Towards a **computational** framework for **comparative** studies of sequence and **syntax**

W. Tecumseh Fitch University of Vienna

Cognitive Biology: Building Bridges between Biology & the Cognitive Sciences

"Bio-Linguistics"

Big Questions in Language Evolution

- Where did language evolve? (Africa)
- When did language evolve? (sometime in the last six million years, finished by ~100K ago)
- How did language evolve? Saltation or Gradual? (Combination)
- Why did language evolve? Communication or Thought? (Both)
- What, exactly, evolved? What is language that it could evolve in our species and not others?

What is Language? Concepts Linguistic Mapping

Language is a complex faculty that allows us to encode, elaborate and communicate our thoughts and experiences (via hierarchical phrases built up from arbitrary words).

"Divide-and-Conquer" The Multi-Component Perspective of Modern Cognitive Science

Language Makes "Infinite Use of Finite Means"

Wilhelm von Humboldt (1836): p 106: "von endlichen Mitteln einen unendlichen Gebrauch machen"

Chomsky's Early Insights

- "Language" interpreted as a finite set of rules generating an unlimited set of sentences.
- Meta-mathematical tools of Turing, Church, and Post generate infinite sets with finite rules; these can be used to represent the linguistic rules: "grammar" in a new sense.

Core Biological Issue: Hierarchical Pattern Perception

- Humans have a capacity, and propensity, to perceive rules of hierarchy and symmetry
- What are the biological basis and precursors of this "sense of order"?
- Earlier results (Huber & Aust 1999; Swaddle & Ruff 2004) show that starlings & pigeons cannot perceive abstract symmetry!

Context-Free Acceptor: Push-Down Automaton Pushdown Automaton (Acceptor) Yess No Push-down Input tape Just a finite-state machine augmented with an additional memory system, termed a "stack"

Trees: **Supra-Regular** Formal Grammars (e.g. Context-Free)

- Introduced by Chomsky and colleagues in late 1950's, as models of language between finite state machines and full Turing
- Also called "phrase structure grammars" or "constituent structure grammars"
- Just add a "stack" to a FSM

George Miller's Supra-Regular Hypothesis

- George Miller (1967) "Grammarama" paper: "constituent structure languages are more natural, easier to cope with, than regular languages... easier for people than the left-toright organization characteristic of strings generated by regular grammars"
- Humans attribute tree-structures to data, even where there is little evidence for it
- Bayesian Terms: Humans have a high "prior" on contextfree, relative to finite-state, rules.

My Core Question Rephrased: Supra-Regular Pattern

Perception?

- Humans are biased to perceive tree structures in arbitrary stimuli
- What about animals? Can they? Do they "find it more natural" (are they biased towards supra-regular rules)?

Comparative Research: Where do animals fit into the formal language framework? O:TG 1: CSG 2: CFG 2: CFG 2: FSG

Animal's Own Vocalizations?

Okanoya, ten Cate, Berwick and others: Birdsong can be well-modeled with finite state (regular) grammars: no need for supra-regularity. cf. ten Cate & Okanoya (2012) Phil Trans B 367: 1984 Possible exceptions: whales? mockingbirds? Still unclear.

Animal Pattern Perception: How to Examine it Empirically?

- **Key Idea**: Test subjects with pairs of grammars at two different formal levels
- Choose grammars matching on all other parameters (length, # element types, etc.)
- Multiple techniques available:
 - Artificial Grammar Learning fast and easy
 - Operant testing and training slow but MUCH more data for analysis

Artificial Grammar Learning: Training SAP SAPLAR SON SONLAR DEV DEVLER GÜL GÜLLER

Two grammars – Simple pattern generating algorithms

Sequential Rule (Finite State Grammar)

Hierarchical Rule (Context Free Grammar)

Fitch & Hauser Conclusion:

"These results suggest that, despite a clear ability to process sequential regularities in acoustic strings, tamarins are unable to process a simple phrase structure"

Further FLT in animals/neuroscience

- Fitch & Hauser (2004) AⁿBⁿ versus (AB)ⁿ
- Perruchet & Rey (2005) critique (humans)
- Gentner et al (2006) AⁿBⁿ in starlings
- Friederici et al (2006) Brain regions
- De Vries et al (2008) critique of that
- Van Heijningen (2009) critique of Gentner...
- Abe & Watanabe (2011) AⁿBⁿ in Bengalese finches ...
- Rey, Perruchet, Fagot (2012) baboons

Replications and Critiques

- Human results with both grammars now replicated repeatedly in multiple sensory modalities – a solid empirical finding.
- FSG in animals also now replicated repeatedly
- Still relatively few attempts at supra-regular grammars in animals

Another Regular Grammar of Interest: AB*A Andrea Ravignani et al 2013: Biology Letters 9(6) – Squirrel monkeys Ruth Sonnweber et al 2015: Animal Cognition 18(3) – Chimpanzees (visual)

Dutch Critique of Gentner's Conclusion

- Gentner et al excluded many possible regular alternatives, but omitted a key foil
- Crucially, they pooled individual results
- Further analysis shows that idiosyncratic finite-state strategies are used in zebra finches and nonetheless give the same results as for starlings when pooled

Van Heijnegen, Zuidema, ten Cate (2011) PNAS

Interim Conclusion: Animal Auditory AGL

- Humans are clearly competent with supraregular grammars, spontaneously and without training.
- Animals are not. Even with intensive training their accomplishments are limited and currently disputed.
- But do acoustic strings provide a fair comparison?

The Central Empirical Issue:

- A string set may be produced by a CFG but still recognized by a regular grammar
- Need to exclude such regular alternatives
- For AⁿBⁿ examine response to:
 - More transitions
 - "Starts with A": "A.*"
 - "End with B": ".*B"
 - "Some BA": ".*BA.*"
 - Etc.

Three Critical Test Cases for AⁿBⁿ Can *every* subject tested...

- Recognize novel stimuli that follow the pattern?
- Generalize over n: Train on n = 2, 3 then test with n = 4, 5. Termed "Extensions"
- Reject "Mismatched Foils": **crucial**: probe strings where number of As and Bs do not match!

(neglected by many studies, e.g. Rey, Perruchet & Fagot (2012) test only with A^2B^2)

Human Performance:

At or near ceiling for all tests, with better performance on AⁿBⁿ

10 of 10 accept Extensions of n in AⁿBⁿ 8 of 10 successfully reject unmatched AⁿB^m

Conclusions

- Neither small-brained pigeons nor largebrained keas are able to recognize a simple supra-regular grammar, even after training.
- Consistent with previous finding of birds' failure to understand bilateral symmetry
- Also consistent with (current) failure of nonhuman primates to recognize supraregular grammars

The Dendrophilia Hypothesis

Current Working Hypothesis:

Humans have a species-typical, but **domain general**, ability and propensity to infer tree-formed, hierarchical structures from patterns. This entails computational resources above the finite state level and applies across music, language and the arts

Broca's Area: Increasing Activity with increasing hierarchical chunk size Jabberwocky" sentences with nonce nouns and verbs: BLUE is a significant chunk size effect, red show interactions Pallier, Devauchelle, Dehaene (2011) PNAS 108: 2522

Theoretical Need for Bio-Linguistics: Formal Theory of Natural Computation

- Formal Language Theory developed for mathematical purposes, not biology
- We eventually need a neurally grounded theory of "natural computation"
- Core issue: the specific computational and access structure of what psychologists call "working memory" (replacing the stacks, queues and tapes of FLT)

Conclusions

- Language can be fruitfully studied in a comparative manner (even though animals lack language)
- Human **syntactic** abilities are the hardest to find connections in animal communication
- The difference between human and animal syntax may be a human-specific dendrophilia – a proclivity to perceive hierarchical structure.

Why Dendrophilic Cognition Matters

- Ability to infer "hidden nodes" of tree structures
- Generativity: A few example trees allow generation of many more via symmetry operations
- Can build both symmetrical and asymmetric (pruned) tree structures

