Well Posedness and Derivation of Multi-Fluid Models

D. BRESCH

Laboratoire de Mathématiques, UMR5127 CNRS
Université de Savoie
73376 Le Bourget du lac
France
Email: didier.bresch@univ-savoie.fr

ANR-08-BLANC-0301-01 project MATHOCEAN managed by D. LANNES
Collège de France, Friday 11 March 2011
Partial Differential Equations and Applications, P.–L. LIONS’s Chair
Outline

1. Some multi-fluid systems;
2. Local well-posedness;
3. Global weak solutions and invariant regions;
4. Multi-fluid model as limit of mono-fluid model.
Some multi-fluid systems
Local well-posedness
Global weak solutions and invariant regions
Multi-fluid model as limit of mono-fluid model

A model with an algebraic closure (common pressure)

$$\alpha_+ + \alpha_- = 1,$$
$$\partial_t (\alpha^+ \rho^+) + \text{div} (\alpha^+ \rho^+ u^+) = 0,$$
$$\partial_t (\alpha^- \rho^-) + \text{div} (\alpha^- \rho^- u^-) = 0,$$
$$\partial_t (\alpha^+ \rho^+ u^+) + \text{div} (\alpha^+ \rho^+ u^+ \otimes u^+) + \alpha^+ \nabla P = 0,$$
$$\partial_t (\alpha^- \rho^- u^-) + \text{div} (\alpha^- \rho^- u^- \otimes u^-) + \alpha^- \nabla P = 0,$$

$$P = P_-(\rho_-) = P_+(\rho_+),$$

with

$$0 \leq \alpha_\pm \leq 1.$$
The model with algebraic closure

Non-conservative, non-hyperbolic system if $0 \leq |u^+ - u^-| < c_m$ with

$$c_m^2 = c_-^2 c_+^2 ((\alpha^+ \rho^+)^{1/3} + (\alpha^- \rho^-)^{1/3})^3 / (\alpha^+ \rho^+ c_-^2 + \alpha^- \rho^- c_+^2).$$

In general, c_m is large compared to u^+ and u^- and therefore flow belongs to non-hyperbolic region.

The model with algebraic closure with extra terms

\[
\alpha_+ + \alpha_- = 1,
\]

\[
\partial_t(\alpha^+\rho^+) + \text{div}(\alpha^+\rho^+u^+) = 0,
\]

\[
\partial_t(\alpha^-\rho^-) + \text{div}(\alpha^-\rho^-u^-) = 0,
\]

\[
\partial_t(\alpha^+\rho^+u^+) + \text{div}(\alpha^+\rho^+u^+\otimes u^+ + \alpha^+\nabla P + \pi\nabla\alpha^+) = 0,
\]

\[
\partial_t(\alpha^-\rho^-u^-) + \text{div}(\alpha^-\rho^-u^-\otimes u^-) + \alpha^-\nabla P + \pi\nabla\alpha^- = 0,
\]

\[
P = P_-(\rho-) = P_+(\rho_+),
\]

with

\[
0 \leq \alpha_\pm \leq 1.
\]
The model with algebraic closure

In literature, use Bestion term

\[\pi = \delta \frac{\alpha^+ \alpha^- \rho^+ \rho^-}{\alpha^+ \rho^- + \alpha^- \rho^+} (u^+ - u^-)^2. \]

with \(\delta > 1 \) to get hyperbolicity for small relative velocity.

A low mach number model

\[\alpha^- + \alpha^+ = 1, \]
\[\partial_t(\alpha^+) + \text{div}(\alpha^+ u^+) = 0, \]
\[\partial_t(\alpha^-) + \text{div}(\alpha^- u^-) = 0, \]
\[\rho^+(\partial_t(\alpha^+ u^+) + \text{div}(\alpha^+ u^+ \otimes u^+)) + \alpha^+ \nabla P + \pi \nabla \alpha^+ = 0, \]
\[\rho^-(\partial_t(\alpha^- u^-) + \text{div}(\alpha^- u^- \otimes u^-)) + \alpha^- \nabla P + \pi \nabla \alpha^- = 0, \]

with \(\rho^- \) and \(\rho^+ \) constants and \(P \) the Lagrangian multiplier associated to the constraint \(\alpha^+ + \alpha^- = 1. \)
Hyperbolic with Bestion closure namely:

$$\pi = \delta \frac{\alpha^+ \alpha^- \rho^+ \rho^-}{\alpha^+ \rho^- + \alpha^- \rho^+} (u^+ - u^-)^2$$

with $\delta > 1$.

Rq: We will see a model which shares the same form:
The two-layers shallow-water system between rigid lids: See slide 14.
In this model, $\pi = 0$ and a term $cst \nabla \alpha^+$ appears in the $+$ momentum component.
A model with an algebraic closure

- Local well-posedness on an associated low mach number limit system, see [1]
- Global weak solutions if degenerate viscosities and capillarity terms, see [2]
- Invariant regions, see [2]
- Global weak solutions in one space dimension if degenerate viscosities, see [3]

A model with a PDE closure (equation on fraction)

\[
\begin{align*}
\alpha_+ + \alpha_- & = 1, \\
\partial_t \alpha^+ + u_{\text{int}} \cdot \nabla \alpha^+ & = \frac{1}{\lambda_P} (P^+ - P^-), \\
\partial_t (\alpha^+ \rho^+) + \text{div} \ (\alpha^+ \rho^+ u^+) & = 0, \\
\partial_t (\alpha^- \rho^-) + \text{div} \ (\alpha^- \rho^- u^-) & = 0, \\
\partial_t (\alpha^+ \rho^+ u^+) + \text{div} \ (\alpha^+ \rho^+ u^+ \otimes u^+) + \alpha^+ \nabla P^+ + P_{\text{int}} \nabla \alpha^+ & = \frac{1}{\lambda_u} (u^+ - u^-), \\
\partial_t (\alpha^- \rho^- u^-) + \text{div} \ (\alpha^- \rho^- u^- \otimes u^-) + \alpha^- \nabla P^- + P_{\text{int}} \nabla \alpha^- & = \frac{1}{\lambda_u} (u^- - u^+),
\end{align*}
\]

with \(u_{\text{int}} \) and \(P_{\text{int}} \) respectively interface velocity and interface pressure explicitly given in terms of the unknowns.
If $\lambda u \to 0$, One-velocity field. See works by F. DIAS, D. DUTYKH and J.–M. GHIDAGLIA (2010) on a two-fluid model for violent aerated flows.

Viscous multi-fluid model as limit of viscous mono-fluid model:
(One-velocity field), see [4].

LOCAL WELL POSEDNESS WITH NO-IRROTATIONALITY CONDITION

Collaboration with M. Renardy: Paper [1]
The model (SW) in $\Omega = T^2$ or R^2

\[
\begin{align*}
 h_t + \text{div} \ (h v_1) &= 0, \\
 -(h_t + \text{div} \ ((1 - h)v_2)) &= 0, \\
 (v_1)_t + (v_1 \cdot \nabla)v_1 + \frac{\rho - 1}{\rho} \nabla h + \frac{1}{\rho} \nabla p &= 0, \\
 (v_2)_t + (v_2 \cdot \nabla)v_2 + \nabla p &= 0.
\end{align*}
\]

Remark. Indices 1 and 2 refer to the bottom and top layer respectively. Density of bottom layer $\rho = \rho_1/\rho_2 > 1$, the top one equals 1. The depth of the bottom layer is $h_1 = h$ and top $h_2 = 1 - h$. Gravity g is taken equal to 1.

Theorem. Let $\rho > 1$ and $s > 2$. Assuming that $(h_0, v_1^0, v_2^0) \in (H^s)^5$ with $0 < h_0 < 1$ are such that

\[
|v_1^0 - v_2^0|^2 < (\rho - 1)(h_0 + \rho(1 - h_0))/\rho. \tag{1}
\]

is satisfied and, moreover, $\text{div} \ (h_0 v_1^0 + (1 - h_0)v_2^0) = 0$. Then, there exists $T_{\text{max}} > 0$, and a unique maximal solution $(h, v_1, v_2) \in C([0, T_{\text{max}}); (H^s)^5)$ (and a corresponding pressure p) to the system (SW), which satisfies the initial condition $(h, v_1, v_2)|_{t=0} = (h_0, v_1^0, v_2^0)$.
Non-irrotational case: First result to the authors’s knowledge.

Main result: Local well-posedness under optimal restrictions on the data by rewriting the system in an appropriate form which fits into the abstract theory of T.J.R. HUGHES, T. KATO and J.E. MARSDEN related to second order quasi-linear hyperbolic systems.

Idea: Isolate the “essential” part, using the total derivative $\partial_t + V \cdot \nabla$ operator with V the weighted average velocity $V = (\rho(1-h)v_1 + hv_2)/(\rho(1-h) + h)$.
Some Mathematical comments

Assumption equivalent to the one obtained by P. GUYENNE, D. LANNES, J.–C. SAUT [GLS2010] in the one-dimensional case (see (24)\textsubscript{3}) and better than the one obtained in the irrotational case (see (44)\textsubscript{3}). With our notation, Condition (44)\textsubscript{3} in [GLS2010] reads

\[\|v_1^0 - v_2^0\|_\infty^2 < (\rho - 1)(1 + \rho - (\rho - 1)\|2h_0 - 1\|_\infty)/2\rho. \]

We note we obtain if we replace the L^∞ norms by point values.

Methods in GLS2010:

In one-dimension, explicit relation between v_1 and v_2: $v_2 = -hv_1/(1 - h)$. In the bi-fluid framework, no gravity inside, see B.L. KEYFITZ’s works (reduction indicated due to C.M. DAFERMOS) related to singular shocks, Riemann problems and loss of hyperbolicity.

In irrotational-two dimensional case, non-local relation between $v_1 = \nabla \Phi_1$ and $v_2 = \nabla \Phi_2$ through

\[\text{div}(h\nabla \Phi_1) = -\text{div}((1 - h)\nabla \Phi_2). \]

The interesting difficulty being to define an appropriate symmetrizer.
Some physical comments

Physical point of view: Condition arises from the competition between the Kelvin-Helmholtz instability and the stabilizing effect of gravity.

Same condition obtained in the study of long wave linear stability of density stratified two layer flow with a constant velocity in each layer (take the limit $k \to 0$ with surface tension coefficient $\gamma = 0$ and $g = 1$ in (3.6) of Funada-Joseph):

$$|v_1 - v_2|^2 \leq \left[\frac{\tanh(k h_1)}{\rho_1} + \frac{\tanh(k h_2)}{\rho_2} \right] \frac{1}{k} [(\rho_1 - \rho_2)g + \gamma k^2]$$

See also the recent fundamental mathematical paper D. LANNES in the nonlinear framework. Note that papers T. FUNADA – D.D. JOSEPH and D. LANNES concern potential flows.
Remark: Same kind of result in 3 dimension for $s > 5/2$ with application for the two-fluid models of a suspension page 903 (with no viscosity $\mu = 0$) in R. Caflish, G. PapafnioLaou (SIAM J. Appl. Math (1983)).

Remark: If no gravity and nothing more, well posedness only for analytical data (See E. Grenier, Comm. Partial Diff. Eqs (1996)).

Remark: Important to deal with non-irrotational data in bifluid framework. For instance Bestion closure in the momentum equations.

$$P_{\text{int}} \nabla \alpha_i = \delta \frac{\alpha_1 \alpha_2 \rho_1 \rho_1}{\alpha_2 \rho_1 + \alpha_1 \rho_2} (u_1 - u_2)^2 \nabla \alpha_i$$

with $\delta \geq 1$.

Remark: Important from a numerical point of view: Iterative scheme!
We take the divergence of the last two equations and obtain

\[
\left(\frac{\partial}{\partial t} + (v_1 \cdot \nabla) \right) \text{div} v_1 + \frac{\rho - 1}{\rho} \Delta h + \frac{1}{\rho} \Delta p = - \text{tr} ((\nabla v_1)^2),
\]

\[
\left(\frac{\partial}{\partial t} + (v_2 \cdot \nabla) \right) \text{div} v_2 + \Delta p = - \text{tr} ((\nabla v_2)^2).
\]

We can eliminate \(p \) and combine these two equations in the form

\[
\rho \left(\frac{\partial}{\partial t} + (v_1 \cdot \nabla) \right) \text{div} v_1 - \left(\frac{\partial}{\partial t} + (v_2 \cdot \nabla) \right) \text{div} v_2 + (\rho - 1) \Delta h
\]

\[
= - \rho \text{tr} ((\nabla v_1)^2) + \text{tr} ((\nabla v_2)^2).
\]

We introduce the following weighted average of the velocity ("Favre velocity"):

\[
V = \frac{\rho(1 - h)v_1 + hv_2}{\rho(1 - h) + h}.
\]
Algebraic computations

With this, we can write in the form

\[
\left(\frac{\partial}{\partial t} + (V \cdot \nabla) \right) \text{div} (\rho v_1 - v_2) + (\rho - 1) \Delta h \\
+ \frac{\rho}{h + \rho(1 - h)} (v_1 - v_2) \cdot (h \nabla \text{div} v_1 + (1 - h) \nabla \text{div} v_2)
\]

\[= -\rho \text{tr} ((\nabla v_1)^2) + \text{tr} ((\nabla v_2)^2). \]

Combining the first two equations, we find

\[
\text{div} (h v_1 + (1 - h) v_2) = 0.
\]

Using this, we find

\[
\left(\frac{\partial}{\partial t} + (V \cdot \nabla) \right) \text{div} (\rho v_1 - v_2) + (\rho - 1) \Delta h \\
- \frac{\rho}{h + \rho(1 - h)} ((v_1 - v_2) \cdot \nabla)^2 h = f_1(v_1, v_2, h, \nabla v_1, \nabla v_2, \nabla h),
\]

where \(f_1 \) depends only on the arguments indicated.
Next, we multiply the first equation of System ("mass equation") by $\rho (1 - h)/(h + \rho (1 - h))$, the second equation by $h/(h + \rho (1 - h))$ and subtract. The result is

$$h_t + (V \cdot \nabla)h + \frac{(1 - h)h}{h + \rho (1 - h)} \text{div} (\rho v_1 - v_2) = 0.$$

We can now combine to find

$$\left(\frac{\partial}{\partial t} + (V \cdot \nabla)\right)^2 h = \frac{(1 - h)h}{h + \rho (1 - h)} \left(\rho - 1\right) \Delta h$$

$$- \frac{\rho}{h + \rho (1 - h)} \left(\left(v_1 - v_2\right) \cdot \nabla\right)^2 h + f_2(v_1, v_2, h, \nabla v_1, \nabla v_2, \nabla h, h_t).$$

For given v_1 and v_2, this is a second order hyperbolic equation for h as long as

$$|v_1 - v_2|^2 < \left(\rho - 1\right)(h + \rho (1 - h))/\rho.$$
Iterative scheme

Use an abstract result established by T.J.R. Hughes, T. Kato and J.E. Marsden. We begin with a quote of the abstract theorem, see pages 275–276. This result concerns evolution problems of the form

\[\dot{u} = A(t, u)u + f(t, u), \]

where \(u \) takes values in a Banach space, \(A(t, u) \) is the infinitesimal generator of a \(C_0 \)-semigroup, and \(f \) is a “perturbation” term. We say that \(A \in G(X, M, \omega) \) if

\[\| e^{At} \|_{L(X)} \leq Me^{\omega t}. \]

The construction of the solution is by an iteration of the form

\[\dot{u}^{n+1} = A(t, u^n)u^{n+1} + f(t, u^n), \]

with fixed initial condition \(u^n(0) = u_0. \)
Theorem. Let $Y \subset Z \subset Z' \subset X$ be four real Banach spaces, all of them reflexive and separable, with continuous and dense inclusions. We assume that
1) Z' is an interpolation space between Y and X (i.e. linear operators which are bounded on both Y and X are also bounded on Z').
Let $N(X)$ be the set of all norms on X equivalent to the given one. On $N(X)$ we introduce a distance function

$$d(\cdot \|_{\alpha}, \cdot \|_{\beta}) := \ln \max \{ \sup_{z \neq 0} \frac{\|z\|_{\alpha}}{\|z\|_{\beta}}, \sup_{z \neq 0} \frac{\|z\|_{\beta}}{\|z\|_{\alpha}} \}.$$

Let W be an open set in Y. We assume that there is a real number β and positive numbers λ_N, μ_N, ... such that the following hold for all $t, t' \in [0, T]$ and $w, w' \in W$.
2) $N(t, w) \in N(X)$, and

$$d(N(t, w), \cdot \|_X) \leq \lambda_N,$$

$$d(N(t', w'), N(t, w)) \leq \mu_N [|t' - t| + \|w' - w\|_Z].$$
3) There is an isomorphism $S(t, w) \in B(Y, X)$, with

$$\|S(t, w)\|_{Y, X} \leq \lambda_S, \quad \|S(t, w)^{-1}\|_{X, Y} \leq \lambda_S',
\|S(t', w') - S(t, w)\|_{Y, X} \leq \mu_S[|t' - t| + \|w' - w\|_Z].$$

4) $A(t, w) \in G(X_{N(t, w)}, 1, \beta)$.

5) $S(t, w)A(t, w)S(t, w)^{-1} = A(t, w) + B(t, w)$, where $B(t, w)$ is a bounded operator in X and $\|B(t, w)\|_X \leq \lambda_B$.

6) $A(t, w) \in B(Y, Z)$ with

$$\|A(t, w)\|_{Y, Z} \leq \lambda_A, \quad \|A(t, w') - A(t, w)\|_{Y, Z'} \leq \mu_A\|w' - w\|_{Z'}.$$

Moreover, the mapping $t \to A(t, w) \in B(Y, X)$ is continuous in norm.

7) $f(t, w) \in Y$, with

$$\|f(t, w)\|_Y \leq \lambda_f, \quad \|f(t, w') - f(t, w)\|_{Z'} \leq \mu_f\|w' - w\|_{Z'},$$

and the mapping $t \to f(t, w) \in X$ is continuous.
Hughes-Kato-Marsden Theorem

If all of the above assumptions are satisfied, and \(u_0 \in W \subset Y \), then there is a \(T' \in (0, T] \) such that System (I) has a unique solution \(u \) on \([0, T']\) with \(u \in C([0, T']; W) \cap C^1([0, T']; X) \). Here \(T' \) may depend on all the constants involved in the assumptions and on the distance between \(u_0 \) and the boundary of \(W \). The mapping \(u_0 \to u(t) \) is Lipschitz continuous in the \(Z' \)-norm, uniformly for \(t \in [0, T'] \). The solution is obtained by the iteration.
To apply the result, we shall view w_i as determined by ω_i, ϕ_i, and v_i given by

$$v_i = w_i + q_i + \nabla \phi_i.$$

Thus, $v_i \in (H^s)^2$ is determined by $\omega_i \in H^{s-1}$, $q_i \in \mathbb{R}^2$, $h \in H^s$, and $h_t \in H^{s-1}$. We set

$$u = (h, g, \omega_1, \omega_2, q_1, q_2),$$

where g represents h_t. The spaces are given as

$$Y = H^s \times H^{s-1} \times (H_0^{s-1})^2 \times \mathbb{R}^4,$$

$$Z = Z' = H^{s-1} \times H^{s-2} \times (H_0^{s-2})^2 \times \mathbb{R}^4,$$

$$X = H^1 \times L^2 \times (L_0^2)^2 \times \mathbb{R}^4.$$

Here the subscript 0 denotes functions of zero average. We define W to be a sufficiently small neighborhood of the initial data in Y; in particular W must be small enough so that h and $1 - h$ have strict lower bounds and (1) (with v_i given by through Helmotz decomposition) holds uniformly on W.
Application

We can set

\[S = ((-\Delta + 1)^{(s-1)/2})^4 \times (Id)^4. \]

Consider

\[u = (h, g, \omega_1, \omega_2, q_1, q_2), \quad \tilde{u} = (\tilde{h}, \tilde{g}, \tilde{\omega}_1, \tilde{\omega}_2, \tilde{q}_1, \tilde{q}_2). \]

We define

\[
A(\tilde{u})u = \begin{pmatrix}
g, \\
-2(\tilde{V} \cdot \nabla)g - (\tilde{V} \cdot \nabla)^2 h + \frac{(1 - \tilde{h})\tilde{h}}{\tilde{h} + \rho(1 - \tilde{h})} \left((\rho - 1)\Delta h\right) \\
\rho \frac{\tilde{h}}{\tilde{h} + \rho(1 - \tilde{h})} \left((\tilde{v}_1 - \tilde{v}_2) \cdot \nabla \right)^2 h, \\
-(\tilde{v}_1 \cdot \nabla) \omega_1 - \omega_1 \text{div} \tilde{v}_1, \\
-(\tilde{v}_2 \cdot \nabla) \omega_2 - \omega_2 \text{div} \tilde{v}_2, \\
0, \\
0
\end{pmatrix}
\]

where \(\tilde{\phi}_i, \tilde{v}_i \) and \(\tilde{V} \) are given in terms of \(\tilde{u} \) through the relations (mass equation, algebraic relation...).
Moreover, we define

\[
(N(\tilde{u})u)^2 = \|h\|^2 + \left\| \left(\frac{1 - \tilde{h}}{\tilde{h} + \rho(1 - \tilde{h})} \right)^{1/2} (\rho - 1)^{1/2} \nabla h \right\|^2 \\
- \left\| \left(\frac{\rho(1 - \tilde{h})^{1/2}}{\tilde{h}} \right) \left((\tilde{v}_1 - \tilde{v}_2) \cdot \nabla \right) h \right\|^2 + \|g + (\tilde{V} \cdot \nabla) h\|^2 \\
+ \|\omega_1\|^2 + \|\omega_2\|^2 + |q_1|^2 + |q_2|^2.
\]

The verification of the assumptions is quite routine using the definition of \(W, N(w), S \) and \(A(w) \). Assumption 4 follows from the Lumer-Phillips theorem (dissipativity of \(A(w) \) and surjectivity of \(A(w) - \lambda_0 \text{Id} \) for some \(\lambda_0 > 0 \) with the appropriate constants and norm), and the remaining assumptions can be verified using the fact that \(H^{s-1} \) is a Banach algebra, as well as a multiplier in lower order Sobolev spaces. The reader is referred to paper by \textsc{Hughes-Kato-Marsden} for an application to nonlinear elasto-dynamics of the Theorem for which a similar system is involved.

1) Appropriate unknowns imply adequate variables to study low Mach number limits. System closed to the non-isentropic system.

2) With bestion term, the incompressible bi-fluid system gives

\[
\left(\frac{\partial}{\partial t} + (\mathbf{V} \cdot \nabla) \right)^2 \alpha_+ = \frac{(1 - \alpha_+)_+}{\alpha_+ + \rho(1 - \alpha_+)} \left(\frac{\delta \rho}{\alpha_+ + (1 - \alpha_+)_+} |u_+ - u_-|^2 \Delta \alpha_+ - \frac{\rho}{\alpha_+ + \rho(1 - \alpha_+)} ((u_+ - u_-) \cdot \nabla)^2 \alpha_+ \right) + f_2(u_+, u_-, \alpha_+, \nabla u_+, \nabla u_-, \nabla \alpha_+, (\alpha_+)_t)
\]

with \(f_2(u_+, u_+, \alpha_+, \nabla u_+, \nabla u_-, \nabla \alpha_+, (\alpha_+)_t) = 0 \)
Effect of viscosity and surface tension

GLOBAL WEAK SOLUTIONS AND INVARIANT REGIONS

Collaboration with X. Huang, J. Li: paper [3]
The model

Introducing viscosity and capillarity effects on bifluid system and write:

\[
\begin{align*}
\alpha^+ + \alpha^- &= 1, \\
\partial_t(\alpha^\pm \rho^\pm) + \text{div}(\alpha^\pm \rho^\pm u^\pm) &= 0, \\
\partial_t(\alpha^\pm \rho^\pm u^\pm) + \text{div}(\alpha^\pm \rho^\pm u^\pm \otimes u^\pm) + \alpha^\pm \nabla p &= \text{div}(\alpha^\pm \tau^\pm) + \sigma^\pm \alpha^\pm \rho^\pm \nabla \Delta (\alpha^\pm \rho^\pm) .
\end{align*}
\]

with

\[
\tau^\pm = 2\mu^\pm D(u^\pm) + \lambda^\pm \text{div} u^\pm \text{Id}
\]

\[
p = p_\pm(\rho^\pm) = A^\pm(\rho^\pm)^\gamma^\pm \quad \text{where } \gamma^\pm \text{ are given constants greater than 1}
\]

Assume

\[
\mu_\pm(\rho^\pm) = \mu^\pm \rho^\pm, \quad \lambda_\pm(\rho^\pm) = 0.
\]
Multi-dimensional case

With surface tension term: Paper [2].

Definition of weak solutions. We shall say that \((\rho^\pm, \alpha^\pm, u^\pm)\) is a weak solution on \((0, T)\) if the following three conditions are fulfilled:

- the following regularity properties hold

\[
\alpha^\pm \rho^\pm |u^\pm|^2 \in L^\infty(0, T; L^1(\Omega)),
\]
\[
\nabla \sqrt{\alpha^\pm \rho^\pm} \in L^\infty(0, T; L^2(\Omega)^3),
\]
\[
\sqrt{\alpha^\pm \rho^\pm} \nabla u^\pm \in L^2((0, T) \times \Omega)^{3 \times 3},
\]
\[
\sqrt{\sigma^\pm} \nabla (\alpha^\pm \rho^\pm) \in L^\infty(0, T; L^2(\Omega)^3),
\]
\[
\sqrt{\sigma^\pm} \Delta (\alpha^\pm \rho^\pm) \in L^2(0, T; L^2(\Omega)),
\]

with following time continuity properties

\[
\alpha^\pm \rho^\pm \in C([0, T]; H^s(\Omega)), \quad \text{for all} \quad s < 1/2,
\]
\[
\alpha^\pm \rho^\pm u^\pm \in C([0, T]; H^{-s}(\Omega)^3) \quad \text{for some positive} \quad s,
\]
Multi-dimensional case

- the initial conditions holds in $\mathcal{D}'(\Omega)$.
- ”Mass” equations hold in $\mathcal{D}'((0, T) \times \Omega)$ and momentum equations multiplied by $\alpha^\pm \rho^\pm$ hold in $\mathcal{D}'((0, T) \times \Omega)^3$: for all $\psi^\pm \in C^\infty([0, T] \times \Omega)^d$ and denoting $R^\pm = \alpha^\pm \rho^\pm$, one has

$$\int_\Omega R^\pm t^2 u^\pm(t, \cdot) \cdot \psi^\pm(t, \cdot) - \int_\Omega R^\pm m_0^\pm \cdot \psi(0, \cdot)$$

$$= \int_0^t \int_\Omega \left[D(\psi^\pm) : \left(R^\pm u^\pm \otimes R^\pm u^\pm - 2\nu^\pm R^\pm u^\pm \right)
+ \sigma^\pm R^\pm \nabla R^\pm \otimes \nabla R^\pm \right] + \sigma^\pm |\nabla R^\pm|^2 \psi^\pm \cdot \nabla R^\pm - \alpha^\pm R^\pm \psi^\pm \cdot \nabla p$$

$$- R^\pm \text{div} u^\pm(u^\pm \cdot \psi^\pm) - 2\nu^\pm R^\pm \psi \cdot (D(u^\pm) \cdot \nabla R^\pm) + R^\pm \nabla^2 u^\pm \cdot \partial_t \psi^\pm$$

$$- \sigma^\pm \text{div} \psi^\pm \left(\Delta R^\pm^3/3 - R^\pm |\nabla R^\pm|^2 \right) \right]$$
Multi-dimensional case

Theorem. Assume $1 < \gamma^\pm < 6$ and that the initial data $(\alpha^\pm, R^\pm_0, m^\pm_0)$ satisfy

$$R^\pm_0 \geq 0, \alpha^\pm_0 \in [0, 1] \text{ such that } \alpha^+_0 + \alpha^-_0 = 1$$

$$\frac{|m^\pm_0|^2}{R^\pm_0} = 0 \text{ on } \{x \in \Omega : R^\pm_0(x) = 0\}.$$

and are taken in such a way that $\int_{\Omega} \frac{|m^\pm_0|^2}{R^\pm_0} < +\infty$, that the initial density fraction R^\pm_0 satisfies

$$R^\pm_0 \in L^1(\Omega), \quad \nabla \sqrt{R^\pm_0} \in L^2(\Omega)^3.$$

Then, there exists a global in time weak solution.
Multi-dimensional case

Sketch of proof and difficulties:

- Non conservative system and non-hyperbolic associated inviscid system....
- Strongly degenerate system.....
- Rewrite system using the R^\pm variables and multiply momentum eqs by R^\pm.
- Combine energy estimate AND BD entropy estimate with implicit function.
- Difficulty to pass to the limit in the pressure term (product)
 \[\implies\] constraints on γ^\pm.

Remark: Up to now, nothing if constant viscosities......
P.–L. LIONS’s (E. FEIREISL) framework??

Multi-dimensional case: Why a degenerate viscosity may help?

Simple example in one-dimensional case:

\[\partial_t \rho + \partial_x (\rho u) = 0 \]

\[\partial_t (\rho u) + \partial_x (\rho u^2) - \nu \partial_x (\rho \partial_x u) + \partial_x p(\rho) = 0 \]

with \(p \) an increasing function.

Energy estimate reads:

\[\frac{d}{dt} \int_{\Omega} \frac{1}{2} \rho |u|^2 + \pi(\rho) + \int_{\Omega} \rho |\partial_x u|^2 = 0 \]

with \(\pi(\rho) \) the potential associated to the pressure.

Differentiating the mass equation with respect to \(x \), multiplying by \(\nu \) and adding with the momentum eqs, we find

\[\partial_t (\rho \mathcal{V}) + \partial_x (\rho u \mathcal{V}) + \partial_x p(\rho) = 0 \]

with \(\mathcal{V} = u + \nu \partial_x \log \rho \). This gives the mathematical BD entropy equality:

\[\frac{d}{dt} \int_{\Omega} \frac{1}{2} \rho |\mathcal{V}|^2 + \pi(\rho) + \frac{\nu}{2} \int_{\Omega} p'(\rho) |\partial_x \sqrt{\rho}|^2 = 0 \]

\[\implies \text{information on } \sqrt{\rho} \partial_x \log \rho = 2 \partial_x \sqrt{\rho} \text{ (using Energy and BD entropy)}. \]
Multi-dimensional case: Why a degenerate viscosity may help?

In multi-fluid setting, after some calculations taking care of the non-conservative term, it gives an extra information on $\nabla \sqrt{R^{\pm}}$ if initially it is the case.

Mathematical difficulties comes from the degenerate framework: Multiplication by R^{\pm} the momentum eqs.
We write
\[
\alpha_n^\pm \nabla p_n = \frac{\alpha_n^+ \gamma^+ - p_n^+}{(\gamma_n^+ + \gamma_n^-)\rho_n^- \rho_n^+} (\rho_n^- \nabla R_n^+ + \rho_n^+ \nabla R_n^-).
\]

When \(1 < \gamma^\pm < 6\), we get \(\alpha_n^\pm \nabla p_n \in L_t^r L_x^r\) with \(r > 1\).

Since \(R_n^\pm \in L_t^\infty H_x^1 \cap L_t^2 H_x^2\) then \(\alpha_n^\pm R_n^\pm \nabla p_n \in L_t^p L_x^p\) for some \(p > 1\).

We can pass to the limit using strong convergence of \(R_n^\pm\) in \(C([0, T], H^s(\Omega))\) with \(s < 1/2\) and strong convergence of \(\alpha_n^\pm\) in \(L^p\) for all \(p < +\infty\) recalling \(\rho_n^\pm\) depends continuously on \(\alpha_n^\pm\) and \(R_n^\pm\).
The one-dimensional in space case

One-d case WITHOUT surface tension term: Paper [3]

In the one-dimensional in space case, results may be strongly improved:

- No need of surface tension and no multiplication by R_{\pm} in momentum eqs.
- Range of coefficients γ_{\pm} improved: $\gamma_{\pm} > 1$
 (same hypothesis than for mono-fluid system!!).
- Original construction of approximate systems (depend on γ_{\pm}).
 To control terms coming from non-conservative pressure terms.
- Possibility to prove vanishing of vacuum states in finite time.
- Local strong regularity, in time and space, of at least one velocity result.

\[\Rightarrow\] Generalization to viscous bifluid-model of results known for mono-fluid model.

The one-dimensional in space case

Why we study viscous models?
See papers by H. BRUCE STEWART and B.B. WENDROFF:
(JCP 1984, JMAA 1986, for some motivations).

Incompressible bifluid framework:
Note that B.L. KEYFITZ, M. SEVER and F. ZHANG use of regularized problem:
Both strictly and weakly overcompressive singular shocks are limits of viscous structures (regularization not only in momentum equations!!).

Compressible bifluid framework:
The possibility to construct weak solutions: First step of similar studies than B.L. KEYFITZ, M. SEVER and F. ZHANG in the compressible setting.
Important remark: Here physical viscosities that means only in momentum eqs.

In the mono-fluid setting, see for instance recent works by:
– C.Q. CHEN, M. PEREPELITSA with constant viscosity
The one-dimensional in space case

Using an original approximate system, we get

Theorem 1: Let $\gamma_\pm > 1$ and adequate initial data (energy spaces). Then for any $T > 0$, there exists a global weak solution $(\alpha_\pm, \rho_\pm, u_\pm)$ to the two-phase system in a usual sense.

Theorem 2: Assume that $\gamma_\pm > 1$. Let $(\alpha_\pm, \rho_\pm, u_\pm)$ be any global weak solution to the two-phase system. Then, there exist some time $T_0 > 0$ (depending on initial data) and a constant ρ so that

$$\inf_{x \in \Omega} \rho_\pm (x, t) \geq \rho > 0, \quad t \geq T_0.$$

Corollary: Let $(t_0, x_0) \in (T_0, T) \times \Omega$, there exist a neighborhood \mathcal{N}_{t_0, x_0} of (t_0, x_0) such that at least one of the solutions $(\alpha_\pm, \rho_\pm, u_\pm)$ becomes strong in this neighborhood \mathcal{N}_{t_0, x_0}.
Invariant regions

In paper [2]:

Theorem. For smooth solutions to inviscid equation, the region $\alpha^- \geq 0$ is invariant under the evolution if and only if the fluid $+$ is compressible.

Use theory of invariant regions of CHUEH, CONWAY, SMOLLER (see for instance J. SMOLLER, Springer-Verlag (1983)).

Gives a clear answer to a well known problem in the two-fluid flow numerical simulations. In many numerical papers, the authors mention that their schemes lead to negative values for α^- and therefore made use of the clipping techniques which consists in modifying (increasing) the variable α^- when it begins to be small. This procedure destroys mass conservation and very often leads to nonphysical results. Our result shows that the observed discrepancy does not follow from the numerical method but is already included in the physical model at the continuous level.

Although analytically more simple, Equations of State

\[
p = p^-(\rho^-), \quad \rho^+ = \rho_0^+
\]

should be rejected.
Some references on other related models.

Weak limit and multi-fluid system justification

YOUNG MEASURE AND WEAK SOLUTIONS

The model

Let us consider the following barotropic compressible Navier-Stokes equations:

\[
\begin{align*}
\partial_t \rho + \text{div}(\rho u) &= 0, \\
\partial_t (\rho u) + \text{div}(\rho u \otimes u) - \mu \Delta u - (\mu + \lambda) \nabla (\text{div} u) + \nabla P(\rho) &= 0,
\end{align*}
\]

where \(\rho, u, P \) denote the density, velocity and pressure respectively. The pressure law is given by

\[P(\rho) = a \rho^\gamma \quad (a > 0, \quad \gamma > 1), \]

\(\mu \) and \(\lambda \) are the shear viscosity and the bulk viscosity coefficients respectively. They satisfy the following physical restrictions:

\[\mu > 0, \quad \lambda + \frac{2}{3} \mu \geq 0. \]
Question: Justification of multi-fluid system from mono-fluid one with low regularity. More precisely is there exist weak sequences corresponding to concentrating density which converge to the strong solution of a viscous multi-fluid system? No oscillations-concentrations in velocity – concentrations in density.

As mentioned in LIONS’s book (Remarks 5.8 and 5.9), weak limits of a sequence of solutions of compressible Navier–Stokes system with highly-oscillating density are not in general solutions of the compressible Navier-Stokes system.

References:

- D. Serre (Physica D, (1991)) focusing on the one-dimensional case and providing a formal calculus for the multi-dimensional problem.
- To capture the effect of oscillations, using the renormalization procedure related to the mass equation, M. Hillairet (J. Math Fluid Mech, 2007) (following the formal calculus in D. Serre) introduced Young measure as in the work by R. Di Perna, A. Majda to describe a ”homogenized system” satisfied in the limit.
In M. Hillairet’s paper, we still do not know whether the obtained solution of the multi-fluid system are weak limit to finite-energy weak solutions of compressible Navier-Stokes equations.

Two assumptions, by M. Hillairet (2007), have been done to formally deduce the multi-fluid system from the weak limit system:

- If the initial young measures are linear combination of \(m \) Dirac masses then it is the case for all time.
- The concentration points remains distincts (a kind of stratification):
 \[\rho_i(t, x) \neq \rho_j(t, x) \text{ for all } i, j = 1, \ldots, m \text{ with } i \neq j. \]

Remark: Existence and uniqueness of local strong solution of the viscous multi-fluid system has been established by M. Hillairet far from vacuum.
Important Lemma (due to P.–L. LIONS):
Given $b \in C^1(\mathbb{R}^+)$ such that $b'(z) = 0$ for z sufficiently large with compact support, let $b(\rho_n)$ converge to \bar{b} in $L^\infty(Q_T)$ endowed with its weak star topology. We have:

$$\lim_{n \to +\infty} \int_0^T \int_\Omega [(p(\rho_n) - (\lambda + 2\mu)\text{div}(u_n))b(\rho_n)) \phi(t, x) \, dx dt$$

$$= \int_0^T \int_\Omega [(q - (\lambda + 2\mu)\text{div}(u))\bar{b}) \phi(t, x) \, dx dt$$

for all $\phi \in \mathcal{D}(Q_T)$.
The limit system

Assume \((\rho_n, u_n)\) be finite-energy weak solutions to NS eqs and
\[
\rho_n \rightharpoonup \rho \quad \text{in } L^\infty(0, T; L^\gamma(\mathbb{T}^3)) \star \text{ weak}, \quad u_n \rightharpoonup u \quad \text{in } L^2(0, T; H^1(\mathbb{T}^3)),
\]
\[
\rho \in L^\infty(0, T; L^\gamma(\mathbb{T}^3)), \quad u \in L^2(0, T; H^1(\mathbb{T}^3)).
\]

Then there exists a measurable family of probability measures, we denote \((\nu(t,x))\) such that

1. We have
\[
<\nu, \text{Id}>= \rho \quad \text{and} \quad <\nu, p> = q, \quad \text{in a sense precised in next slide.}
\]

2. For all \(b \in C(R^+)\), smooth, with compact support,
\[
(<\nu, b >)_t + \text{div}(<\nu, b > u) + <\nu, (\text{Id} b' - b) > \text{div}(u)
\]
\[
= <\nu, (\text{Id} b' - b) > q - <\nu, (\text{Id} b' - b)p >
\]
\[
\lambda + 2\mu.
\]

3. Finally,
\[
\begin{cases}
\partial_t \rho + \text{div}(\rho u) = 0,

\partial_t(\rho u) + \text{div}(\rho u \otimes u) - \mu \Delta u - (\mu + \lambda) \nabla (\text{div} u) + \nabla q = 0,
\end{cases}
\]
Actually, as in E. FEIREISL, we define

\[\langle \nu, \text{Id} \rangle = \lim_{k \to \infty} \langle \nu, T_k \circ \text{Id} \rangle, \quad \langle \nu, p \rangle = \lim_{k \to \infty} \langle \nu, T_k \circ p \rangle, \]

where \(T_k(z) = \min\{z, k\} \) is a family of truncation functions. However, if \(\rho_n \) is uniformly bounded in both space and time, then 1) in previous slide holds in a classical sense. This will be the case since we will consider weak sequences with uniformly bounded density.
If Young measures are assumed to be convex combinations of Dirac measures, \(i.e: \)

\[
\nu(t,x) = \sum_{i=1}^{m} \alpha_{i1}(t,x) \delta_{\rho_{i1}}(t,x), \quad \forall (t,x) \in (0,T) \times \Omega.
\]

Using such hypothesis, the homogeneized compressible Navier-Stokes system reads:

\[
\begin{aligned}
(\alpha_{i1})_t + u_1 \cdot \nabla \alpha_{i1} &= f_{\alpha_{i1}}, & i = 1, \ldots, m \\
\alpha_{i1} \left((\rho_{i1})_t + \text{div}(\rho_{i1}u_1) \right) &= \alpha_{i1} f_{\rho_{i1}}, & i = 1, \ldots, m \\
\partial_t \rho + \text{div}(\rho u_1) &= 0, \\
\partial_t (\rho u_1) + \text{div}(\rho u_1 \otimes u_1) + \nabla q &= \mu \Delta u_1 + (\mu + \lambda) \nabla (\text{div} u_1),
\end{aligned}
\]

\[
f_{\alpha_{i1}} = \frac{\alpha_{i1}(a\rho_{i1}^\gamma - q)}{\lambda + 2\mu}, \quad f_{\rho_{i1}} = \frac{\rho_{i1}(q - a\rho_{i1}^\gamma)}{\lambda + 2\mu}
\]

\[
0 \leq \alpha_{i1}, \quad \sum_{i=1}^{m} \alpha_{i1} = 1
\]

\[
\rho = \sum_{i=1}^{m} \alpha_{i1} \rho_{i1}, \quad q = a \sum_{i=1}^{m} \alpha_{i1} \rho_{i1}^\gamma,
\]

where \(\rho_{i1}, u_1 \) denotes the density, velocity respectively and \(\alpha_{i1} \) is the coefficients.
Far from vacuum, kill the red terms:

\[
\begin{align*}
(\alpha_{i1})_t + u_1 \cdot \nabla \alpha_{i1} &= f_{\alpha_{i1}}, & i &= 1, \ldots, m \\
(\rho_{i1})_t + \text{div}(\rho_{i1} u_1) &= f_{\rho_{i1}}, & i &= 1, \ldots, m \\
\partial_t \rho + \text{div}(\rho u_1) &= 0, \\
\partial_t (\rho u_1) + \text{div}(\rho u_1 \otimes u_1) + \nabla q &= \mu \Delta u_1 + (\mu + \lambda) \nabla (\text{div} u_1),
\end{align*}
\]

\[
f_{\alpha_{i1}} = \frac{\alpha_{i1} (a \rho_{i1}^\gamma - q)}{\lambda + 2\mu}, \quad f_{\rho_{i1}} = \frac{\rho_{i1} (q - a \rho_{i1}^\gamma)}{\lambda + 2\mu}
\]

\[
0 \leq \alpha_{i1}, \quad \sum_{i=1}^{m} \alpha_{i1} = 1
\]

\[
\rho = \sum_{i=1}^{m} \alpha_{i1} \rho_{i1}, \quad q = a \sum_{i=1}^{m} \alpha_{i1} \rho_{i1}^\gamma,
\]
Sketch of proof

First Result: Solution of the multi-fluid system obtained as weak limit to finite-energy weak solutions of compressible Navier-Stokes equations: Stratification assumption seems to be necessary (to be improved, better defect measures? explicit initial data and use of HOFF-SANTOS’s paper (in progress with M. HILLAIRET and X. HUANG)). Model is linked to the BAER-NUNZIATO model.

Weak sequence related to the existence result by B. DESJARDINS. Given initial data

\[\rho_0 \in L^\infty(\mathbb{T}^3), \quad \rho_0 \geq 0, \quad u_0 \in H^1(\mathbb{T}^3). \]

There exists \(T_0 \in (0, \infty) \) and a weak solution \((\rho, u)\) to the compressible Naiver-Stokes equations with \((\rho, \rho u)|_{t=0} = (\rho_0, \rho_0 u_0)\). For all \(0 < T < T_0 \),

\[\rho \in L^\infty((0, T) \times \mathbb{T}^3) \cap C([0, T]; L^q(\mathbb{T}^3)), \quad \text{for all } q \in [1, \infty) \]

\[\nabla u \in L^\infty(0, T; (L^2(\mathbb{T}^3))^9). \]

\[\sqrt{\rho} \partial_t u \in (L^2((0, T) \times \mathbb{T}^3))^3, \quad Pu \in L^2(0, T; H^2(\mathbb{T}^3)), \]

\[G = (\lambda + 2\mu) \text{div} u - p(\rho) \in L^2((0, T); H^1(\mathbb{T}^3)), \]

where \(P \) denotes the projection on the space of divergence-free vector fields.

Remark: The \(L^\infty \) bound on \(\rho_0 \) is also assumed in D. SERRE (one-dimensional case). This is also required in weak-strong uniqueness by B. DESJARDINS, P. GERMAIN. We will also consider \(\rho_0 \geq C > 0 \) as in D. SERRE’s paper.
Sketch of proof

Prove that weak sequence based on B. DESJARDINS’s lemma has extra-regularity. Namely,

\[\text{div} u \in L^1(0, T; L^\infty(\mathbb{T}^3)). \]

B. Desjardins’s weak sequence satisfies:

\[
\sup_{0 < t \leq T} \| \nabla u \|_2 + \int_0^T \int_{\mathbb{T}^3} \rho |\dot{u}|^2 \leq C, \tag{2}
\]

with \(\dot{u} \) the total time derivative. Write now extra estimates following D. HOFF’s Ideas.

First step :

\[
\sup_{0 < t \leq T} (\| G \|_2 + \| \omega \|_2) \leq C,
\]

\[
\| \nabla G \|_6 + \| \nabla \omega \|_6 \leq C(\| \rho^{\frac{1}{2}} \dot{u} \|_2 + \| \nabla \dot{u} \|_2),
\]

\[
G = (2\mu + \lambda)\text{div} u - P, \quad \omega = \nabla \times u
\]

where \(G \) and \(\omega \) denote the effective viscous flux and vorticity, respectively.
Second step: Deduce the following estimate

$$\sup_{0 < t \leq T} \int_{T^3} \sigma \rho |\dot{u}|^2 + \int_0^T \int_{T^3} \sigma |\nabla \dot{u}|^2 \leq C$$

where $\sigma = \min(1, t)$.

Use this estimate, the ones in previous slide and the expression of G, to deduce the result that means:

$$\text{div} u \in L^1(0, T; L^\infty(T^3)).$$

Remark: In Recent HOFF-SANTOS’s paper, $\rho_0 \in L^\infty$ and $u_0 \in H^s$ + smallness assumption and relation between λ and μ is considered. Propagation of singularity result when $s > 1/2$: such regularity implies also $\text{div} u \in L^1 L^\infty$. If local existence with same kind of estimates thus OK. No direct interpolation easily.
Third step: Introduce an adequate defect measure (discussions and properties on such kind of defect measures in M. HILLAIRET’s PhD Thesis) to prove that young measures are in fact linear combination of dirac measures.

\[M_\alpha[\Theta, \nu] \] the determinant of the \((m + 1) \times (m + 1)\) matrix \(\tilde{M}_\alpha[\Theta, \nu]\)

with elements

\[(\tilde{M}_\alpha[\Theta, \nu])_{i,j} = <\nu, \rho^{(\theta_i+\theta_j)\alpha}> \]

with \(\Theta = (\theta_0, \cdots, \theta_m) \in \mathbb{N}^{m+1}\) a weight vector composed with two by two distinct coefficients and \(\alpha\) a coefficient.

In the sequel: Choice: \(\Theta = (0, \cdots, m)\) and \(\alpha\) chosen later on!!
Using that $\rho \in L^\infty$, we write, using renormalization procedure:

$$\partial_t(M_\alpha[\Theta, \nu]) + \text{div}(M_\alpha[\Theta, \nu]) + \kappa M_\alpha[\Theta, \nu]\text{div}u + \frac{Q(\nu)}{\lambda + 2\mu} = 0$$

with

$$\kappa = 2\alpha \sum_{i=0}^{m} \theta_i - 1,$$

and

$$Q(\nu) = \sum_{i,j=0}^{m} (2\alpha^{\theta_i} - 1) \left(\rho(\theta_i + \theta_j)^{\alpha + \gamma} - \rho^{(\theta_i + \theta_j)\alpha} \rho^\gamma \right) M_\alpha^{(i,j)}[\Theta, \nu].$$

Note that there exists α, for instance $\alpha = \gamma/(E[m\gamma] + 1)$, such that $Q(\nu) \geq 0$, thus integrating in space, we get

$$\frac{d}{dt} \left[\int_{\mathbb{T}^3} M_\alpha[\Theta, \nu] \right] \leq |\kappa| \|\text{div}u\|_\infty \int_{\mathbb{T}^3} M_\alpha[\Theta, \nu].$$

Using that $M_\alpha[\Theta, \nu_0] = 0$ and integrating in time, we get that $M_\alpha[\Theta, \nu] = 0$.

D. Bresch

Well Posedness and Derivation of Multi-Fluid Models
This implies that, using characterization given in M. Hillairet’s PhD thesis

$$\nu = \sum_{i=1}^{m} \alpha_i \delta_{\rho_i}.$$

Assumption: A kind of stratification assumption, namely denoting level sets interval

$$L(f) = \left[\inf_{z \in Q_T} f(z), \sup_{z \in Q_T} f(z) \right]$$

we assume

$$\rho_i \in L^\infty, \quad L(\rho_i) \cap L(\rho_j) = \emptyset \text{ for } i, j = 1, \cdots, m \text{ with } i \neq j$$

then weak limit satisfies a multi-fluid system using expression of ν and then adequate b compactly supported in the limit equation (2).

Note that $\rho \in L^\infty \implies \alpha_i \geq c > 0$ if initially. We then find the multi-fluid system written previously mixing the equation on α_i and $\alpha_i \rho_i$.
Sketch of proof

Fourth step: Use a weak-strong procedure to prove that the strong solution built by M. Hillairet corresponds to the weak limit. This use that $\text{div} u \in L^1 L^\infty$ and $\rho \in L^\infty$. If initially the case, we prove that $(\alpha_i, \rho_i, u) = (\alpha_{i1}, \rho_{i1}, u_1)$.

Remark: In fact the strong solution has only to satisfy

$$
\alpha_1 \in L^\infty, \quad \rho_1 \in L^\infty, \quad q_1 \in L^\infty, \quad \nabla \alpha_1 \in L^\infty L^3, \quad \nabla \rho_1 \in L^\infty L^3, \quad \nabla u_1 \in L^1 L^\infty, \quad \dot{u}_1 \in L^2 L^3.
$$

Important remarks:

- Assumptions on ρ_0 same than D. SERRE (1991) in the one-dimensional case.

- Note that Young measures characterization is needed looking at three moments since $(\theta_0, \theta_1) = (0, 1)$ to prove that $\nu(t,x) = \delta(\rho(t,x), m(t,x))$ in vanishing viscosity for compressible Euler flow, see G.Q. CHEN, M. PEREPELITSA, (2009) (Physical viscosity limit of solutions of the Navier-Stokes equations to a finite-energy entropy solution of the isentropic Euler equations with finite-energy initial data, 1D case linked to adequate energy estimates and reduction of measure-valued solutions with unbounded support).

- Y. BRENIER, C. DE LEllIS, L. SZÉKELYHIDI JR. (2010): Weak strong uniqueness for measure valued solutions. Argument based on admissible solution of Euler such that $\int_0^T \| D(u) \|_\infty < +\infty$. Linked to the Blow-up criteria for Euler system (see G. PONCE (1985)). For compressible Navier-Stokes equations: Blow-up criteria linked to $\int_0^T \| \text{div}u \|_\infty < +\infty$ or $\int_0^T \| \rho \|_\infty < +\infty$ (see recent papers by X.HUANG, J. LI and Z.P. XIN, B. HASPOT..).