Fig. 3. Proposed model of regulation of blood flow in physiologicallystimulated human brain

Vlassenko, Andrei G. et al. (2006) Proc. Natl. Acad. Sci. USA 103, 1964-1969

Rôle des Astrocytes dans le couplage neurométabolique

GLUCOSE AND LACTATE ARE EQUALLY EFFECTIVE IN ENERGIZING ACTIVITY-DEPENDENT SYNAPTIC VESICLE TURNOVER IN PURIFIED CORTICAL NEURONS

F. D. MORGENTHALER,^{a1} R. KRAFTSIK,^b S. CATSICAS,^c P. J. MAGISTRETTI^{a,e} AND J.-Y. CHATTON^{a,b,d}*

Article

Glial Na_x Channels Control Lactate Signaling to Neurons for Brain [Na⁺] Sensing

Hidetada Shimizu,^{1,3,7} Eiji Watanabe,^{23,7} Takeshi Y. Hiyama,^{1,3,7} Ayano Nagakura,^{1,3} Akihiro Fujikawa,¹ Haruo Okado,⁴ Yuchio Yanagawa,⁵ Kunihiko Obata,⁶ and Masaharu Noda^{1,3,*}

Figure 8. Schematic Overview of the Na-Level-Sensing Mechanism and Na-Dependent Regulation of Neurons in the SFO

rons in the SFO. These results suggest that the information on a physiological increase of the Na level in body fluids sensed by Na_x in glial cells is transmitted to neurons by lactate as a mediator to regulate neural activities of the SFO.

Shimizu et al, Neuron 54, 59 - 72, 2007

4888 • The Journal of Neuroscience, May 7, 2008 • 28(19):4888 - 4896

Cellular/Molecular

Inhibition of Monocarboxylate Transporter 2 in the Retrotrapezoid Nucleus in Rats: A Test of the Astrocyte– Neuron Lactate-Shuttle Hypothesis

Joseph S. Erlichman,¹ Amy Hewitt,¹ Tracey L. Damon,¹ Michael Hart,¹ Jennifer Kurascz,¹ Aihua Li,² and James C. Leiter²

Bregma - 11.96 mm

Bregma - 11.30 mm

Bregma – 11.80 mm

Bregma – 10.52 mm

Rôle des astrocytes dans la production des signaux détectés par imagerie fonctionnelle

Longueur des axones : neurones GABA : 1.5 Km neuroneg glutamate : 40 Km

Neurones GABA : Vm moins - , activables ++

"Le point important est donc que même en l'absence d'activité électrique résultant de la convergence d'entrées excitatrices et inhibitrices, il y aura un coût énergétique significatif, qui se traduira par une image « d'activation » en imagerie fonctionnelle cérébrale, notamment en TEP. Voilà pourquoi la question du coût de l'inhibition considéré **en termes absolus** pourrait rester sans réponse et signifier que en imagerie fonctionnelle, une région qui produit un signal métabolique, pourrait en fait être inhibée et non activée ! Voilà un « paradoxe » qu'il convient de considérer." PJM, LI CdF 14.02.08

Glutamate

Buzsaki et al 2007

Vagues intercellulaires calciques, sodiques et métaboliques

Mécanisme d'amplification du couplage neurométabolique

Réseau astrocytaire

Rôle des astrocytes dans la production des signaux détectés par imagerie fonctionnelle

Réponses neurométaboliques et neurovasculaires durant l'activation

Raichle et Mintun, 2006

Débit sanguin, consommation d'oxygène et fraction d'extraction d'oxygène pendant une stimulation visuelle

Mintun et al 2002

Analyse du signal BOLD : activations et déactivations

Raichle et Mintun 2007

Fox et Raichle, 2007

Le mode par défaut "default mode" de l'activité cérébrale

Aires principales :

- cortex préfrontal médian
- cingulaire postérieur
- pré-cunéus
- zones du cortex pariétal (latéral et médian)

Raichle et Gusnard, 2005; Raichle et Snyder 2007

IPS PCC MPF -0.8 0.0 0.8 1.5 0.5 0 5.0-5.0-100 -1

Fig. 1. Intrinsic correlations between a seed region in the PCC and all other voxels in the brain for a single subject during resting fixation

Fox, Michael D. et al. (2005) Proc. Natl. Acad. Sci. USA 102, 9673-9678

Fig. 1. Intrinsic correlations between a seed region in the PCC and all other voxels in the brain for a single subject during resting fixation. The spatial distribution of correlation coefficients shows both correlations (positive values) and anticorrelations (negative values), thresholded at R = 0.3. The time course for a single run is shown for the seed region (PCC, yellow), a region positively correlated with this seed region in the MPF (orange), and a region negatively correlated with the seed region in the IPS (blue).

-1.5

-2

Abbreviations: fMRI, functional MRI; BOLD, blood oxygen level-dependent; IPS, intraparietal sulcus; FEF, frontal eye field; MT+, middle temporal region; MPF, medial prefrontal cortex; PCC, posterior cingulate/precuneus; LP, lateral parietal cortex; SMA, supplementary motor area.

Time (seconds)

In recent years, the brain's "default network," a set of regions characterized by decreased neural activity during goal-oriented tasks, has generated a significant amount of interest, as well as controversy. Much of the discussion has focused on the relationship of these regions to a "default mode" of brain function. In early studies, investigators suggested that, the brain's default mode supports "self-referential" or "introspective" mental activity. Subsequently, regions of the default network have been more specifically related to the "internal narrative," the "autobiographical self," "stimulus independent thought," "mentalizing," and most recently "self-projection." However, the extant literature on the function of the default network is limited to adults, i.e., after the system has reached maturity. We hypothesized that further insight into the network's functioning could be achieved by characterizing its development. In the current study, we used resting-state functional connectivity MRI (rs-fcMRI) to characterize the development of the brain's default network. We found that the default regions are only sparsely functionally connected at early school age (7–9 years old); over development, these regions integrate into a cohesive, interconnected network.

Fair, Damien A. et al. (2008) Proc. Natl. Acad. Sci. USA 105, 4028-4032

Fig. 1. Voxelwise resting-state functional connectivity maps for a seed region (solid black circle) in mPFC (ventral: -3, 39, -2)

Fair, Damien A. et al. (2008) Proc. Natl. Acad. Sci. USA 105, 4028-4032

Fig. 3. Graph visualization of the correlation matrices shown in Fig

Young adults typically deactivate specific brain regions during active task performance. Deactivated regions overlap with those that show reduced resting metabolic activity in aging and dementia, raising the possibility of a relation. Here, the magnitude and dynamic temporal properties of these typically deactivated regions were explored in aging by using functional MRI in 82 participants. Young adults (n = 32), older adults without dementia (n = 27), and older adults with early-stage dementia of the Alzheimer type (DAT) (n = 23) were imaged while alternating between blocks of an active semantic classification task and a passive fixation baseline. Deactivation in lateral parietal regions was equivalent across groups; in medial frontal regions, it was reduced by aging but was not reduced further by DAT. Of greatest interest, a medial parietal/ posterior cingulate region showed differences between young adults and older adults without dementia and an even more marked difference with DAT. The temporal profile of the medial parietal/posterior cingulate response suggested that it was initially activated by all three groups, but the response in young adults guickly reversed sign, whereas DAT individuals maintained activation throughout the task block. Exploratory whole-brain analyses confirmed the importance of medial parietal/posterior cingulate cortex differences in aging and DAT. These results introduce important opportunities to explore the functional properties of regions showing deactivations, how their dynamic functional properties relate to their baseline metabolic rates, and how they change with age and dementia.

Lustig, Cindy et al. (2003) Proc. Natl. Acad. Sci. USA 100, 14504-14509

Fig. 1. Regional analyses showing effects of age and dementia

Lustig, Cindy et al. (2003) Proc. Natl. Acad. Sci. USA 100, 14504-14509

Fig. 2. Statistical activation maps for young, old, and DAT groups

Rôle des astrocytes dans le couplage entre activité synaptique et métabolisme cérébral

NORMAL BRAIN

ALZHEIMER'S BRAIN

NORMAL BRAIN

ALZHEIMER'S BRAIN

PET scans (utilisation de glucose)

Mattson, Nature, 2004

PET scans (utilisation de glucose)

Small, Gary W. et al. (2000) Proc. Natl. Acad. Sci. USA 97, 6037-6042

Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons

Winnie S. Liang*⁺, Eric M. Reiman*^{+‡§}, Jon Valla⁺, Travis Dunckley*⁺ Thomas G. Beach⁺, Andrew Grover⁺, Tracey L. Niedzielko⁺, Lonnie E. Schneider⁺, Diego Mastroeni⁺, Richard Caselli⁺**, Walter Kukull⁺⁺, John C. Morris^{‡‡}, Christine M. Hulette^{§§}, Donald Schmechel^{§§}, Joseph Rogers⁺, and Dietrich A. Stephan*⁺¹¹

PNAS | March 18, 2008 | vol. 105 | no. 11 | 4441-4446

In particular, the data were used to compare cases and controls in the expression of 80 nuclear genes encoding mitochondrial electron transport chain (ETC) subunits along with translocases of the inner and outer mitochondrial membranes

(TIMMs and TOMMs, respectively), in six brain regions. These nuclear genes included 39 complex I genes coding for NADH dehydrogenase, all 4 nuclear-encoded complex II genes coding for succinate dehydrogenase, 9 complex III genes coding for ubiquinol-cytochrome c reductase, 13 complex IV genes coding for cytochrome c oxidase, and 15 complex V genes coding for ATP synthase, as well as 11 TIMMs and 6 TOMMs, which regulate the transport of nuclear-encoded electron transport subunits into the mitochondria. These ETC complexes and

Fig. 1. Altered expression of mitochondrial energy metabolism elements. Energy metabolism-relevant elements showing statistically significant underexpression in the PCC are shown. These elements include the five complexes of the ETC and TIMMs and TOMMs. OM, outer mitochondrial membrane; IMS, intermembrane space; IM, inner mitochondrial membrane.

Fig. 2. Western blot validation. (A) Western blots using a five-antibody

ASTROCYTE-NEURON LACTATE SHUTTLE

Infection with MCT2 vector increases lactate utilization in the presence of glutamate and 5mM lactate. Data are expressed as a percentage of lactate utilization in the control infected cultures at the same glutamate concentration.

Bliss TM et al. J. of Neuroscience (2004) 24 (27): 6202-6208

Overexpression of MCT2 protects neurons from an excitotoxic insult. MCT2-infected hippocampal cultures show greater neuronal survival after a glutamatergic insult (50uM) than control-infected cultures. Increasing lactate concentration in the cell media significantly increases this neuroprotection

in MCT2-infected cultures compared with control-infected cultures.

Glia infected with the GLUT1 vector protect neurons from an excitotoxic insult.

A, Schematic diagram of the laminar culture system. Bent arrows indicate that metabolites released by glia can diffuse to the neurons.

B, Neurons exposed to glia infected with GLUT1 vector show enhanced survival after a gutamatergic insult (LC50 concentration) compared with neurons exposed to glia infected with control vector

Bliss TM et al. J. of Neuroscience (2004) 24 (27): 6202-6208

La transfection combinée de Glut 1 dans les astrocytes et de MCT2 dans les neurones confère une protection vis-à-vis de l'excitotoxicité due au glutamate

Bliss TM et al. J. of Neuroscience (2004) 24 (27): 6202-6208

Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression

P. V. Choudary*, M. Molnar*, S. J. Evans[†], H. Tomita[‡], J. Z. Li[§], M. P. Vawter[‡], R. M. Myers[§], W. E. Bunney, Jr.[‡], H. Akil[†], S. J. Watson[†], and E. G. Jones^{*1}

*Center for Neuroscience and Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616; [†]Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109; [‡]Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697; and [§]Stanford Human Genome Center and the Department of Genetics, Stanford University, Stanford, CA 94305

Contributed by E. G. Jones, September 9, 2005

				Fold change				
Gene name	Symbol	Alias	Cytoband	AnCg	DLPFC			
Major depressive disorder								
Glial high-affinity glutamate transporter, Na+-dependent	SLC1A2	GLT-1; EAAT2	11p13	0.80	0.71			
Glial high-affinity glutamate transporter, Na+-dependent	SLC1A3	GLAST; EAAT1	5p13	0.85	0.65			
Glutamine synthetase	GLUL	GS	1q31	0.73	0.78			
Glutamate receptor, ionotropic, AMPA 1	GRIA1	AMPA1; IGluR1	5q31.1	1.3				
Glutamate receptor, ionotropic, AMPA 3	GRIA3	AMPA3; IGluR3	Xq25		1.18			
Glutamate receptor, ionotropic, kainate 1	GRIK1	GluR5; EAA3	21q22.11		1.21			
Glutamate receptor, ionotropic, kainate 5	GRIK5	GluR-KA2; EAA2	19q13.2	1.14	1.21			
GABA _A receptor, beta 3	GABARB3	GABA₄Rβ3	15q11.2		1.21			
GABA _A receptor, delta	GABRD	GABA _A Rδ	1p36.3		1.19			
GABA _A receptor, gamma 2	GABARG2	GABA _A Ry2	5q3.1		1.22			
Bipolar affective disorder								
Glutamate receptor, ionotropic	GRIA1	AMPA1; IGluR1	5q31.1		1.21			
Glutamate receptor, ionotropic	GRIA3	AMPA3; IGluR3	Xq25	1.21				
Glutamate receptor, ionotropic, kainate 1	GRIK1	GluR5; EAA3	21q22.11	0.78				
Glutamate receptor, metabotropic 3	GRM3	mGluR3	7q21.1	1.24	1.26			
GABA _A receptor, alpha 5	GABRA5	GABA _A R _a 5	15q11.2	1.24	1.20			
GABA _B receptor 1	GABBR1	GABA _B R1	6p21.31		1.22			

Table 2. List of candidate genes showing expression changes in MDD and BPD

Each record indicates the gene name, symbol, common name, cytoband, and fold changes (FC) of expression in the AnCg and/or DLPFC. Expression values, meeting a significance threshold of $P \le 0.05$ and a fold change of ≥ 1.175 were considered increases, and those with a fold change of ≤ 0.85 were considered decreases.

Mechanism for Coupling Neuronal Activity to Glucose Utilization

Localisation du cortex préfrontal

Hasler et al 2007

Deciphering Migraine Mechanisms: Clues from Familial Hemiplegic Migraine Genotypes

Michael A. Moskowitz, MD,1 Hayrunnisa Bolay, MD, PhD,2 and Turgay Dalkara, MD, PhD3

Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis

Koji Yamanaka^{1,2}, Seung Joo Chun¹, Severine Boillee¹, Noriko Fujimori-Tonou², Hirofumi Yamashita², David H Gutmann³, Ryosuke Takahashi⁴, Hidemi Misawa⁵ & Don W Cleveland¹

NATURE NEUROSCIENCE VOLUME 11 | NUMBER 3 | MARCH 2008

Figure 1 Selective Cre-mediated gene excision shows that mutant SOD1 action in astrocytes is a primary determinant of late disease progression. (a,b) β-galactosidase (β-gal) activity in astrocytes in whole (a) or in the anterior horn region (b) of the lumbar spinal cord section of *GFAP-Cre/*Rosa26 reporter mice visualized with X-gal and immunostaining with GFAP antibody. Inset, magnified image of the boxed area in b. Arrows indicate β-gal/GFAP-Creexpressing astrocytes. (c,d) *IoxSOD1*^{G37R} transgene levels (n = 3 for each group) in primary microglia (c) or astrocytes (d) from *IoxSOD1*^{G37R}/*GFAP-Cre*⁺ and *IoxSOD1*^{G37R}/*GFAP-Cre*⁺ (lanes 1, 2) and a dilution series of a comparable extract from LoxSOD1^{G37R} astrocytes representing 25%, 50% and 100% of the protein amounts loaded in lanes 1 and 2 (lanes 3–5). (f,g) Ages at which early disease phase (to 10% weight loss, P = 0.76; f) or end-stage disease (P < 0.0001; g) were reached for *IoxSOD1*^{G37R}/*GFAP-Cre*⁺ mice (red) and *IoxSOD1*^{G37R} littermates (blue). Mean ages ± s.d. are provided. (h–j) Mean onset (P = 0.47) (h), mean duration of early disease (from onset to 10% weight loss, P = 0.35; i) and a late disease (from 10% weight loss to end stage, P < 0.0001; j) for *IoxSOD1*^{G37R}/*GFAP-Cre*⁺ (red) and *IoxSOD1*^{G37R} littermates (blue). At each time point, P value was determined by unpaired *t*-test. For bars denote s.d.

Fig. 6 online). These findings validate therapies, including astrocytic in ALS by supplementing healthy astrocytes or modulating toxicity in astrocytes to control an inflammatory response of microglia.

Rôle des Astrocytes dans le couplage neurométabolique

Rôle des astrocytes dans le couplage entre activité synaptique et métabolisme cérébral

CHAIRE INTERNATIONALE 2007-2008

Pierre Magistretti, professeur

COLLOQUE

NEUROSCIENCES ET PSYCHANALYSE UNE RENCONTRE AUTOUR DE L'ÉMERGENCE DE LA SINGULARITÉ

Mardi 27 mai 2008 Collège de France

9gmund Froud 9h00

11 place Marcelin-Berthelot - 75005 Paris amphithéâtre Maurice Halbwachs

Santiago Ramon Y Cajal

Amphithéâtre Marguerite de Navarre

9h00	Pierre MAGISTRETTI Accueil et introduction		
9h15	François ANSERMET et Pierre MAGISTRETTI Plasticité et homéostasie à l'interface entre neurosciences et	psychanalyse	
9h50	Cristina ALBERINI The dymanics of our internal representations : memory conso reconsolidation and the integration of new information with the	blidation, ne past	
10h30	pause		
10h50	Marcus RAICHLE Two views of brain function		
11h30	Antonio DAMASIO A neurobiology for conscious and unconscious processing	14h00	Marc JEANNEROD
12h10	Jacques-Alain MILLER	14h40	Michel LE MOAL De l'homéostasie
13h00	pause déjeuner	15h20	Alim BENABID Du Parkinson à l'h
		16h00	pause
		16h20	Daniel WIDLOCHE Neuropsychologie
		17h00	Lionel NACCACHE De l'inconscient f
		17h40	Eric LAURENT Usages des neuro
		18h20	Discussion

Marc JEANNEROD	
La psychothérapie neuronale	
Michel LE MOAL	
De l'homéostasie aux processus opposants : une dynamique psychobiologique	
Alim BENABID	
Du Parkinson à l'humeur : le chemin questionnant du neurochirurgien	
pause	
Daniel WIDLOCHER	
Neuropsychologie de l'imaginaire	
Lionel NACCACHE	
De l'inconscient fictif à la fiction consciente	
Eric LAURENT	
Usages des neurosciences pour la psychanalyse	
Discussion	