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Entropy condition and conservation laws

Many phenomena in continuum mechanics may be modelled as
systems of hyperbolic conservation laws:

oU(x,t) B

Their solutions need to be considered together with some
admissibility condition,
also called entropy condition.



One initial data for the following scalar equation may allow for two solutions:
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Or consider equations of ideal magnetohydrodtynamics:

0:p + Ox(pvy) = 0,

0, pv, + O (pvi + p+ le)

0;pv; + 0, (pv,v; — B,B,) = 0,

oB; + 0,(v,B; — B,v,) =0,

0E+0.((E+ p+1iB)v, —B,B,-v,) =0.

with initial conditions:
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Again the equations allows for two solutions:
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Candidates for admissibility:

® second law of thermodynamics: the solution
should satisfy an additional differential
inequality, entropy inequality

® take into account viscous effects: take limit of
vanishing viscosity

We shall use the following admissibility (or entropy) condition:

(pP(s))¢ + div(pug(s)) < 0

where ¢ is an appropriately chosen convex functional.

In particular an entropy condition should imply stability.
For gas dynamics it should be able to preserve nonnegative density
and internal energy.



Thus we approximate our PDE by a Godunov-type scheme
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where the discrete solution satisfies

(U7 = n(U7) G(U Uihy) = G(U, U) < 0

h; discrete entropy inequality

Such an a priori bound ensures that we compute physically relevant shocks.

For gas dynamics entropy consistency should give:
if p” > 0 and €™ > 0, then p"™' > 0 and "' > 0. POSITVITY



Brief history of approximate Riemann solvers

In the | Reconstruct
2. Evolve
3. Average

Algorithm

slide 10

Phil Roe in 1981 noticed that it is not necessary to do the evolution
step (2.)(the Riemann solution) exact, because we loose quite a bit of
information in the averaging step (3.).

He thus suggested to introduced an approximate Riemann solver.

He introduced a local linearization of the flux which is consistent and
conservative.



Shock tube problem for the Euler equations of compressible gas dynamics:
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This is the exact solution of the Riemann problem.



For the Euler equations Roe’s approximate Riemann solver
consists of three constant states separated by jumps.
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Harten, Lax, van Leer 1983: even simpler approximate Riemann solver
with only two waves, called the “HLL” solver.

waves for the system t
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Toro et.al. (1994) for gas dynamics improved the HLL solver by introducing a
middle wave, the “HLLC"” solver.

Siliciu (1990), Tzavaras (1999) Coquel (1999), Coquel &

KL (1999) and others noticed that the HLLC solver
could be improved by a relaxation approach.

Francois Bouchut

Nonlinear Stability

of Finite Volume Methods

for Hyperbolic

Conservation Laws

and Well-Balanced Schemes
for Sources

This opened the way for precise tools to analyze these
schemes, see book by Bouchut (2004):

- relaxation solvers -

which are entropy consistent (stable), accurate and
allow for rigorous analysis
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The idea of relaxation solvers (using gas dynamics)

We embed system of compressible gas dynamics into a more “complete model”.

For smooth solutions of the Euler equations
Pt ‘|‘2 (pu)e =0
(pu)t + (pu” +p)z =0
E + (u(E +p))$ =0

we can write an evolution equation for the pressure:

(pp)t + (pup)z + p°p (p)us =0

Replace p by a new dependant variable 7 and let ¢ replace the soundspeed p+/p’(p)

— T
(,07'(')15 + (,07Tu -+ CQUJ)Q; — pp ) Siliciu (1990), Coquel, et.al. (1999)




the enlarged system has a small parameter € > 0 s.th.

e > 0 enlarged system
e =0 original system pt + (pu)z = O

(pw)t + (pu® + m)e =0
Ey+ [(E+ 7)ules =0

(pm)¢ + (pru 4 Pu)y = pr—

€

The constant ¢ replaces the sound speed, which is a nonlinear function.

The advantage of the extended system is that by making the pressure a new
dependent variable it easy to solve the Riemann problem for the homogeneous
part of the extended system (all eigenvalues are degenerate).



wave speeds for the

system of extended

gasdynamics:

U (multiplicity 2)
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waves for the original
system of gasdynamics:
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Absolutely essential is the choice of the constant C (replacing the sound speed).

c > p\/ ' ( p) “subcharacteristic condition”
more precise:
t
. « lee. 9 C

The choice of C determines the “stability’ of U ;l u )

. . \\\ > S , K -
this relaxation. U Uf,,./,U+ p
It ensures an entropy inequality.
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This is analyzed a la Chen, Levermore, Liu |l

(1994) allowing for rigorous justification. X




For practical purposes, in order to devise a formula for a
numerical scheme, one has to choose a particular value for C out
of the possible values the inequality allows for.
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This ensures the optimal properties of this approximate Riemann solver.



additional

dependent
variables of the
extended system

T

lllustrate relaxation solver in phase space

phase space:

equilibrium
manifold

pt + (pu)s =0
(pw)t + (pu® 4+ )z = O
Ei+ [(E+mu]r =0

y(m)t + (pru+ 2u)e = p- ; -
©

the solution of
the original

0
system lives (pU)¢ + (,OHZ +p)e =0
0

dependent variables of the original system

pr + (pu)y = 0.u, E

here E, + (u(E+p)) _



additional Numerical procedure in phase space:

dependent

variables of the _
O
extended system (n T 1)At

brojection equilibrium
manifold

evolution
v

nA\t

the solution of dependent variables of the original system
the original
system S lives
here
This results in a numerical method for the original system.



It is possible to extend the entropy S of the original system of gas dynamics to an entropy Sextended

of the system of extended gas dynamics
such that for e — (0 the extended entropy converges to the original entropy.

T

Seaj tended

equilibrium
manifold
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this procedure translates Riemann solvers for the extended system to
Riemann solvers for the original system

® preserves p > ()
® can handle vacuum

® this ensures that the “second law of thermodynamics” is
staisfied by the numerical solution of our original system



A relaxation solver for magnetohydrodynamics

Bouchut, Klingenberg, Waagan: A multi-wave approximate Riemann solver for
Ideal MHD based on relaxation | - theoretical framework, Numerische
Mathematik (2007)

Brief introduction into magnetohydrodynamics (MHD)

- ionized compressible gas subject to magnetic fields

- couple the Euler equations of compressible gas dynamics to equations for
magnetic fields

Ideal MHD: Ignore resistivity (“viscous effect”™) == hyperbolic
system.

New issues:
* Coupled with elliptic constraint V - B=0.
* Nonstrictly hyperbolic

* Nonconvex (not strictly hyperbolic) = compound waves



In components:

P
pu
pu
puw

B(x)

B

B(z)

E

Conservation laws of MHD
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go to
page 41




One-dimensional MHD
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Note that

o
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In1-D, V- B = 0 means B®) = constant.
Variations in B*) remain stationary.

I-D equations reduce to 7-wave system for

i = (p, pu, pv, pw, BY), B*), E).

Jacobian matrix has 7 eigenvalues (wave speeds)

U, ULICs, UILCYH, UICf

also write (v, w) = u,

(ByaBZ) =B
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Waves 1in one-dimensional MHD

u entropy waves — contact discontinuities
y=e; slow magnetosonic waves
WEETCA Alfvén waves
== fast magnetosonic waves

Magnetosonic waves are genuinely nonlinear



The divergence of B

—

In theory V - B = 0.
True att = 0 = true for all time.

Numerical methods may not preserve this.

Various approaches:

* Don’t worry about it
(ok for smooth solutions to order of method)

* Divergence-cleaning — projectiononto V- B =0

* Constrained transport:
Staggered grids and updating formula that preserves

V-B=20

e 8-wave solver — advect V - B away



wave speeds for the original system of MHD:

the Powell 8-wave structure



comparing wave structure for hydrodynamics (HD) and MHD:

e HD (Euler): (n = 9) e VIHD: (n = &)
“A=u, U U U+ Cc,u—C -)\:u,u,u+cf,u—cf,
U+ Cp,U — CAp, U+ Cg, U — Cg

- nonlinear wave mode - wave modes: fast, Alfven, slow

- type of shock - types of shocks



Designing the relaxation solver for MHD

The extended system for MHD:

()t + [pru+ (¢ 4+ ¢f — cq)u — cab-ui]e = p

(p )i + (priu + cou — cabu)z = p




dynamics:

wave speeds for the system of extended magnetohydro
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A three wave approximate Riemann solver is obtained by:
Set ¢; = ¢, = ¢y

Theorem

The approximate Riemann solver defined by this 3-wave relaxation is positive and
defines a discrete entropy inequality if for all intermediate states we have:




The proof of the discrete entropy inequality

At

P S(s(py er ™) = i o(s(pf ) + = (Gryy — Gry) <O

is given in Bouchut, Kl.,Waagan (2007).

A formal derivation of this for smooth solutions is available by a Chapman-Enscog expansion.

Write T = P+ %Bi — %B§+g(e)+0(62) T = —BxBx—|—‘|—gJ_€—|—O(€2)
Insert this into the extended system

pt + (pu)z =0

(pu)i + (pu® + 1)y =
(pui)e + (puv + 71 )e =0
FEi+|[(E4+m)u+my -uyil, =0
(B1):+ (Biu—Bguy), =0

()i + [pmu + (5 + ¢} — cq)u— cab-ully = p

(pT1)e + (pmLu+ cqu — cobu)y = p



This gives

pt + (pu)z =0
(A 42— 2 B..b _
(ﬂu)t T (Pu2 T 77):6 — € ( ; (Pp/ -+ Bi)) Uy T (BafBl - )(“L)az T 0(62)
B,b c? ) | 5
(pur)e + (puv + 7L ) = € | (BB - Jug + (? — Ba:)(uL)x + O(€%)
[+ R -2 B..b
Fr + [(E +m)u+ Ty UL]w — e|u ( 5 (Pp/ -+ Bi) Uy + u(ByB 1 - ) - (Un)a
B..b c2 _
+ U - (Ba;‘BJ_ : )um + U | (?a — BQQ;)(UJ_>m -+ 0(62)

(BL)¢ + (Biu — Bzuy)e =0

The entropy is evolved by an equation of the type

nU)t +GWU )z — E[n/(U)D(U)U:U]w — _ED(U)tnﬂ(U)Uw Uy

The conditions of the theorem then ensure entropy dissipation.
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When devising a numerical scheme we need to get concrete speeds of the
waves out of the inequality in the theorem.

Bouchut, Klingenberg, Waagan: A multiwave approximate Riemann solver for
ideal MHD based on relaxation Il - numerical aspects, manuscript (2007)

Theorem:

For the three wave solver the following relaxation speeds are sufficient to guarantee
bositivity and entropy stability:

T, — T
¢ = paj + ap | (w — up)y - ( , s+
pl\/ZTZ+ PrQgr

T — T,
Cr — prag + Py ((ul — ur)—|— | ( l )—I_ )

_v+1
2

and o] a, are given by a complicated formula.

where o



We have also found a seven wave approximate solver.

again we can prove entropy consistency under some complicated
“subcharacteristic” condition

We have explicit formulas for the speeds.



0.8

0.6

0.4

0.2

5-wave
solver

3-wave solver

HLL

stationary left-going Alfven wave

p=10 p=1.0

B, = —sin(2rx) B, =

— cos(2mx)

v =sin(2rx) w = cos(27x)

B, = 1.0,

v =5/3.



How do relaxation solvers compare to other
solvers in applications?

We tested such a new approximate Riemann solver in an astrophysics code:

PROMETHEUS

developed in Max Planck Institute Astronomy (in Munich) since 1989 (Muller)
ported to FLASH (in Chicago) and still used today.

This code solves the hydrodynamic equations and has additional physical effects
implemented.

Klingenberg, Schmidt, Waagan: Numerical comparison of Riemann
solvers for astrophysical hydrodynamics, Journal of Computational

Physics (2007)



PROMETHEUS - modified

PROMETHEUS (preliminary)

PPM

(piecewise parabolic method) PPM with our Riemann solver

This uses an “exact” Riemann solver. This uses our approximate Riemann solver.

It is higher order accurate.




Our approximate Riemann solver satisfies the entropy condition

and it also ensures that density will not become negative.

The PPM method in PROMETHEUS can not guarantee this.

Thus PPM with our Riemann solver can not guarantee this.

Hence we have also changed the numerical method in
PROMETHEUS which makes the method higher order accurate.

PROMETHEUS - modified:

our Riemann solver, made higher order such that positivity is preserved

a new time integration was implemented (Runge-Kutta)



we compared these two codes:

® in one space dimension: particular Riemann problems
® in two space dimensons: mixing layers

® in three space dimensions: driven fully developed turbulence
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one space dimension:

Riemann problems

Reference
RK-HLLC
RK-exact

PROMETHEUS -

modified

0.4

0.5 0.6 0.7 0.8 0.

9




This Riemann \ :
problem has U@lOCZ?fy
two strong
rarefaction
waves going
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PROMETHEUS -
modified
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two space dimensions:

Richtmeyer-Meshkov instability

Contact

Shock
Kefraction Trinsmicced shock
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PROMETHEUS PROMETHEUS -
modified:
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The growth of instability is similar for both codes'

as seen here by transversal component of kinetic energy.



three space dimensions, turbulence simulations:

DB: iso2Madbld_0005 hierarchy
Cycle: 367  Tme:0.25

vorticity .

Var: Vorticity
- 3250 1.0
—250.0 :
—175.0 10.8
Max: 1034, (
Min: 0.4871
Y-AXIS

7 user: schmidt
1 U Mon Dec 19 14:48:29 2005



These stmulations elucidate the intermittent
structure of turbulent flow

“*Vorticity is concentrated in regions of fractal dimension D <3

“*Subsonic turbulence: Vortex filaments (eddies)
“*Supersonic turbulence: Sheets of high vorticity (shocks)



time evolution of root mean squared Mach number
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conclusion:

dissipativity of PROMETHEUS is independent of Mach number

dissipativity of PROMETHEUS-modified is less for higher than for lower Mach
numbers

The PPM method is widely used in the astrophysics community. Thus there
was a concern on how much their results depend on this algorithm

We conclude that PPM is accurate with respect to the Riemann solver.

PROMETHEUS-modified is at least 20% faster than PROMETHEUS.



