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Level Set Method

The Level Set method has had a great success for the analysis of
front propagation problems for its capability to handle many
different physical phenomena within the same theoretical
framework.
One can use it for isotropic and anisotropic front propagation, for
merging different fronts, for Mean Curvature Motion (MCM) and
other situations when the velocity depends on some geometrical
properties of the front.
It allows to develop the analysis also after the on set of
singularities.
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Level Set Method

Our unknown is the ”representation” function u : R
n × [0,T ] → R

and looking at the 0-level set of u we can back to the front, i.e.

Γt ≡ {x : u(x , t) = 0}
The model equation corresponding to the LS method is

{
ut + c(x)|∇u(x)| = 0 x ∈ R

n × [0,T ]
u(x) = u0(x) x ∈ R

n

where u0 must be a representation function for the front (i.e.




u0 > 0, x ∈ R
n \ Ω0

u(x) = 0 x ∈ R
n

u(x) < 0 x ∈ Ω0

(1)

The front Γ0 = ∂Ω0.
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Front propagation and minimum time problem

Let the velocity of the front in the normal direction is a given
c : R

n → R

Minimum time problem
Target set =Ω0

Dynamics

{
ẏ(t) = −c(y)a, a ∈ B(0, 1)
y(0) = x

(2)

Minimum time function

T (x) ≡ inf{t ∈ R+ : yx(t; a(t)) ∈ Ω0}
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Monotone evolution

T (·) is the unique viscosity solution of

max
a∈B(0,1)

{c(y)a · ∇T (x)} = 1 ∈ R
n \ Ω0

with the Dirichlet condition

T (x) = 0 on ∂Ω0

If c does not change sign the evolution is monotone (increasing or
decreasing) and we have the following link

u(x , t) = T (x) − t

So we can solve the stationary problem and get any front Γt , for
t > 0.
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More General Models

In the standard model the normal velocity c : R
n → R is given, but

the same approach applies to other scalar velocities





c(x , t) isotropic growth with time varying velocity
c(x , η) anisotropic growth, cristal growth
c(x , k(x)) Mean Curvature Motion
c(x) obtained by convolution (dislocation dynamics)
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SL schemes for MCM





ut(x , t) = div
(

Du(x ,t)
|Du(x ,t)|

)
|Du(x , t)|

u(x , 0) = u0(x)

Representation formula (Soner–Touzi):

u(x , t) = E{u0(y(x , t, t))}, Du 6= 0

{
dy(x , t, s) =

√
2P(y , t, s)dW (s)

y(x , t, 0) = x

P(y , t, s) =
1

|Du|2
(

u2
x2

−ux1ux2

−ux1ux2 u2
x1

)
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Construction of the scheme

Soner–Touzi formula between t and t + ∆t :

u(x , t + ∆t) = E{u(y(x , t + ∆t,∆t), t)}

Brownian dimension reduction

√
2PdW =

√
2

|Du|

(
ux2

−ux1

)(
ux2dW1

|Du| − ux1dW2

|Du|

)
= σdŴ

where

σ(x , t) =

√
2

|Du|

(
ux2

−ux1

)
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we can replace the stochastic Cauchy problem by

{
dy(x , t, s) = σ(y , t, s)dŴ (s)

y(x , t, 0) = x .

i.e. with a 1-dimensional brownian motion in the direction tangent
to the curve.
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Euler scheme for SDE

{
yk+1 = yk +

√
2σ(y , tk , 0)∆Ŵk

y0 = x .

with

P(∆Ŵk = ±
√

∆t) =
1

2
.

Time-discretization

u∆t(x , tn+1) = 1
2u∆t(x +

√
2σ(x , tn, 0)

√
∆t, tn) +

+1
2u∆t(x −

√
2σ(x , tn, 0)

√
∆t, tn).

Fully discrete scheme Du 6= 0

un+1
j =

1

2

(
I [un](xj + σn

j

√
∆t) + I [un](xj − σn

j

√
∆t)

)

M. Falcone Convergence of a large time-step scheme for MCM



Introduction
Construction of the scheme

Consistency and monotonicity
Barles-Souganidis theorem revisited

Numerical experiments and comparisons
MCM in codimension 2

Some references

MCM via viscosity solution techniques
Evans-Spruck, J. Diff. Geom., 1991
Evans - Soner-Souganidis, Comm. Pure Appl. Math, 1992, .....
Kohn-Serfaty, Comm. Pure Appl. Math., 2006
Soner-Touzi, J. Eur. Math. Soc, 2002 and Ann. Prob. 2003
Numerical methods
Osher-Sethian, JCP, 1988
Merriman-Bence-Osher, AMS LN, 1993
Crandall-Lions, Numer. Math., 1996
Barles-Georgelin, SIAM J. Num. Anal., 1995
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Modified scheme with threshold C∆x s





un+1
j = 1

2

[
I [un](xj + σn

j

√
∆t) + I [un](xj − σn

j

√
∆t)

]
if |Dn

j | > C∆xs

un+1
j = 1

4

∑
i∈D(j)

un
i if |Dn

j | ≤ C∆xs

Consistency error (case |Dn
j | > C∆xs)

τ∆x ,∆t = O

(
∆x r

∆t

)
+ O

(
∆xq−s

∆t
1
2

)
+ O(∆t

1
2 ) + O(∆t)
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Consistency for small gradients

Let us consider the case |Dn
j | ≤ C∆xs .

Case a: (xj , tn) is such that Du(xj , tn) = 0.
This is a stardad computation based on the consistency with the
heat equation.
Case b : (xj , tn) is such that |Du(xj , tn)| 6= 0 and |Dj [w ]| ≤ C∆x s .
By the lower semicontinuity of F we have that for any ε1 > 0 there
exists a δ1(ε1) such that

F (Du,D2u)(y , s) ≥ F (Du,D2u)(x , t)−ε1 for any (y , s) ∈ Bδ1
(x , t).

(3)
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Consistency for small gradients

The upper semicontinuity of F implies that for any ε2 > 0 there
exists a δ2(ε2) such that

F (Du,D2u)(y , s) ≤ F (Du,D2u)(x , t)+ε2 for any (y , s) ∈ Bδ2
(x , t).

(4)
The interesting case is when for ε ≡ max(ε1, ε2) there exists

(y , s) ∈ Bδ1
(x , t) ∩ Bδ2

(x , t)

such that Du(y , s) = 0. For (x , t) = (xj , tn), we can apply both (3)
and (4) getting

F (Du,D2u)(xj , tn) ≤ F (Du,D2u)(xj , tn) + 2ε (5)
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Consistency for small gradients

In fact, we have

F (Du,D2u)(xj , tn) ≤ −2|D2u(y , s)| + ε ≤ ε =

= lim inf
∆t→0

u(xj ,tn)−H(w ;j)
∆t

+ ε = lim sup
∆t→0

u(xj ,tn)−H(w ;j)
∆t

+ ε ≤

≤ 2|D2u(y , s)| + ε ≤ F (Du,D2u)(xj , tn) + 2ε

and, since ε1 and ε2 are arbitrary, we obtain the result.
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Monotonicity

The standard scheme presented at the beginning is not monotone
even local monotone interpolation operators (linear, bilinear).
We modify it in order to satisfy a relaxed monotonicity property.





un+1
j − un

j

∆t
=

1

ρ2

(
1

2
I [un](xj + σn

j ρ)+
1
2 I [un](xj − σn

j ρ) − un
j

)

un+1
j =

1

4

∑

i∈D(j)

un
i if |Dn

j | ≤ C∆xs .

In compact form we write

un+1
j = Hρ(u

n; j).
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Monotonicity

Since for this scheme Hρ we have

∂Hρ(u
n; j)

∂un
i

≥ −4∆tLI [un],G

Cρ∆xs+1

we need to compensate the negative bound and we add a small
viscosity





Hρ(u
n; j) = Hρ(u

n; j) + ∆t W∆x
ρ∆x s

P
i∈D(j) un

i
−4un

j

∆x2 , if |Dn
j | > C∆xs

un+1
j =

1

4

∑

i∈D(j)

un
i if |Dn

j | ≤ C∆xs .

where W is a positive constant.
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Monotonicity

Differentiating Hρ we get:




∂Hρ(u
n; j)

∂un
j

≥ 1 − ∆t

ρ2
− 4W ∆t

ρ∆x1+s

∂Hρ(u
n; j)

∂un
i

= ψi (xj + σn
j ρ) ≥ 0 for i ∈ S(j) \ (D(j) ∪ {j})

∂Hρ(u
n; j)

∂un
i

≥ −4∆tLI [un],G

Cρ∆xs+1
+

W ∆t

ρ∆x1+s
for i ∈ D(j).

(6)
Then Hρ(u

n; j) is monotone if





1 − ∆t

ρ2
− 4W ∆t

ρ∆x1+s
≥ 0

4LI [un],G

C
< W .

(7)
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Weak monotonicity property

Theorem Under the above assumption, the scheme Hρ satisfies

Hρ ≤ H̃ρ(η; j) + o(∆t).
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Let us consider now a general scheme that is supposed to
approximate our HJ equation. Its abstract form on a lattice will be
given by





un+1
j = SDt(un; j) for j ∈ Z2 n = 0, ...,N − 1

u0
j = u0(xj ) for j ∈ Z2

(HJDt)

where SDt : B(G∆x) → R and B(D) is the space of the bounded
functions defined on D.
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The scheme has to satisfy the following conditions:

A1 - Invariance with respect to the addition of constants For
any k ∈ R and j ∈ Z2,

SDt(v + k; j) = SDt(v ; j) + k (A1)

A2 - Weak consistency
Let us define

F (Dφ,D2φ)(x , t) = lim inf
(y ,s)→(x ,t)

F (Dφ,D2φ)(y , s),

F (Dφ,D2φ)(x , t) = lim sup
(y ,s)→(x ,t)

F (Dφ,D2φ)(y , s).
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Consistency

The consistency assumption (A2) requires

φt(x , t) + F (Dφ,D2φ)(x , t) ≤ lim inf
(xj ,tn)→(x ,t)

∆t→0

φ(xj , tn) − SDt(φn−1; j)

∆t

≤ lim sup
(xj ,tn)→(x ,t)

∆t→0

φ(xj , tn) − SDt(φn−1; j)

∆t

≤ φt(x , t) + F (Dφ,D2φ)(x , t)

where φ ∈ C∞(R2 × (0,T ]) and φn−1 = (φ(xj , tn−1))xj∈G∆x
.

Note that F (Dφ,D2φ), F (Dφ,D2φ)(x , t) are respectively lower
and upper semicontinuous extension of F .
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Note that if F is continuous, then the lim inf and the lim sup must
coincide, and the definition reduces to the usual definition of
consistency.

A3 - Generalized monotonicity

vj ≤ φn−1
j for j ∈ Z2 implies SDt(v ; j) ≤ S̃Dt(φn−1; j)+o(Dt)

where v ∈ B(G∆x) and S̃Dt is a (possibly different) scheme
weakly consistent.
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Then, consider un = (un
j )j∈Z2 with un

j solution of (HJDt) and its

piecewise constant (in time) interpolation uDt defined as:

uDt(x , t) =

{
I [un](x) if t ∈ [tn, tn+1) ,

u0(x) if t ∈ [0,∆t),

where I [·] : B(G∆x) → R is a general interpolation operator

I [un](x) ≡
∑

l∈I(x)

ψl(x)un
l (8)

where ψl(x) are basis functions in R
2 and I(x) is the set of indices

corresponding to the vertices of the cell containing x .
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Let us note that we can always couple the choice of Dt and Dx
according to Dt = CDxγ , with C a positive constant, in order to
deal with a unique discretization parameter. We assume γ ≥ 1
(this parameter has to be tuned to guarantee monotonicity).
The interpolation operator I [·] has to verify a relaxed monotonicity
property:

if vj ≤ ηj for any j ∈ I(x) then I [v ](x) ≤ I [η](x)+o(Dt) (A4)

with v ∈ B(G∆x) and η = (f (xj ))xj∈G∆x
,where f (x) is a smooth

function.
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Moreover I [·] satisfies

|I [η](x) − f (x)| = o(Dt) for any x ∈ R
2. (A5)

Theorem

Assume (A1)–(A5) and let u(x , t) be the unique viscosity solution
of (HJ). Then uDt(x , t) → u(x , t) locally uniformly on R

2 × [0,T ]
as Dt → 0.
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TEST: a shrinking circle

∆t = O(∆x
3
4 ), s =

1

4
.

∆x ∆t ‖ · ‖∞ ‖ · ‖1 L∞ − order L1 − order

0.04 0.08 3.04 · 10−4 6.50 · 10−6

0.02 0.053 1.25 · 10−4 3.42 · 10−6 1.2 0.9

0.01 0.032 5.22 · 10−5 1.82 · 10−6 1.2 1.6

0.005 0.02 2.09 · 10−5 7.75 · 10−7 1.3 1.2
Errors for the SL scheme

M. Falcone Convergence of a large time-step scheme for MCM



Introduction
Construction of the scheme

Consistency and monotonicity
Barles-Souganidis theorem revisited

Numerical experiments and comparisons
MCM in codimension 2

TEST: Development of non empty interior
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Fattening: evolution of the level curves u = 0.095, 1, 1.05
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The torus evolving into a sphere, R < r
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The torus collapsing in a circle, R > r
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Dumb-bell: topology change in R
3
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Crandall-Lions scheme

In the scheme proposed by such problems are avoided by replacing
the matrix Θ in the equation of MCM by the following one:

Θǫ(Du) = I − Du
⊗

Du

|Du|2 + ǫ
,

with ǫ > 0.
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Crandall-Lions scheme cntd

Denoting by ej (j = 1, 2) the canonical base of R
2, we can write

the CL scheme as:
un+1
j = HCL(u

n; j)

where

HCL(u
n; j) = un

j +
∆t

ρ2
(I [un](xj + ρΘǫ(Dj [u

n])e1)+

+I [un](xj + ρΘǫ(Dj [u
n])e2) +

+I [un](xj − ρΘǫ(Dj [u
n])e1) +

+ I [un](xj − ρΘǫ(Dj [u
n])e2) − un

j

)
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The scheme for which convergence is proved is

un+1
j = HCL(u

n; j) +
∆tK

ρ∆x




∑

i∈D(j)

un
i − 4un

j


 .
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Kohn-Serfaty scheme

It has been proved that we can write

div

(
Du(x , t)

|Du(x , t)|

)
|Du(x , t)| = min

a∈S1,a·Du=0

{
aTD2u(x , t)a

}
, (9)

By penalization we can write

min
a∈S1

max

{
aTD2u(x , t)a − 1

ε
a · Du, aTD2u(x , t)a +

1

ε
a · Du

}
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Kohn-Serfaty scheme

We write the scheme as un+1
j = HKS (un; j),

where

HKS (w ; j) = min
a∈S1

max
{

I [w ]
(
xj +

√
2∆t a

)
, I [w ]

(
xj −

√
2∆t a

)}

The average of the (SL) scheme is replaced by a min-max operator.
This scheme is more expensive and difficult to extend to higher
dimension.
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Test : Evolution of a circle (shrinking)

Errors for the SL scheme

∆x ∆t ‖ · ‖∞ ‖ · ‖1 order∞ order1 CPU

0.08 0.16 2.96 · 10−3 4.76 · 10−5 0.15s

0.04 0.08 8.45 · 10−4 1.88 · 10−5 1.80 1.34 0.61

0.02 0.04 3.13 · 10−4 8.19 · 10−6 1.43 1.21 2.5s

0.01 0.02 1.14 · 10−4 3.84 · 10−6 1.45 1.09 12.38s
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Test : Evolution of a circle (shrinking)

Errors for the min−max scheme

∆x ∆t ‖ · ‖∞ ‖ · ‖1 order∞ order1 CPU

0.08 0.16 2.95 · 10−3 4.51 · 10−5 0.8s

0.04 0.08 1.81 · 10−3 1.88 · 10−5 0.7 1.21 6s

0.02 0.04 9.04 · 10−4 7.76 · 10−6 1.0 1.27 1m29s

0.01 0.02 2.54 · 10−4 3.45 · 10−6 1.83 1.16 26m11s
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Cuves evolving in the space

Let us consider the evolution of a curve C in R
3.

There are two ways to handle the problem:

The curve is described as the intersection of two surfaces This
leads to a system of HJ equation (Osher at alia)

The curve is replaced by an ε-tube centered at the curve C.
We study the evolution of the surface and get back to the
curve in the limit for ε→ 0.

Following the second characterization, the (SL) scheme has been
extended to codimension-2 problems.
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Cuves evolving in the space

{
ut = F (D2u,Du) R

3 × [0,∞)

u(x , 0) = 1
2d(x , C)2

where
F (A, p) = inf

ν∈N (p)
{trace[APν ]}

and N (p) = {ν ∈ S2 : Pνp = 0}, and Pν = ννT

Soner–Touzi formula

u(x , t) = inf
ν∈U

{E{u(yν(x , t, t), 0)}}

with U = {ν : [0,T ] → S2 ⊂ R
3 : ν · Du(x , t) = 0}
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MCM in codimension 2

The generalized characteristics curves solve

{
dyν(x , t, s) =

√
2ν(s)dŴ (s)

yν(x , t, 0) = x

L.Ambrosio, M.Soner, Level Set Approach to Mean Curvature Flow
in Arbitrary Codimension, J.Differential Geometry, 43 (1996),
693-737.
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MCM cod 2: Numerical approximation

Time-discrete scheme

u∆t(x , tn+1) =
1

2
inf

νn∈ bU

{
u∆t(x +

√
2∆tνn, tn) + u∆t(x −

√
2∆tνn, tn)

}

Fully-discrete scheme

un
j = min

νn∈R3
{1

2 I [un](x +
√

2∆tνn) + 1
2 I [un](x −

√
2∆tνn) +

+
(|Dn

j
νn|)2

ǫ1
+ (|νn|−1)2

ǫ2
}.
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Evolution of ǫ helical surface,ǫ = 0.008.
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Evolution of two linked circles in R
3 (ǫ-tube).
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Optimal Trajectory Algorithm

s0 := xjmin point of the curve

νn∗
j = argmin

νn
j
∈Û

{un(sj +
√

2∆sνn
j )} j = 0, ..., ĵ

sj+1 = sj +
√

2∆sνn∗
j j = 0, ..., ĵ

|s0 − s
ĵ
| ≤ ǫ
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