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Reaction-diffusion equations of gradient type

We investigate the behavior of solutions v of reaction-diffusion equations
of gradient type

∂tvε −
∂2vε
∂x2

= −ε−2∇Vε(v). (RDGε)

The function v is a function of the space variable x ∈ R and the time
variable t ≥ 0 and takes values in some euclidean space Rk , so that
(RDG ) is a system of k scalar partial differential equations.

Here < 0 < ε ≤ 1 denotes a small parameter representing a typical
lenght. It is kind of virtual since it can be scaled out and put equal to 1
by the change of variables

v(x , t) = vε(ε
−1x , ε−2t)

so that v satisfies (RDG ) with ε = 1.
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Equation (RDG ) is the L2 gradient-flow of the energy E defined by

Eε(u) =

∫
R

eε(u) =

∫
R
ε
|u̇|2

2
+

V (u)

ε
, for u : R 7→ Rk .

The properties of the flow (RDG ) strongly depend on the potential V .

Throughout we assume that

V is smooth from Rk to R,

V tends to infinity at infinity, so that it is bounded below

V ≥ 0.

An intuitive guess is that the flow drives to mimimizers of the potential :

if V is strictly convex, the solution should tend to the unique
minimizer of the potential V .

Here we consider the case where there are several mimimizers for the
potential V  Transitions between minimizers
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Multiple-well potentials

We assume in this talk that V is has a finite number of and at least two
distinct minimizers.
A classical example in the scalar case (Allen-Cahn) k = 1

V (u) =
(1− u2)2

4
, (AC )

whose minimizers are +1 and −1.
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The picture for systems
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Assumptions on V

(H1) inf V = 0 and the set of minimizers Σ ≡ {y ∈ Rk ,V (y) = 0}

is a finite set, with at least two distinct elements, that is

Σ = {σ1, ...,σq}, q ≥ 2, σi ∈ Rk ,∀i = 1, ..., q.

(H∞) There exists constant α0 > 0 and R0 > 0 such that

y · ∇V (y) ≥ α0|y |2, if |y | > R0.
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Stationary solutions

Simple solutions to (RDG ) are provided by stationary ones, that is
solutions of the form

v(x , t) = u(x), ∀x ∈ R,

where the profil u : R 7→ Rk is a solution of the ODE

− uxx = −∇V (u). (ODE )

For instance :

Constant functions v(x , t) = σ, where σ is a critical point of V

Stationary fronts. Solutions to (ODE ) tending, as x → ±∞ to
critical points of the potential V .

Conservation of energy for (ODE ) implies V (u(+∞)) = V (u(−∞)).

Fabrice Bethuel Slow motion for degenerate potentials



Heteroclinic solutions

We focus next the attention on heteroclinic solutions to (ODE ) joining
two distinct minimizers σi and σj .

This is a difficult topic in general (see e. g works by N. Alikakos and
collaborators). However, it is an exercice in the scalar case k = 1.

Indeed, in the scalar case k = 1 equation (ODE ) may be integrated
explicitely thanks to the method of separation of variables.
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Separation of variables

Conservation of energy for (ODE ) yields
u̇2

2
= V (u). Set

γi (u) =

∫ u

zi

ds√
2V (s)

, zi given and fixed in (σi ,σi+1)

Define
ζ+
i (x) = γ−1

i (x)

from R to (σi ,σi+1) and ζ−i (x) = ζ−1
i (−x). We verify that ζ+

i (·) and
ζ−i (·) solve (ODE ) and hence (RDG ).

Lemma

Let u be a solution to (ODE ) such that u(x0) ∈ (σi ,σi+1), for some x0,
and some i ∈ 1, . . . q − 1. Then

u(x) = ζ+
i (x − a) ,∀x ∈ I , or u(x) = ζ−i (x − a) ,∀x ∈ I ,

for some a ∈ R.
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Fronts

In the context of the reaction-diffusion equation (RDG )ε , heteroclinic
stationary solutions or their perturbations are often termed fronts.
Notice that, if we set for a ∈ R

ξ±i,a,ε(·) = ξ±
(
· − a

ε

)
Then ξ±i,a,ε, is a stationary solution to (RDG )ε. Notice that

ξ±i,a,ε → H±i,a,

where H±i,a, is a step function joining σi to σi+1 with a transition at the
front point a , for instance{

H+
i,a(x) = σi+1, for x > a

H+
i,a(x) = σi for x < a.
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The case of degenerate potentials

Since the points σi are minimizers for the potential, we have

D2V (σi ) ≥ 0.

In this talk, we will focus on the case the potentials are degenerate, that
is

D2V (σi ) = 0.

More precisely, We assume that for all i 6= j in {1, · · · , q} there exists a
number θi > 1 and numbers λ±i such that near σi

(H2) λ−i |y − σi |2(θi−1)Id ≤ D2V (y) ≤ λ+
i |y − σi |2(θi−1)Id

We set
θ ≡ Max{θi , i = 1, . . . q}.
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degenerate potentials in the scaler case

For scalar potentials, the degeneracy implies V ′′(σi ) = 0, θi is related to
the order of vanishing of the derivatives near σi .

d j

duj
V (σi ) = 0 for j = 1, . . . , 2θ − 1 and

d2θ

du2θ
V (σi ) 6= 0

For instance, for

V (u) =
1

4
(|u|2 − 1)4.

we have σ1 = −1, σ2 = 1 and θ = θ1 = θ2 = 2.
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A fundamental remark

In the scalar case, a fundamental difference between degenerate and
non-degenerate potentials is seen at the level of the heteroclinic
solutions, and their expansions near infinity :

for degenerate potentials we have the algebraic decay
ζ+
i (x) = σi + B−i |x − A−i |

− 1
θ−1 + O

x→−∞

(
|x − Ai |−

θ
θ−1 )

)
ζ+
i (x) = σi+1 − B+

i |x − A+
i |
− 1
θ−1 + O

x→+∞

(
|x − Ai+1|−

θ
θ−1 )

)
whereas for non-degenerate potential we have an exponential decay
ζ+
i (x) = σi + B−i exp(

√
λi x) + O

x→−∞

(
exp(2

√
λi x)

)
ζ+
i (x) = σi+1 − B+

i exp(−
√
λi+1 x) + O

x→+∞

(
exp−(2

√
λi+1 x)

)
λi ≡ V ′′(σi ).
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The general principle for the reaction-diffusion equation

After this lenghty digression, we come back to the evolution equation

∂tvε −
∂2vε
∂x2

= −ε−2∇Vε(v). (RDG )

The general principle we wish to establish imay be stated as follows :

The solution to (RDG ) relaxes after a suitable time to a chain of
stationary solutions which :

interact algebraically weakly, hence stationary solutions or fronts are
metastable

renormalizing time, an equation may be derived for the front points
in the limit ε→ 0, and in the scalar case.

.
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Assumptions on the initial datum

The main assumption on the initial datum vε0 (·) = v(ε·, 0) is that its
energy is bounded. Given an arbitrary constant M0 > 0, we assume that

(H ε
0 ) Eε(vε0 ) ≤ M0 < +∞.

In view of the classical energy identity

Eε(vε(·,T2))+ε

∫ T2

T1

∫
R

∣∣∣∣∂vε

∂t

∣∣∣∣2 (x , t)dx dt = Eε(vε(·,T1)) ∀ 0 ≤ T1 ≤ T2 ,

So that, ∀t > 0,
Eε (v(·, t)) ≤ M0.

In particular for every t ≥ 0, we have V (v(x , t))→ 0 as |x | → ∞. It
follows that

vε(x , t)→ σ± as x → ±∞,

where σ± ∈ Σ does not depend on t.
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Front sets

For a given small parameter µ0 > 0 we introduce, for a map u : R 7→ Rk

the front set D(u) defined by

D(u) ≡ {x , dist(u(x),Σ) > µ0}.

We choose µ0 > 0 sufficiently so small so that, for i = 1, . . . , q,

Σ ∩ B(σi ,µ0) = {σi}.
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In the example on the figure the front set is of the form

D(u) =
2
∪
i=1

[ai − c−i ε, ai + c+
i ε].
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A covering Lemma

A similar result may actually be deduced from the bound on the energy.

Proposition

Assume that the map u satisfies E(u) ≤ M0, and let µ0 > 0 be given.
There exists ` points x1, ..., x` such that

D(v) ⊂ ∪`i=1[xi − ε, xi + ε],

where the number ` of points xi is bounded by ` ≤ `0 = 3M0

η1
.

The measure of the front set is hence in of order ε, a small neighborhood
of order ε of the points xi .
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Remarks on compactness

Let (uε)ε>0 be a family of functions on R with Eε(uε) ≤ M0. It is
classical tha up to a subsequence

uε → u? in L1(R),

where u? takes values in Σ and is a step function : for finite number of
points −∞ ≡ a∗0 < a∗1 . . . < a∗`∗ < a∗`∗+1 ≡ +∞ and

u? = σ+
i(k) on (a∗k , a

∗
k+1) for k = 0, . . . , `∗, with σ+

i(k) ∈ Σ.

Setting σ−i(k) = σ+
i(k−1), a transition occurs at a∗k between σ−i(k) and

σ+
i(k). The points a∗k are the limits as ε goes to 0 of the points xεi .
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On this figure

σ−i(1) = σ2, σ
+
i(1) = σ−i(2) = σ4, σ+

i(2) = σ−i(3) = σ3,

σ+
i(3) = σ−i(4) = σ4, σ

+
i(4) = σ5.
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An upper bound on the motion of front sets

Theorem (B-Smets, 2011)

Assume (H2) holds. Let ε > 0 be given and consider a solution vε to
(RDGε). Assume that vε(·, 0) satisfies the energy bound (H ε

0 ). If
r ≥ α0ε, then

Dε(T + ∆Tr ) ⊂ Dε(T ) + [−r , r ]

provided

0 ≤ ∆Tr

r 2
≤ ρ0

( r

ε

)ω
,

where

ω =
θ + 1

θ − 1
.
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Comments

1 The motion of the front set is slow for large values of r : its average
speed should not exceed

c(r) =
r

∆Tr
= c0ρ

−1
0 r−(ω+1)εω

For large r this speed is algebraically small.

2 In contrast, the speed is exponentially small, of order exp(−cd/ε)
in the non-degenerate case :
see e.g Carr-Pego (1989)for the scalar case, B-Orlandi-Smets (2011)
for the non-degenerate case.

3 May possibly be used to perform a renormalization procedure which
yields a non trivial limit for ε to 0, accelerating time by a factor

ε−ω

[ Renormalization impossible in the non degenerate case, exponential
factors are not jointly commensurable when ε tends to 0. ]

Fabrice Bethuel Slow motion for degenerate potentials



Renormalization and Motion law in the scalar case

We consider the accelerated time s = ε−ωt and the map

vε(x , s) = vε(x , sε−ω),

Setting Dε(s) = D(vε(·, s)) we have hence

Dε(s + ∆s) ⊂ Dε(s) + [−r , r ], provided that 0 ≤ ∆s ≤ ρ0rω+2.

This last result is valid for systems : however, the rest of the talk is
devited to the scalar case, where a precise motion law for the front points
can be derived. Hence k = 1 from now on.
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Compactness assumptions on the initial data

We assume that there exists a family points a0
1, . . . a

0
` , such that

a0
1 . . . , a

0
` and{

Dε(0)→ {a0
k}k∈J , J = 1 . . . , ` in the sense of the Hausdorff distance

vε(0)→ v∗0 in L1
loc(R)

Where v∗0 is of the form

v∗0 = σ+
i(k) on (a0

k , a
0
k+1) for k = 0, . . . , `, with σ+

i(k) ∈ Σ.

we impose the additional condition

(Hmin) |σ+
i(k) − σ−i(k)| = 1.
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The limiting equation for the front points

Consider the system of ordinary differential equation for k = 1, . . . , `

d

ds
ak(s) = −Γi(k−1)+ [(ak(s)−ak−1(s)]−ω+Γi(k)+ [(ak(s)−ak+1(s)]−ω for k ∈ J,

where, for constants Aθ and Bθ depending only on θ
Γi(k)+ = 2ω

(
λ+
i(k)

)− 1
θ−1 Aθ if †k = −†k+1

Γi(k)+ = −2ω
(
λ+
i(k)

)− 1
θ−1 Bθ if †k = †k+1,with

{
†k = + if σi(k)+ = σi(k−1)+ + 1

†k =− if σi(k)+ = σi(k−1)+ − 1.

The equation is supplemented with the initial time condition

ak(0) = a0
k .

Let 0 < S∗ ≤ +∞ be the maximal time of existence for this equation.
Fabrice Bethuel Slow motion for degenerate potentials



Motion law in the scalar case k = 1

Theorem (B-Smets, 2012)

Assume that the inital data (vε(0))0<ε<1 satisfy the previous conditions.
Then, given any 0 < s < S∗, we have

∪
0≤s≤S

Dε(s)→ ∪
0≤s≤S

{ak(s)}k∈J

where ak(·)k∈J is the solution to the system of ordinary differential
equations. Moreover, we have

vε(s)→ σ+
i(k)

uniformly on every compact subset of ∪
0≤s≤S

(ak(s), ak+1(s))k∈J .
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Comments on the limiting equation

Each point ak(t) is only moved by its interaction with its nearest
neighbors, ak−1(t) and ak+1(t), and that this interaction, which is a
decreasing function of the mutual distance between the points.
If

σj−(k−1) < σj+(k−1) = σj−(k) < σj+(k)

then, the interaction is repulsive.
If

σj−(k−1) < σj+(k−1) = σj−(k) > σj+(k) = σj−(k−1)

then, the interaction is attractive, leading to collisions, which remove
fronts from the collection.
We give provide a few elements in the proof for the motion law.
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Chains of almost stationary solutions

In the scalar case, the solution vε to (PGL)ε becomes close to a of chain
of stationary solutions, denoted here below ζ±i , translated at points
ak(t), which are :

well-separated

suitably glued together

The accuracy of approximation is described thanks to a parameter
δ > α∗ε homogeneous to a lenght.
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More precisely, we say that the well-preparedness condition WP(δ, t)
holds iff

(WP1)For each k ∈ J(t0) there exists a symbol †k ∈ {+,−} such
that ∥∥∥∥vε(·, t0)− ζ†ki(k)

(
· − ak(t)

ε

)∥∥∥∥
C 1
ε(Ik )

≤ exp

(
−ρ1

δ

ε

)
,

where Ik = ([ak(t0)− δ, ak(t0) + δ], for each k ∈ J(t0).

(WP2) Set Ω(t0) = R \
`(t0)
∪

k=1
Ik . We have the energy estimate

∫
Ω(t0)

eε (vε(·, t0)) dx ≤ CM0 exp

(
−ρ1

δ

ε

)
.
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Two orders of magnitude for δ will be considered, namely
δ
ε

log =
ω

2ρ1
ε log

1

ε

δ
ε

loglog =
ω

2ρ1
ε log

(
log

ω

2ρ1ε

)
.
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Notice that
|j−(k)− j+(k)| = 1.
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Evolution towards chains of fronts

It follows from the parabolic nature of the equation that the dynamics
drives to prepared chains of fronts.

Proposition

Given any time s ≥ 0 there existes some time sε > 0 such that

|s − sε| ≤ c0
2ε2M0

and such that WPε(δ
ε

log, sε) holds. Moreover WPε(δ
ε

loglog, s
′) holds for

any sε + ε2 ≤ s ′ ≤ Γε0(s), where

Γε0(s) = inf{s ′ ≥ s, dεmin(s) ≤ 1

2
c2ε

2
ω+2 }.
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The localized energy

Let χ be a smooth function with compact support on R. Set, for s ≥ 0
for s ≥ 0

Iε(s, χ) =

∫
R

eε (vε(x , s))χ(x)dx .

If WPε(δ
ε

loglog, s) holds then∣∣∣∣∣Iε(s, χ)−
∑
k∈J

χ(aεk(s))Si(k)

∣∣∣∣∣ ≤ CM0

(
ε

δ
ε

loglog

)ω [
‖χ‖∞ + δ

ε

loglog‖χ′‖∞
]
,

where Si(k) stands for the energy of the corresponding stationary fronts.
Hence the evolution of Iε(s, χ) yields the motion law for the points
aεk(s).
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Evolution for localized energies

d

dt

∫
R
χ(x) eε(vε)dx = −

∫
R×{t}

εχ(x)|∂tvε|2dx + FS(t, χ, vε), (LEI )

where, the term FS , is given by

FS(t, χ, vε) =

∫
R×{t}

([
ε

v̇ 2

2
− V (v)

ε

]
χ̈

)
dx .

The first term is local dissipation, the second is a flux. The quantity

ξ(x) ≡ [ε
v̇ 2

2
− V (v)

ε
], |ξ| ≤ eε(vε)

is referred to as the discrepancy. For solutions of the equation (ODE )

−uεxx +
1

ε2
∇V (uε) = 0

ξ is constant, and vanishes if the interval is R.
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Relating motion law and discrepancy

Set Fε(s1, s2, χ) ≡ ε−ω
∫ s2

s1

FS(s, χ, vε)ds.

Lemma

Assume that condition WPε(δ
ε

loglog, s) holds for any s ∈ (s1, s2). Then
we have the estimate∣∣∣∣∣∑
k∈J

[χ(aεk(s2))− χ(aεk(s1))]Si(k) − Fε(s1, s2, χ)

∣∣∣∣∣ ≤
CM0

(
ω

2ρ1
log

(
log

ω

2ρ1ε

))−ω [
‖χ‖L∞(R) + ε‖χ′‖L∞(R)

]
.

(6)

If the test function χ is choosen to be affine near a given front point ak0

and zero near the other fronts, then the first term on the l.h.s yields a
measure of the motion of ak0 between times s1 and s2 whereas the second,
Fε(s1, s2, χ) is a good approximation of the measure of this motion.
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This suggest that

(aεk0
(s2))− (aεk0

(s1)) ' 1

χ′(aεk0
)Si(k0)

Fε(s1, s2, χ).

The computation of

Fε(s1, s2, χ) =

∫
R×[s1,s2]

χ̈ξdxds

is performed with test functions χ having vanishing second derivatives far
from the front set.

The choice of test functions
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Estimates off the front set

This is a major ingredient in our proofs :

Proposition

Let vε be a solution to (PGL)ε satisfying assumption (H0), let x0 ∈ R,
r > 0 and S0 > s0 ≥ 0 be such that

vε(y , s) ∈ B(σi ,µ0) for all (y , s) ∈ [x0 − 3r/4, x0 + 3r/4]× [s0,S0]

then, for s0 < s ≤ S0 and x ∈ [x0 − r/2, x0 + r/2]
ε−ω

∫ x0+r/2

x0−r/2

eε(vε(x , s)) dx ≤ C

(
1 + ε

ω θ
θ−1

(
r 2

s − s0

) θ
θ−1

)(
1

r

)ω

|vε(x , s)− σi | ≤ Cε
1
θ−1

((
1

r

) 1
θ−1

+

(
εωr 2

(s − s0)

) 1
θ−1

)
,

where C > 0 is some constant depending only on V .

The main argument of the proof is the construction of a suitable upper
solution.
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Refined estimates off the front set and the motion law

We need to provide a limit of ε−ωξ near aεk+ 1
2
(s) ≡

aεk(s) + aεk+1(s)

2
.

Consider the function Wk
ε = ε−

1
θ−1

(
vε − σ+

i(k)

)
and expand (PGL)ε as

εω
∂Wε

∂s
− ∂2Wε

∂x2
+ 2θλi(k)+Wε

2θ−1 = O(ε
1
θ−1 ).

Passing to the limit ε→ 0, we might expect that the limit W∗ solves
the ordinary differential equation−

∂2W∗
∂x2

+ 2θλi(k)+W∗
2θ−1 = 0 on (ak(s), ak+1(s)),

W∗(ak(s)) = −sign(†k)∞ and W∗(ak+1(s)) = sign(†k)∞.

The boundary conditions being a consequence of the behavior near the
front points.

Fabrice Bethuel Slow motion for degenerate potentials



Setting rk(s) = 1
2 (ak+1(s)− ak(s)) and dk(s) = 2rk(s) we deduce

W∗(x , s) = ±
(

1

rk

) 1
θ−1 (

λi(k)+

)− 1
2(θ−1)

∨
U

+(x − ak+ 1
2

rk(s)

)
, if †k = −†k+1,

W∗(x , s) = ±
(

1

rk

) 1
θ−1 (

λi(k)+

)− 1
2(θ−1) U−

(
x − ak+ 1

2

rk(s)

)
, if †k = †k+1,

where
∨
U

+

(resp
B
U) are the unique solutions to the problems{

−Uxx + 2θ U2θ−1 = 0 on (−1,+1),

U(−1) = +∞ (resp U(−1) = −∞) and U(+1) = +∞.
(7)
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The attractive case
∨
U

+

ξ(
∨
U

+

) = +
∨
U

+

(0)2θ
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The repulsive case
B
U

ξ(
∨
U

+

) = − (
B
Ux(0))2

2
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We obtain the corresponding values of the disprecancy ε−ωξε(vε) ' ξ(W∗) = −
(
λ+
i(k)

)− 1
θ−1

(rk(s))−(ω+1)Aθ if †k = −†k+1,

ε−ωξε(vε) ' ξ(W∗) =
(
λi(k)+

)− 1
θ−1 (rk(s))−(ω+1) Bθ if †k = †k+1.

(8)

where the numbers Aθ and Bθ are positive and depend only on θ and are

provided by the absolute value of the discrepancy of
∨
U

+

and
B
U

respectively.
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Thank you for your attention !

(Slowpoke Rodriguez)
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