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Introduction

> Subsurface properties vary over many scales and there are many small
features that can impact the overall flow.

> Typical approaches involve upscaling where effective (homogenized)
equations are postulated and effective parameters are tabulated (e.g.,
Darcy law, ...).
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Introduction. Multiscale porous media.

» Flow in porous media: div(k(x)Vp) = f, k(x) is permeability.

» Small scales (no periodcity) and high contrast are present.

» Examples. Periodic small scales - k(z) = k(z, T).

High-contrast I:Ifr)f:((z))

X e_ﬁ.
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Local upscaling/homogenization.

R [ R —

Comparisons between fine and coarse models are done using average energies.
Local flow problem div(kV @) =0, ¢ = @pnar is solved. F(k) = [kV¢V.
Similarly, div(k*V¢*) =0, ¢* = @pnar is solved. F*(k*) = [k*V¢ V™.

Minimization ||k — k*|[v = F(k) — F*(k*)(= 0). For ¢pnar = = gives
k' = ﬁ J kV¢V¢ (e.g., Durlofsky et al., 1991, Bourgeat et al., 1987...).

v vV v v
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Reduced multiscale models

» We are interested in approximating the solution in V' of
div(k(z)Vp) = f.

Lk o U

» Instead: we look for a coarse-scale representation of
p =00 pidi, p* = 3 529% p; @y, such that ||p — p*[|y s
small given a coarse grid.

> Q: how determine ®;; sparsity; coarse grid and control
accuracy? Applications to preconditioners.
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Multiscale FE!.

> Approximation via basis functions defined on a coarse grid:
Vo = Span{®;}.

> Then, mass conservation or Galerkin formulation can be written to
compute the coarse degrees of freedoms.

local
A

1)

domain

div(k(x)Vp) = 0
in local region

> Basis: div(k(z)V®;) =0 in w;, ®; = &Y on bdr.

> If div(k(z)Vp) = f (or L(p) = f). Then, p=>", ¢;®;, where ¢; are found
by writing mass conservation or Galerkin formulation. E.g.,

(LY, i), @5) = (f, ®;)

Hou and Wu, JCP 1997, Babuska et al. 1984,...
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[llustration of basis functions
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Upscaling vs. multiscale

Upscaling (homogenization)
> local effective parameters

» different source/bc
> local changes:

» few parameters

E

=

Multiscale FEM:
» local basis functions

» different source/bc
> local changes:

> (local) basis functions

local
b

global domain

div(k(r)Vp) =0
in local region



Multiscale basis functions

> Some advantages: non-uniform gridding; built-in fine-scale recovery;
multiple basis per node; enforcing global information;

> Multiscale basis functions. Boundary conditions (important!).

local A

global domain

div(k(x)Vp) = 0
in local region

> Piecewise linear boundary conditions result to large discrepancies near the
edges of coarse blocks (e.g., the solution is u ~ ug + eu1(zx, £) along
coarse edge while MsFE solution is linear). Error o< ¢/H.

» Suberid information at the boundaries needed to gcet an accurate solution.

9

46



Convergence property of MsFEM

Consider ke(z) = k(z/€), where k(y) is periodic in y.

H - computational coarse-mesh size.

Theorem (Hou, Wu, Cai, 1998) Denote pf the numerical solution obtained by
MsFEM, and p. the solution of the original problem. Then,

If H > e,
lpe = pZ Nl < CUH + 1/ 77)

> The ratio ¢/ H reflects two intrinsic scales. We call ¢/H the resonance error

» The theorem shows that there is a scale resonance when H ~ ¢. Numerical
experiments confirm the scale resonance.

» For problems with scale separation, we can choose H > ¢ in order to avoid
the resonance, but for problems with continuous spectrum of scales, we
cannot avoid this resonance.
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Resonance errors

» To demonstrate the influence of the boundary condition: Multiscale
expansion of ¢'

¢ = do(x) +epr(w,x/€) +eb + ...,
where 0 satisfies div(k.V0) =0, 0 = —¢1(x,z/€) on IK.

© (without oversampling)
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Subgrid approximation improvement

» Improving subgrid capturing errors: oversampling ? (used to
avoid artificial boundary condition effects).

.

|

» The errors depend on localization assumptions (Hou et al.
1999, Efendiev et al., 1999, Babuska et al. 2006, Nolen et al.
2008, ....)

» Limited global information (Owhadi and Zhang, 2006,
Efendiev, Hou, ...., 2006, 2009, ...). Local-global approaches...

» Main question: can we add basis functions so that MsFEM
solution converges to the fine-scale solution?

*Hou and Wu, JCP 1997
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Classical upscaling or numerical homogenization.

Multiscale finite element methods (J. Aarnes, Z. Cai, Y. Efendiev, V.
Ginting, T. Hou, X. Wu....)

Mixed multiscale finite element methods (Z. Chen, J. Aarnes, T. Arbogast,
K.A. Lie, S. Krogstad,...)

MsFV (P. Jenny, H. Tchelepi, S.H. Lee, lliev, ....)

Mortar multiscale methods (T. Arbogast, M. Peszynska, M. Wheeler, I.
Yotov,...)

Subgrid modeling and stabilization (by T. Arbogast, |. Babuska, F. Brezzi,
T. Hughes, ...)

Heterogeneous multiscale methods (E, Engquist, Abdulle, M. Ohlberger,

Numerical homogenization (NH) using two-scale convergence (C. Schwab,
V.H. Hoang, M. Ohlberger, ...)

NH (Bourgeat, Allaire, Gloria, Blanc & Le Bris, Madureira, Sarkis,
Versieux, Cao, ...)

ANC ~Aaveanine (D AMAacellavel )
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Coarse-scale spaces in DD preconditioners

> div(k(2)Vp) = f.

Fine V = span{qbi}l]y:f1

Coarse: Vp = span{®;} ¥ |
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Coarse-scale spaces in DD preconditioners

> div(k(z)Vp) = f,

Fine V = span{qﬁi}ﬁ\;fl

Coarse: Vp = span{®;} 1 |

» Au=b, Ayug= by,

where a;; = (kV¢;, V) and af; = (kV®;, V&;).
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Coarse-scale spaces in DD preconditioners

> div(k(z)Vp) = f,
Fine V = span{qﬁi}ﬁ\;fl Coarse: Vp = span{®;} 1 |
> Au = b, Aouo = bo,

where a;; = (kV¢;, Vo;) and a?j = (kV®;,VD;).

» Multiscale/upscaling goal: reduce ||u — ug|| that depends on

small scales (e.g., €¢/H, € is small scale) and the contrast
(kmax/kmin)-
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Coarse-scale spaces in DD preconditioners

> div(k(z)Vp) = f,
Fine V = span{<Z>Z-}£\;f1 Coarse: Vp = span{®;} 1 |
> Au = b, Aouo = bo,

where Qi5 = (k:VqSl,ngj) and a% = (k:V(bZ,V@j)

» Multiscale/upscaling goal: reduce ||u — ug|| that depends on
small scales (e.g., ¢/H, € is small scale) and the contrast
(kmax/kmin)'

» DD preconditioners iterate on a residual until convergence

(number of iterations!). The number of iterations depends on
the contrast in the presence of small scales.
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DD preconditioners

> Additive Schwarz preconditioner of the form
B '=REA'Ro+ N RTAT'R;,

> Goal: to keep the number of iterations independent of physical parameters
(cond(B™*A) < C independent of contrast).

...compute the residual, then solve coarse and local problems.

...used to obtain x_new
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We are interested in the cases with highly heterogeneous coefficients within
coarse regions.

There are many works for cases with nearly homogeneous coefficients
within coarse regions (Widlund, Wheeler, Drya,...)

M. Sarkis (LNCSE 2001, Cont. Math. 2002) - quasi-monotonic
coefficients. Also, the use of extra basis functions

Aarnes and Hou ( Acta Sinica 2002) - the use of multiscale basis in DD
preconditioners

Graham, Scheichl (Num. Math. 2007) - cases with inclusions, energy
minimizing basis

Xu and Zhu ( M3AS 2008) - Analysis of the spectrum of preconditioner
operator

T. Arbogast, I. Yotov, M. Wheeler, ... (Comp. Geo., 2007,...) -
Preconditioning of various discretization of multiscale PDEs
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Eigenvalue problem

» Eigenproblem div(k(z)V;) = \ik(x)1;

» The weight is very important for dimension reduction.

10

-
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Eigenvalue problem

» Eigenproblem div(k(x)V;) = Nik(x)1;
» The weight is very important for dimension reduction.
> “gap” = M < <.l <A< /\L+1 < ... <Ay,

10

-
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Eigenvalue problem
» Eigenproblem div(k(x)V;) = Nik(x)1;
» The weight is very important for dimension reduction.
> “gap’ - A < A< < Ap <Apg <<y,

> A\, ..., Az are small, asymptotically vanishing eigenvalues

(S EIVYil?/ [ Elil?)

10

-
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Eigenvalue problem

» Eigenproblem div(k(x)V;) = Nik(x)1;
The weight is very important for dimension reduction.

"gap” - M < A< <A< )‘L-i-l <. <Ay,

v

v

> A1, ..., Az are small, asymptotically vanishing eigenvalues

([ kIVil?/ [ klil?)

“No-separation” is possible when inclusions approach to each
other (L. Borcea and G. Papanicolaou, 1997,...)

v

- - s
102 4 x 1072 x 107°  4107° > 10

23/
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Coarse spaces

» In our work, we take the coarse space to be
Vo = Span{xi;*} = Span{®;},

where w; is the union of coarse grids with common vertex i
(wg is the union of coarse grids with common edge with K),
and ; is a partition of unity function for the node i.
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Coarse spaces in preconditioners

» |t was proved (Galvis and Efendiev, 2009) that

cond(B~1A) < )\*C if the coarse space “spans” the
L+1

eigenfunctions. A main difficulty is to prove the following fact.

1
/k‘(v[ov)zj / kvl
K AKL+1 Jug

1
k|VIyv|* < max{l, ——— k|Vvl|?,
J I < max(1, gy [kl

where Iyv is the coarse-scale projection of v.

» From the above theorem, one can show that
cond(B~1A) < C(1 + (H/J)?) independent of contrast.
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Numerical result
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Numerical result

n Linear MS EMF LSM; LSM:.

10* 81(3.8e+3) ( ) | 52(3.8e+2) ( ) (
10° 88(3.8e+4) ( ) | 60(3.8e+3) ( ) (
10° 111(3.8e+5) | 91(2.1e+5) | 68(3.8e+4) | 40(56.53) | 37(33.40
107 141(3.8e+6) ( ) | 76(3.8e+5) ( ) (
108 156(3.8e+7) ( ) | 86(3.8e+6) ( ) (
10° 175(3.8e+9) ( ) | 73(2.3e+7) ( ) (

Number of iterations until convergence of the PCG and condition number for different values of the contrast n with
the coefficient. We set the tolerance to le-10. Here H = 1/10 with h = 1/100. The classical (one basis per node)
coarse problems size is 81 X 81. The new coarse problem is of size 321 x 321.

P Multiscale basis functions are constructed by solving local problems with linear boundary conditions, i.e., for
each node i, div(kV¢;) = 0 in w;, and ¢; is linear on dw;.

P Energy minimizing basis functions (e.g., Xu and Zikatanov 2004) are constructed by minimizing
= [ RIVe; .
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Dimension reduction

» There can be many eigenfunctions
» How to reduce the dimension of the coarse space?
> Inclusions vs. channels. Reduction " for inclusions*
> Inclusions - high-conductivity regions inside the coarse block.
Channels - high-conductivity regions connecting one boundary
to the other of the coarse block.

coarse grin/

Multiecale cantirine
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Reducing the dimension of coarse space

» How to reduce the dimension of the coarse space (and handle
tensor coefficients)?

Coarse gri with isolated Coarse grid without isoated inclusions
nclusions and channels

TI=MD i e only 2 smal igenvalies. We canconsiuct basi forthese o
eigenvectors and add one mutscale basis functon representing solated inc

» Intuition: Isolated inclusions can be represented with a single
basis function per node (localization), while channels need to
be represented separately.
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Reducing the dimension

» We start with initial basis multiscale basis functions, x; (one
basis function per coarse node). Define “energy”

7‘; = Zf\;1 k|in|2'

» Then, we take the “important” eigenvalues/eigenvectors of
div(kV;) = A\ikip;, and form coarse space as before

Vo = Span{xi¥;}
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Dimension reduction

» The main objective is to minimize the variations in k as much
as possible. Note that “important” eigenvalues are determined
by high-conductivity part of k.

» Using initial multiscale finite element basis functions, one can
take into account the information that can be localized and

then complement these basis functions.

» It can be shown that cond(B~1A) < C.
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Numerical experiment

Figure: Left: Coarse mesh. Center: Original coefficient. Right: Coefficient
k computed using (linear) multiscale basis functions.
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Numerical experiment

n MS [ LSM (& = k) | LSM( &)
10* 98(2490.75) 27(6.19) | 28(7.34)
10° 123(24866.24) 28(6.19) | 29(7.35)
10° 144(248621.33) 29(6.19) | 29(7.35)
107 | 174(2486172.35) 29(6.19) | 30(7.35)

| Dim | 49 | 102 | 69 |

Table: Number of iterations until convergence and estimated condition
number for the PCG and different values of the contrast n. Here H = 1/8
with h = 1/80. The notation MS stands for the (linear boundary
condition) multiscale coarse space, and LSM is the local spectral

multiscale coarse space
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Numerical result
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Coarse-scale approximation

» This is joint work with J. Galvis and X.H. Wu.

D i o,
0 pindmiNm § § 5
C— el —
0 i-imSNE @ @ @

IJC:::IJI:‘GO

[ e
O iR s 5 5 =

» The choice of basis functions. e
e 0



High-contrast “homogenization” problems

» Previous MsFEM approaches do not consider the contrast in
the problem, Kz /kmin, (except, Chu, Graham, Hou, 2009
and Berlyand and Owhadi, 2009).

» Homogenization and network results for high-contrast problems
(L. Borcea, G. Papanicolaou, Berlyand, Novikov,... 1997, 1998,
... Smyshlyaev et al., 2005-2008, ...).
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Multiple basis per node

» Multiple basis per node is needed to represent distinct
important features of the solution

ql

lobal solution flux~k(g1-p1)

pl

n2 2 |The ratio of

in channels

q3
p3

! Global solution flux~k(q3-pB)
Global solution flux~k(q2-p?)
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Pressures

Fine scale sol (10201
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Errors

H MS EMF LSMy LSM-RE RLSM
1/10 | 0.98(0.98) | 0.24(0.24) | 0.11(0.11) | 0.06( 0.06) | 0.10(0.10 )
1/20 | 1.46(1.47) | 0.85(0.87) | 0.14(0.14) | 0.09(0.09) | 0.13(0.13)
Relative energy error. Here h = 1/100, n = 10* (n = 10°).
H MS EMF LSM1 LSM-RE RLSM
110 0.03(0.03) | 0.001(0.001) 0.0003(0.0003) | 0.0003(0.0003) | 0.0002(0.0002)
210 0.06(0.07) 0.03(0.04) | 0.00004(0.00006) | 0.0001(0.0001) | 0.0004(0.0003)
Relative weighted L2 error. Here h = 1/100, n = 10* (n = 10°).
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Convergence

For sufficiently large A, = min,,, and under additional assumptions, we have

RS (

for some v > 0.

H"/
)

+ | LSM, H=1/10 | LSM, H=1/10 | LSM, H=1/20 | LSM, H =1/20
0 0.14 (A\=28) 0.18 (A=0.27) 0.18 (A=0.25) 0.13 (A\=4)
+2 | 0048 (A=3.34) | 0.039 (A=1.18) | 0.021 (A=.4.2) | 0.019 (A=1.11)
+3 0.043 (A=5.3) | 0.028 (A=2.25) 0.012 (A=5.1) | 0.0189 (A=1.89)
+4 0.03 (A=7.1) 0.022 (A=3.4) 0.007 (A=8.2) 0.05 (A=2.7)

> OQur objective is to reach to higher values of A, with smaller coarse spaces.

» The choice of initial multiscale basis functions is important and allows fast
increase in A,

» Convergence rate is H'*# /A., where 8 > 0 smoothness.
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Local-global multiscale model reduction

» Multiscale methods are typically designed to provide approximations for
arbitrary coarse-level inputs

» Can we develop local-global multiscale models if the input set belongs to a

smaller set?

Fine—scale
system
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Local-global multiscale model reduction

Appropriate
coarse—scale
system

» The main idea is to use an appropriate number of basis functions locally
and choose a certain number of global modes.

> p. = Ap + Bw, g = Cp, where A is the fine-scale forward model. w is
assumed to be coarse-scale input data.

> Our goal is to find gy such that ||g — qg]| is small. We will consider
a—q0 = (¢~ qo0) + (g0 — q0)-

> To obtain reduced model for a given input-output relation, Balanced
Truncation method is used. Balanced truncation involves solving Lyapunov
equations AP + PAT + BBT =0, AQ + QAT + CCT =0 to identify
important basis for the global system.
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Local-global multiscale model reduction

» Coarse system (po): = Aopo + Bow, go = Copo.

» Balanced Truncation for an appropriate coarse system

AoPy + PoAf + BoBo" =0, AoQo + QoAf + CoCo” =0
> It can be shown that [lg — g5 || < |CllaH /Aw + X2, 07

MS MS Error BT Error Total
+0 0.12(0.12) | 0.23(0.04) | 0.29(0.12)
+1 0.079(0.079) | 0.25(0.06) | 0.29(0.109)
+2 0.062(0.062) | 0.26(0.06) | 0.29(0.099)

() - BT with 10 SV, else with 3 SV.
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Eigenvector computation
The computations of eigenfunctions, though local, can be expensive.
We show that one can still achieve an optimal result with
hierarchical computation of eigenfunctions.

Bl
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Eigenvector computation

The computations of eigenfunctions, though local, can be expensive.

We show that one can still achieve an optimal result with

hierarchical computation of eigenfunctions.

(YE, J. Galvis, P. Vassilevski, Spectral agglomerate AMGe method
for high-contrast problems, DD19.).
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Conclusions

>

Reduced model approximation of the solution of PDEs via
coarse-scale basis functions.

Eigenvalue problems for capturing important effects

Dimension reduction - inclusions vs. channels. The choice of
initial multiscale (one per node) basis functions.

Optimal (w.r.t. the contrast) preconditioners.
Subgrid accuracy of multiscale finite element methods
Model reduction

Hierarchical computation of eigenvectors
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