properties (Bossavit, Griso and Miara (2005))
of T ε are very important:

1 T ε is a linear and continuous operator.

2 For all u, v ∈ L2(O), we have that T ε(u v) = T ε(u) T ε(v).

3 For all u ∈ L2(O)∫
O
u(x) dx =

1

|Y |

∫
O×Y

T ε(u)(x , y) dx dy + C(ε)

where C(ε) is a correction term that may be shown to be negligible in
the limit as ε→ 0.

We need the space H1
per(Y ) defined as follows: let C∞per (Y ) be the subset of

C∞(RN) of Y -periodic functions.
H1

per(Y ) is the closure of C∞per (Y ) in the H1-norm.
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Homogenisation (deterministic media)

The following convergence results hold for T ε:
1 If {uε} is uniformly bounded in L2(O) then there exists u ∈ L2(O×Y )

such that T ε(uε) ⇀ u in L2(O × Y ) (up to subsequences).

2 If {uε} is uniformly bounded in H(curl,O) then there exist a triplet
(u, v,w) ∈ H(curl ,O)× L2(O,H1

per(Y ;R))× L2(O,H1
per(Y ;R3)), with

divyw = 0 so that

uε ⇀ u, in H(curl,O),

T ε(uε) ⇀ u + gradyv in L2(O × Y ;R3),

T ε(curluε) ⇀ curlxu + curlyw in L2(O × Y ;R3).

3 If {uε} is bounded in L2(O) and such that T ε(uε) ⇀ û in L2(O × Y )
then

uε ⇀ u :=
1

|Y |

∫
Y
û dy
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Homogenisation (deterministic media)

The functions v, w are to be understood as correctors.

v(x , y) is a scalar and can be understood as a function
v : O → H1

per(Y ), such that
∫
O ||v||

2
H1

per(Y )dx <∞.

w(x , y) is a 3-vector and can be understood as a function
w : O → H1

per(Y ;R3) ' (H1
per(Y ))3, such that∫

O ||w||
2
H1

per(Y ;R3)dx <∞.
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Homogenisation (deterministic media)

The above weak compactness results allow us to derive a homogenised
Maxwell equation. We first define the following auxiliary system:

Definition (Cell equations)

Let rk ∈ H1
per(Y )× H1

per(Y ), mk ∈W 2,1([0,T ]; H1
per(Y )× H1

per(Y )),
hk ∈W 1,1([0,T ]; H1

per(Y )× H1
per(Y )), k = 1, . . . , 6 be the solutions of the

following systems

− divy (Aor(y)grady rk) = divy (Aor(y)ek),

− divy

(
Aor(y)gradymk(y , t) + (Gmk)(y , t)

)
= −divy (Aor(y)ek),

− divy

(
Aor(y)gradyhk(y , t) + (Ghk)(y , t)

)
= −divy (Gd(y , t)(ek + grady rk(y))),

where (Gs)(y , t) :=
∫ t

0 Gd(y , t − s)gradys(y , s)ds and ek is the canonical
basis in R6.
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Homogenisation (deterministic media)

Definition (Homogenised coefficients)

The homogenised optical response matrix Ah
or and the homogenised

dispersion matrix Gh
d consist of the columns

(Ah
or)],k =

∫
Y

Aor(y)rk(y)dy ,

(Gh
d )],k =

∫
Y

Gd(y , t)rk(y)dy +

∫
Y

Aor(y)gradyhk(y , t)dy

+

∫
Y

(Ghk)(y , t)dy

for k = 1, . . . , 6 where rk := ek + grady rk(y)) and (Ghk)(y , t) is as in the
previous definition.

Notation: for a 3× 3 matrix m, m],k denotes its k-th column.
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Homogenisation (deterministic media)

Theorem

The solution uε of
(Aεoru

ε + Gεd ? uε)′ = Muε + j

(with initial condition uε = 0, and the perfect conductor boundary
condition n × uε1 = 0), is such that

uε
∗
⇀ u in L∞([0,T ],H0(curl,O)× H(curl,O)) ,

where u is the solution of the homogenised Maxwell system

(Ah
oru + Gh

d ? u)′ = Mu + jh ,

with Ah
or, Gh

d given as in the previous definition.
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Nonlinear media

Nonlinear problems

Regarding chiral media, although third-order nonlinear effects were predicted as
early as 1967, nonlinear optical rotation experiments were not undertaken before
1993.
We consider a nonlinear complex electromagnetic medium modelled by

d = Lu = A0u + G0 ? u + G0,n` ? N(u)u ,

where the linear part is given by

A0(x) =

[
ε(x) 0

0 µ(x)

]
,G0 (t, x) =

[
ε(x)χe(t) χem(t)
χme(t) µ(x)χm(t)

]
,

while the nonlinearity is given by

N(u) :=

[
N1|u1|q 0

0 N2|u2|q
]
, G0,n` (t, x) :=

[
χe

n`(t, x) 0
0 χm

n`(t, x)

]
,

where q ∈ N, N1,N2 ∈ R3×3 are matrices independent of the spatial and
temporal variables.
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Nonlinear media

Let BA := G−1
0 G0,n` (0), GA,n` := G−1

0 G′0,n` , MA := G−1
0 M, GA := −G−1

0 G′0 ,
JA := G−1

0 j .

Then, under suitable regularity assumptions on G0 and G0,n` , the Maxwell
system takes the form

u′ + BAN(u)u + GA,n` ? N(u)u = MAu + GA ? u + JA ,

with initial condition

u(0, x) = u0(x), x ∈ O ,

and the perfect conductor boundary condition

n × u1 = 0, (t, x) ∈ [0,T ]× ∂O .
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Nonlinear media

Assumption

1 BAN(u)u is monotone, i.e., there exists a p ∈ N such that

N(v)v · v ≥ c |v|p, c > 0, ∀v ∈ R6.

2 There exists a constant α > 0 such that

|N(v)v| ≤ α (1 + |v|p−1) , ∀v ∈ R6.

3 BAN(u)u satisfies

Dv

(
BAN(v)v

)
w · w ≥ 0 , ∀v,w ∈ R6,

where Dv denotes the derivative with respect to the vector v.
4 There exists a constant C > 0 such that(

GA,n` ? N(u)u
)

(t) · u(t) ≥ C
(

BAN(u)u
)

(t) · u(t) ,

for every function u and t ∈ [0,T ].

Assumption 2 corresponds to the convexity of the energy functional of the
medium. Assumptions 1 and 3 (for p = q + 2) hold provided that the matrices
N1,N2 are positive definite. Assumption 4 can be seen as a generalisation, in
the framework of nonlinear equations, of the condition that the kernels are
functions of positive type, a fact consistent with energy considerations.
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Nonlinear media

Based on the Faedo-Galerkin approximation and monotonicity arguments
we have

Theorem

Under the previous assumptions on the nonlinearity and further assuming
that

G0 ∈W 1,∞([0,T ]; L∞(O)6×6),

GA ∈W 1,1([0,T ], (L∞(O))6×6),

u0 ∈ (Lq+2(O))3 × (Lq+2(O))3,

JA ∈W 1,1([0,T ]; (L2(O))3 × (L2(O))3),

the IBVP has a unique weak solution

u ∈ L∞([0,T ],H0(curl,O)× H(curl,O)) ∩ L∞([0,T ], (Lq+2(O))6) .
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Nonlinear media

Nonlinear systems present interesting types of solutions in the form of
travelling waves that propagate with unchanged shape through the medium as
an effect of the interplay between dispersion and nonlinearity. This type of
behaviour is typical and is very well studied in integrable systems; however,
solutions of similar type are often present in nonintegrable systems and find
important applications in various branches of science.
A formal approach to the evolution of nonlinear waves in chiral media with
weak dispersion and weak nonlinearity of the Kerr type in the low chirality case
has been studied by Frantzeskakis, S, Yannacopoulos and by Tsitsas,
Frantzeskakis, Lakhtakia.
A set of modulation equations is obtained for the evolution of the slowly
varying field envelopes that is in the form of 4 coupled nonlinear Schrödinger
equations. This set of equations is nonintegrable; however, with the use of
reductive perturbation theory, under certain conditions these equations may be
reduced to an integrable system, the Melnikov system. This system is known
to possess vector soliton solutions. Thus, by the above reduction, in certain
(limiting) cases the existence of vector solitons in chiral media may be shown;
these appear in pairs of dark and bright solitons. Depending on the chosen
behaviour at infinity, the dark component can be along the right-handed
component of the field and the bright component along the left-handed
component of the field, or vice versa.
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Stochastic problems

Stochastic problems

In many applications there is uncertainty concerning either the externally
imposed sources or the nature of the medium under consideration. In such
cases, it is useful to model the uncertain quantities as random variables,
with a prescribed probability distribution. These random variables are now
functions of the spatial variables and of time, and can be considered as
random fields defined on a probability space (Ω,F,P). The randomness is
assumed to have as an effect that the repetition of different experiments
on the medium will generate different outcomes ω, either of the medium
parameters or of the external sources. The set Ω contains the outcomes ω
of all possible experiments or all possible realisations of the medium, F is a
σ-algebra on Ω and P is a probability measure on F, quantifying the
relative frequency of realisations of different outcomes in an (ideally
infinite) repetition of experiments under identical experimental conditions.
In turn, the randomness in the sources or the medium is reflected in the
resulting electromagnetic fields, which have to be modelled as random
fields as well.
I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 66 / 95



Stochastic problems

The constitutive relations for random media are of the form

dω = Aor,ωuω + Gω ? uω, (47)

where now the quantities dω, uω are considered to be random fields,
depending on x and t, with the explicit dependence suppressed for
simplicity. We include the explicit dependence on ω to remind us that the
values of these quantities depend on the particular realisation ω of the
experiment performed (or the particular realisation of the random
medium). Furthermore, Aor,ω, Gω are (in general) random matrices whose
elements consist of random fields, which model the random parameters of
the medium. The medium may be spatially homogeneous or not,
depending on the circumstances. Similarly, we consider the external source
J a random field J = J(t, x , ω).
The description of random media in terms of random fields finds a number
of interesting applications in the theory of composites and in scattering
problems from rough surfaces.
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Stochastic problems

The Maxwell system

In view of the constitutive relations (47) the Maxwell system becomes

(Aor,ωu + Gω ? u)′ = Mu + jω , (48)

where now jω = j(t, x , ω) is a random process defined on (Ω,F,P).
An important aspect of the problem is the choice of a convenient model
for the randomness.
There are two major classes, presenting qualitatively different behaviour,
depending on the choice of jω (in particular on its variation with respect to
time):

jω is of finite variation � Random � evolution equations treated in
the usual sense (Riemann-Stieltjes or Bochner integration) � partial
integrodifferential equation with random coefficients.

jω is of infinite variation � Stochastic � Banach space valued
stochastic processes (Q-Wiener) involved � Itō stochastic
integration � SPDEs.
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Stochastic problems

The Maxwell system

The integral form of (48) is

u(t) = u(0) +

∫ t

0

(
MAu(s) +

∫ s

0
GA(s − r)u(r) dr + JA(s)

)
ds

+

∫ t

0
QA(s, ω) dW (s),

(49)

where GA = A−1
or,ωGω , MA = A−1

or,ω M, and JA = A−1
or,ω jω.

The first integral is considered as a Riemann-Stieltjes integral, whereas the
second one is considered as an Itō integral w.r.t. the infinite-dimensional
Wiener process W (t).
QA is an operator-valued stochastic process that models the effect of spatial
correlations of the fluctuating terms; it may be either independent of, or
dependent on, the electromagnetic field. The first case, especially if GA is not
a random process, is called the additive noise case; the second case is called
the multiplicative noise case.
The boundary conditions are considered to be those of the perfect
conductor.
I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 69 / 95



Stochastic problems

Solvability

Upon properly8 defining the notions of “mild”, “weak” and “strong”
solutions9 for (49) and employing a semigroup approach (based on the
semigroup generated by the Maxwell operator and treating the convolution
terms as perturbations of this semigroup) we have the following result
(Liaskos, S, Yannacopoulos)

Theorem

Under suitable regularity assumptions on the data, (49) is weakly / mildly
/ strongly well-posed.

8The electromagnetic field is now a stochastic process on the probability
space (Ω,F,P) taking values on (L2(O))3 × (L2(O))3.

9The temporal regularity is not expected to be as good as the spatial
regularity because of the pathological properties of the Wiener process (with
respect to temporal regularity) that are inherited by the solution of (49).
I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 70 / 95



Stochastic problems

The Wiener chaos approach to solvability

Another approach for the solvability of (49) is based on a Wiener chaos
expansion, i.e., on an expansion of square-integrable stochastic processes
adapted10 with respect to the filtration11 generated by the Wiener process
(S, Yannacopoulos).
This important approach was initially (2006) introduced by Rozovskii and
Lototsky for parabolic SPDEs, and then generalised by Kalpinelli, Frangos
and Yannacopoulos for hyperbolic SPDEs (2011) and by Yannacopoulos,
Frangos and Karatzas for backward SPDEs (2011).

10A stochastic process {X (t)} with the property that X (s) is measurable with
respect to Fs , for all s ∈ I, is called adapted.

11A family of σ-algebras {Ft}t∈I is called a filtration if it has the property
Fs ⊆ Ft for s ≤ t.
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Stochastic problems

The Wiener chaos approach to (49) is particularly interesting since:

(i) It reduces the original stochastic problem to an infinite hierarchy of
deterministic problems. This hierarchy is decoupled in the case of
additive noise and has a lower triangular structure in the case of
multiplicative noise.

(ii) It can be seen as a Galerkin-type approach, which separates the effects
of randomness from the effects of the spatio-temporal dynamics; it is
well suited for numerical analysis and simulation purposes, especially
when statistical moments of the solutions are needed.

(iii) It allows an easier treatment of the spatial regularity of the solutions.

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 72 / 95



Homogenisation (random media)

Homogenisation for random complex media presenting an
ergodic structure

In certain classes of materials the spatial structure is not as regular as to be
modelled by periodic functions. Such materials can be modelled as random
media having some sort of statistical periodicity (the structure of the
material repeats itself in a statistical law); this is expressed mathematically
via the notion of ergodicity. This concept is powerful enough to generalise
periodicity and allows the construction of a homogenisation theory that
bypasses the need for periodic structure. From the applications point of
view, this generalisation leads to more realistic models.
Regarding electromagnetics in complex media, according to some authors
chirality itself is due to randomly positioned helices in the medium.
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Homogenisation (random media)

Recently, there has been a resurgence of interest in the homogenisation of
first- and second-order PDEs in random stationary ergodic media.

This is a very general setting lacking the compactness properties used
extensively in various places in the study of the periodic / almost periodic
homogenisation.

To overcome this difficulty, it is necessary to resort to the ergodic theorem,
coupled with stationarity properties.
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Homogenisation (random media)

Self-averaging environments

Periodic, quasi-periodic (linear combination of periodic of
incommensurate periods), almost periodic (closure of quasi-periodic).

Random: for each experiment we encounter a different material (lack
of information of the exact composition, or true randomness); the
frequency of appearance of each particular material configuration is
described by a probability measure µ on the measurable space of all
possible configurations (Ω,F).
For a random environment to be self-averaging, statistical self
repetition is required (from a sufficiently large block of a particular
realisation of the material, one should be able to reconstruct all
possible realisations of the material at a particular point): stationarity
and ergodicity.
This is a kind of a generalisation of (classical) periodicity, in which
from a single cell the whole material can be reproduced by
translations.
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Homogenisation (random media)

Let (Ω,F,P) be a probability space, and let G be a group of
transformations on Ω.
We say that the probability measure P is preserved under the action τ of
the group G, if P(τA) = P(A) for every A ∈ F.

A typical example of this setup is the case where Ω = R3, i.e., each ω
is identified with a point x ∈ R3.
Further, (R3,+) is the usual translation group, and τy = x + y the
action of a group acting on Ω such that the probability measure is
preserved under the action of the group, i.e.,

P(τyA) = P(A), ∀A ∈ F, ∀y ∈ R3 .
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Homogenisation (random media)

The probability space (Ω,F,P) is to be interpreted as follows: Each
realisation ω is to be understood as a particular configuration of the
medium. In other words, each experiment we perform on a particular
medium corresponds to a particular choice of ω ∈ Ω. However, it is neither
known beforehand, nor with certainty, which medium is to be realised at
the time instant that the experiment is performed. The probability that a
particular medium is realised is given by the probability measure P.
A random variable F : Ω→ X , where X is an appropriate metric space will
serve as a mathematical model for a medium. For instance, when
X ∈ R6×6 we may consider F as a particular outcome of the
electromagnetic parameters of a random complex medium (e.g., a
particular outcome of Aor,ω or Gω ).
More precisely, if F is a measurable function on Ω, we will call for each
fixed ω ∈ Ω, F (τxω) a realisation of F . A measurable function F is called
invariant under the group action if F (τxω) = F (ω) for every x and ω.

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 77 / 95



Homogenisation (random media)

Ergodicity and Stationarity

1 The action τ is called ergodic if for all A ∈ F

τx A = A , ∀x ∈ R3 =⇒ P(A) = 0, or P(A) = 1.

2 A random variable F is called stationary if

∀y ∈ R3, F (x + y , ω) = F (x , τyω), a.e. in x, a.s.

An alternative definition of ergodicity is to say that an action is ergodic if
every invariant function under this action is the constant function almost
surely in Ω (P-a.s.). One can say that ergodicity implies that when moving
along the medium (in one realisation), by the time we reach infinity it is as
if we have seen all possible realisations of the medium at a single point.
This allows to interchange averaging over the probability measure with
averaging over space.
As for stationarity, it means that what is observed at a point x is
statistically the same with what is observed at the point x + y (this is the
analogue of periodicity).
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Homogenisation (random media)

These properties guarantee that, in a statistical sense, parts of the
material located at different positions will present the same properties.
This fact allows us to look at average properties of the material at long
scales and obtain nice expressions for these quantities.
The ergodic hypothesis implies that instead of looking at an ensemble
average of media, and averaging the properties of the medium on the
ensemble average, we may consider a single realisation of the medium
whose spatial dimensions are large and sample its properties by traversing
this single realisation for large enough distances.
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Homogenisation (random media)

Complex Media Electromagnetics

Now, let O be a domain in R3, filled with a random complex linear
electromagnetic medium. We consider the case where the randomness is
assumed to be spatial only. The effect of the random structure of the
medium is that the electromagnetic field is a random field, whose
evolution is given by the random Maxwell equations

∂t(Aor,ωu + Gω ? u) = Mu + j , in (0,T ]×O, (50)

subject to the perfect conductor boundary condition

n × u1 = 0, in [0,T ]× ∂O ,

and for homogeneous initial conditions u(x , 0) = 0, x ∈ O.
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Homogenisation (random media)

The coefficients of the medium are now random variables, with a spatial
dependence; the same can also hold for the source term j .
The fields u = u(t, x ;ω) are random fields (vector space valued random
variables).
All these random variables are assumed to be defined on a suitable
probability space (Ω,F,P) related to the nature of the random structure of
the medium.

The differential equation (50) is now an equation between random
variables and is assumed to hold almost surely in P; it is a random
differential equation.
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Homogenisation (random media)

The medium coefficients must be of such form as to allow us to model
small scale (fast varying) random microstructure:

1 Consider a probability space (Ω,F,P) and let Φ(·, ω) : R3 → R3 be a
random diffeomorphism P−a.s. with the property that gradΦ is
stationary under an ergodic group action, i.e.,

∀y ∈ R3, gradΦ(x + y , ω) = gradΦ(x , τyω).

2 The random medium can be modelled with coefficients of the form

Aor,ω = Aεor(x , ω) = Aor

(
Φ−1

(x

ε
, ω
))

,

Gω = Gεd(t, x , ω) = Gd

(
t,Φ−1

(x

ε
, ω
)) (51)

where Aor(y) and Gd(y , t) are deterministic matrix valued functions
periodic in y ∈ R3 with common period Y , while Φ is as above.
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Homogenisation (random media)

This assumption on the coefficients of the medium is inspired by recent
very interesting work by X. Blanc, C. Le Bris and P.-L. Lions (2006, 2007)
on stochastic elliptic homogenisation. This type of coefficients models
some kind of statistical periodicity of the medium and guarantees
ergodicity.

In order to be able to model the small scale periodic microstructure, we
must let ε vary over a range of arbitrarily small values. We are therefore
led to a sequence of random boundary value problems,

(Aεoru
ε + Gεd ? uε)′ = Muε + j (52)

with initial condition uε = 0, and the perfect conductor boundary condition

n × uε1 = 0, on O. (53)

The explicit t, x and ω dependence is omitted for simplicity.

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 83 / 95



Homogenisation (random media)

If the solution of the above sequence of random boundary value problems
exists for all ε > 0, then this will generate a sequence of random fields
{uε} = {uε(t, x , ω)}. To understand the effects of small scale random
microstructure we must go to the limit as ε→ 0.
Questions similar to those posed in the deterministic case arise, e.g.,

Does the sequence of random fields {uε} converge in some weak sense to
a limit random field u∗ ?
Is this limit random field the solution of a differential equation

(Ah
oru
∗ + Gh

d ? u∗)′ = Mu∗ + j ,

similar in type with the original Maxwell system, but now with constant
coefficients Ah

or, Gh
d ?

Can these coefficients be specified by those of the original medium?
Can it be that, in certain circumstances, the limiting field and the limiting
differential equation are not random?

The answer to these questions is complicated, since quantities involved are
random fields defined on a probability space and not just deterministic
functions.
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Homogenisation (random media)

Well posedness of the random Maxwell system

Theorem

The Maxwell system (50) is uniquely solvable for all ε > 0 and ω ∈ Ω and
the solution satisfies

‖uε(t)‖X ≤ C , for all ε, t > 0, P − a.s.

and
‖uε(t)‖L2(Ω,F,P;X) ≤ C , for all ε, t > 0.

The existence of a solution P-a.s. follows by the Galerkin method.
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Homogenisation (random media)

An auxiliary random elliptic problem

Motivated by a formal two scale expansion we see that the following
random elliptic system is closely related to the Laplace transformed
random Maxwell problem.
Consider a 6× 6 random matrix Ae` expressed in block form as

Ae` =

(
a b
c d

)
, (54)

where a, b, c, d are random matrices of the form assumed in (51).

Definition

For a random matrix Ae` (x , ω) as in equation (54) consider the random
elliptic operator Lε : H1

0 (O)× H1
0 (O)→ H−1(O)× H−1(O), defined as

Lε = divx(Ae` (x , ω) gradx ·) .

Note that it is the quantity m
(
Φ−1

(
x
ε , ω
))

which is random. The matrix
m itself is not random.
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Homogenisation (random media)

Assumption (Ae` )

The matrix Ae` ∈ L∞(O,R6×6) is assumed to satisfy the conditions

1 There exists a positive constant c1 such that |Ae` (z) y · y| ≥ c1 |y|, for
almost all z ∈ O and all (deterministic) y ∈ R6.

2 There exists a positive constant c2 such that |A−1
e` (z) y · y| ≥ c2 |y|,

for almost all z ∈ O and all y ∈ R6.

When choosing z = Φ−1
(
x
ε , ω
)

the above Assumption holds P-a.s. for the
family of random matrices {Aεe` }.
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Homogenisation (random media)

Definition (random averaging operator)

Let s be a random field of the form s(x , y , ω) = s
(
x ,Φ−1(y , ω)

)
. The

random averaging operator is defined as

〈s〉 =

(
E
[∫

Y
det(gradΦ(y , ω)) dy

])−1

E

[∫
Φ(Y )

s(x ,Φ−1(y , ω))dy

]
.

This is the random generalisation of the periodic averaging operator used
in the deterministic case.
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Homogenisation (random media)

Definition (random cell systems)

For j = 1, 2, 3, ` = 1, 2 the random cell systems are the random elliptic
systems

Lc

(
r

(j)
1

r
(j)
2

)
=

(
divya],j
divyc],j

)
, Lc

(
v

(j)
1

v
(j)
2

)
=

(
divyb],j
divyd],j

)
, (55)

where Lc is the random matrix operator

Lc = −divyAor

(
Φ−1(y , ω

)
grady · )

and m(y) = m(Φ−1(y , ω)), where m is a proxy for the matrices a, b, c, d.
These equations are supplemented with the conditions (a generalisation of
the periodic boundary conditions used in the deterministic case)

gradys = grady š(Φ−1(y , ω)), grady š is stationary, 〈gradys〉 = 0 (56)

where s is a proxy for the random fields r (j), v (j), j = 1, 2, 3.
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Homogenisation (random media)

This system of equations (55) is called the cell system and complemented
with the boundary conditions (56) has a unique solution (modulo random
constants).
Note that in (55) y is in R3 rather than in Y ; it is Φ−1(y , ω) that belongs
in Y .
The solvability follows by a proper application of the Lax-Milgram lemma,
adapting the approach of Blanc, Le Bris, P.-L. Lions (2007) to elliptic
systems.
The solution is in L2(Ω,F,P; H1

loc(R3)× H1
loc(R3)).
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Homogenisation (random media)

Consider now the 3× 3 matrices ah, bh, ch, dh defined as

(ah)ij = 〈aij +
3∑

k=1

aik∂yk r
(j)
1 +

3∑
k=1

bik∂yk r
(j)
2 〉,

(bh)ij = 〈bij +
3∑

k=1

aik∂yk v
(j)
1 +

3∑
k=1

bik∂yk v
(j)
2 〉,

(ch)ij = 〈cij +
3∑

k=1

cik∂yk r
(j)
1 +

3∑
k=1

dik∂yk r
(j)
2 〉,

(dh)ij = 〈dij +
3∑

k=1

cik∂yk v
(j)
1 +

3∑
k=1

dik∂yk v
(j)
2 〉,

(57)

where r
(j)
` , v

(j)
` , j = 1, 2, 3, ` = 1, 2 are the solutions of the cell systems

(55) and the averaging operation is to be understood in the sense defined
above.

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 91 / 95



Homogenisation (random media)

Definition (homogenised diffusion matrix)

The constant coefficient matrix

Ah
e` =

(
ah bh

ch dh

)
, (58)

where ah, bh, ch, dh are defined as in (57) is called the homogenised
diffusion matrix.

The following random homogenisation theorem holds for the elliptic
problem:

Theorem

Consider the solution uε of the random elliptic problem Lεuε = f . As
ε→ 0, we have that uε ⇀ uh, in H1

0 (O)× H1
0 (O), P-a.s. where uh is the

solution of the elliptic problem Lhuh = f . The homogenised matrix Ah
e` is

given as in (58). Furthermore, Aεe` uε ⇀ Ah
e` uh, in L2(O).
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Homogenisation (random media)

Homogenisation of the random Maxwell system

We work with the Laplace transform of the Maxwell system and make the
following

Assumption

The block matrix

Aor,ω(y , p) := Aor,ω(y)+Ĝω (y , p) =

(
ε+ ε̂d ξ + ξ̂d
ξtr + ξ̂trd µ+ µ̂d

)
=:

(
εL ξL
ζL µL

)
satisfies the conditions of the assumptions on Ae` .
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Homogenisation (random media)

The following random elliptic operators are needed.

Definition

The auxiliary “microstructure” random elliptic operator associated with the
Maxwell system is

LεM = −divx(Aε,tror gradx ·), (59)

and the auxiliary “cell” random elliptic operator associated with the
Maxwell system is

Lc,M = −divy ((Aper
or )trgrady ·) (60)

Let Ah
or,ω be the homogenised matrix for the random elliptic system of the

above definition, obtained as in the previous discussion. Then, the Laplace
transform of the homogenised constitutive relation is given by

d̂h = Ah
or,ωû
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Homogenisation (random media)

We now perform random elliptic homogenisation for the auxiliary elliptic
systems and obtain the constant coefficient matrix Ah

or. Note that by the
ergodicity of the medium the homogenised coefficients are deterministic.

Theorem

The solution uε = (E ε,Hε)tr of the random Maxwell system

(Aεoru
ε + Gεd ? uε)′ = Muε + j

satisfies
uε
∗
⇀ u∗, in L2(Ω,F,P; L∞([0,T ],X)),

where u∗ = (E ∗,H∗)tr is the unique solution of the Maxwell system

(Ah
oru + Gh

d ? u)′ = Mu + j

with homogeneous initial conditions and perfect conductor boundary
conditions, where the homogenised coefficients Ah

or and Gh
d are defined as

above.
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